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Abstract—With increasing social and financial activities on the
web, phishing has become one of the most critical threats in
cybersecurity. Many methods have been proposed to identify
phishing websites, such as fuzzy logic, neural networks, data
mining, heuristic-based phishing detection, and machine learning.
On the other hand, phishers develop more sophisticated tech-
niques, decreasing the efficacy of the existing methods. This paper
proposes a phishing detection model based on Optimized Fuzzy
Multi-Criteria Decision-Making (OFMCDM) and Improved Ran-
dom Forest (IRF). The model utilizes Uniform Resource Locator
(URL) and Hypertext Markup Language (HTML) features to
prevent sharing users’ sensitive information such as username,
password, social security, or credit card number. Our experi-
ments show competitive results from our models compared to
existing models, including Naive Bayes (NB), Logistic Regression
(LR), K-Nearest Neighbor (KNN), and Decision Tree.

Index Terms—Parallel Computing; URL Detection; Phishing
Websites; Feature Extraction; Improved Random Forest

I. INTRODUCTION

Phishing is one of the most common cybercrimes. APWG
(Anti-Phishing Working Group) reported 1,270,883 yearly
phishing assaults in 2022, with 1,097,877 happening from
April to June [1]. Both numbers are record-breaking, showing
the most damaging period for phishing history recorded by
APWG. The finance industry, including banks, was the most
common target in Q3 of 2022, accounting for 23.2% of phish-
ing scams. The retail/e-commerce and social media industries
also saw phishing attacks at 15%, and attacks against the
Software As A Service (SAAS)/Webmail account for 17% of
attacks. The cryptocurrency market saw a decrease in phishing
attacks from 4.5% in Q2 to 2.0% in Q3 [2].

Phishing is a cat-and-mouse game between attackers, who
employ a variety of techniques such as fake websites and
victim investigation, and anti-phishing measures, which aim
at detecting and preventing phishing attacks. Despite various
technical and non-technical efforts to counter phishing, it re-
mains a challenging problem due to the exploitation of human
vulnerabilities and the constantly changing tactics of attackers.
Additionally, the low cost and high reward of phishing make
it an attractive tactic for scammers.

Machine Learning (ML) methods have been proven to
be effective in detecting phishing websites. Specifically, ML
algorithms can detect complex correlations between items of a
similar nature. ML algorithms commonly contain two phases
of training and testing. In the training phase, the algorithms
learn from labelled examples. In the subsequent testing phase,
researchers evaluate the performance and generalization of the
algorithms. Random Forest (RF) shows the most promising
results among the many ML models used in detecting phishing
websites. Among them, Uddin et al. [3] compared ML-based
website phishing detection methods based on URL informa-
tion. They compared five ML models of Decision Tree, RF,
KNN, Gaussian Naive Bayes, and XGBoost. They demon-
strated that the RF algorithm outperforms other techniques
with an accuracy of 97.0%. Algabri et al. [4] adopted a number
of methods to select the highest associated characteristics
in detecting phishing websites. The RF produced the most
accurate classification results for two distinct experimental
datasets. Using the best features, their RF model earned a
maximum accuracy of 92.83%, followed by Convolutional
Neural Network (CNN) with an accuracy of 90.46%. Fol-
lowing the effectiveness of RF models demonstrated in many
existing works, we adopt RF to classify URLs in the proposed
approach. Our approach can also be easily adapted to other ML
methods.

Zhu et al. [5] proposed a model based on the updated
Multi-Objective Evolution (MOE) optimization method and
RF. The MOE/RF approach reduced the likelihood of falsely
identifying phishing sites using accuracy as the detection
target. Two new approaches were suggested to enhance the
MOE performance: symmetric uncertainty-based population
initialization and population state-based adaptive environmen-
tal selection. These two approaches were found to outperform
existing ones. According to experimental results evaluating
five different phishing datasets, this approach has a 99.4%
accuracy rate.

Mandadi et al. [6] suggested several ML methods for
categorizing URLs, including Support Vector Machine (SVM),
Neural Networks, RF, Decision Tree, and XG boost. They used



10,000 URLs in total, 5000 of which were legitimate websites
and 5000 of which were phishing websites. The dataset was
shuffled and had a total of 17 features, which were used to
train the model. The suggested methodology covered the RF
and Decision Tree classifiers, which successfully distinguished
legitimate and phishing URLs with an accuracy of 87.0% for
RF classifiers and 82.4% for Decision Tree classifiers.

One challenge in detecting phishing websites is accurately
identifying both phishing and legitimate websites. Phishers
attract traffic by using similar URLs and designs to pretend
to be legitimate websites. Most existing works focus on
detecting phishing websites, but problems arise when legit-
imate websites are misclassified. The proposed OFMCDM
classification approach addresses this issue. Using our OFM-
CDM/IRF model, we achieved good accuracy with a notable
True Positive Rate (TPR), minimizing the misclassification
of legitimate websites. Another challenge is to detect real-
time phishing attacks. This is mainly because modern phishers
are changing their tools and technology regularly to create
new approaches to phishing. Our proposed approach adopts
fuzzy logic and natural language processing techniques to
analyze a URL and detect suspicious features. Accordingly,
our proposed method can detect both previously-seen phishing
as we have done the experiment on these datasets and brand-
new zero-day attacks.

Our algorithm improves the existing malicious URL de-
tection algorithms and detects phishing webpages in real
time by analyzing the URLs with different machine learning
algorithms. A summary of our main contributions is given
below:

• Three data processing techniques based on URL and
HTML feature extraction are defined: 1) word tokeniza-
tion that divides incoming URLs into separate words and
removes digits, 2) random word detection that identifies
the length and number of URLs, and 3) maliciousness
analysis that determines if the words are used fraudu-
lently.

• The proposed model enhances the multi-class RF al-
gorithm for classification, which can extract important
features to provide improved accuracy, robustness, and
reliability. Furthermore, it also enables real-time phishing
detection.

• We combine ML methods and Optimized Fuzzy Multi-
Criteria Decision-Making to analyze the characteristics
of both phishing and legitimate websites and identify
effective user-side features for phishing detection.

The rest of this paper is arranged as follows. Section II
proposes the architecture of the OFMCDM/IRF model. Section
III presents the experimental results. Section IV concludes the
paper and outlines future work.

II. THE PROPOSED ARCHITECTURE OF OFMCDM/IRF
The proposed OFMCDM/IRF approach to detecting phish-

ing websites includes three main components as depicted in
Fig. 1:

A. URL parsing;

input webpage

Word Tokenization Module (WTM)

Random Word Detection Module (RWDM)

Maliciousness Analysis Module (MAM)

A. URL PARSING

URL features

HTML features

B. OFMCDM FEATURE EVALUATION

C. IRF WEBPAGE CLASSIFICATION

phishing or legitimate

Fig. 1: An architecture of the OFMCDM/IRF model

B. OFMCDM feature evaluation;
C. IRF webpage classification.
As shown in Fig. 1, two groups of HTML and URL features

are obtained from the input webpage. HTML features are
computed based on the HTML file of the webpage, such as
the numbers of external and internal links, login form, the
length of HTML content, and alarm window. URL features are
computed based on the URL of the webpage by the first main
component A of URL parsing. URL features include suspi-
cious symbols, sensitive vocabulary, protocols, and the number
of dots. An URL is parsed by three modules respectively for
word tokenization, detecting randomly generated words, and
analyzing malicious words. Both HTML and URL features
are then analyzed by the second main component B of feature
extraction using OFMCDM. A set of effective features are
generated and input into the ML model IRF used in the third
main component C of classifying the webpage as phishing or
benign. The remaining part of this section discusses the three
components in detail.

A. URL Parsing

The objective of the first main component of URL parsing
is to obtain a set of features based on a URL. The URL
is analyzed by three modules: 1) Word Tokenization Module
(WTM), 2) Random Word Detection Module (RWDM), and
3) Maliciousness Analysis Module (MAM).

1) Word Tokenization Module (WTM): This module recur-
sively splits the URL into a list of distinct words or tokens.
Firstly, the URL is broken down into substrings at the special
characters that are added by the phisher to make the URL more
complicated. Secondly, the substrings are checked against a
dictionary or vocabulary of words or tokens. If a substring is in



the dictionary, we add it to the list of output words. Otherwise,
the substring is recursively divided into smaller strings.

Algorithm 1 URL Parsing

1: Input URL
2: . Word Tokenization Module (WTM)
3: A method handle to be proceeded.
4: Parse URL by special characters.
5: if Dictionary-Check then
6: Add to Wordlist.
7: Remove all subcodes with a character length less than

three.
8: Sort words according to their length.
9: end if

10: if Dictionary-Check-for-all-substrings then
11: Add to Wordlist.
12: end if
13: . Random Word Detection Module (RWDM)
14: for all Brand-Name and Keyword-Check do
15: CountB=Brand-Name.
16: CountK=KeyWord.
17: for all Extract-Feature do
18: if Random-Word-Detection then
19: CountW=Random-Word.
20: end if
21: if length >7 then
22: Secure login.
23: Word tokenizer.
24: Add to Wordlist.
25: Analysis securely.
26: Maliciousness analysis.
27: else
28: Add to Wordlist.
29: Remove False Positives using threshold adjust-

ment.
30: end if
31: end for
32: end for
33: . Maliciousness Analysis Module (MAM)
34: Input Wordlist.
35: if Brand-Name and Keyword-Check then
36: Add to Found-Wordlist.
37: Calculate word similarity.
38: end if
39: if Edit-Distance <2 then
40: Add to Similar-Wordlist.
41: end if

The process is described in the first part of Algorithm 1. We
check whether the extraction process is set up before starting
the next step. If it is, we add the extracted words to the list of
words. We use a module called “tokenize” to separate words in
the list. We check if each word is a valid dictionary word using
the “enchanting” package [7]. If a word is longer than two
characters and not in the dictionary, we break it into smaller
sub-strings and check if they are in the dictionary. However,

we need to be careful when creating the word list. The module
may generate false positives because it has not been trained
for the detection of choosing a meaningful word. Note that
the next RWDM module will handle words longer than seven
characters.

2) Random Word Detection Module (RWDM): Phishing
URLs may contain randomly generated phrases where the
probabilities of two consecutive letters do not follow the
distribution in ordinary texts written in a certain language. In
our approach, the Random Word Detection Module (RWDM)
identifies the randomly generated phrases based on the Markov
chain model [8], [9].

The process is described in the second part of Algorithm 1.
We focus on letters only and do not count other characters,
such as spaces or special characters. We check the consecutive
letters of a given word in a random pattern and determine
whether it is a meaningful term or a random word based on
its significance. This is done by setting a threshold adjustment
value for the fitness score. If the fitness score is high, it is
considered a valid term. Otherwise, it is treated as a random
word.

3) Maliciousness Analysis Module (MAM): This module
determines if the words generated from the previous two
modules are malicious. Particularly, MAM detects “typosquat-
ting” attacks where phishers trick users into visiting fake
websites by slightly altering the legitimate URLs, such as
using “Goggle.com” instead of “Google.com”. Typosquatting
is a well-known threat that is difficult to eliminate completely.
Nevertheless, there are strategies to reduce the risk of ty-
posquatting, such as implementing security measures to detect
and block malicious domains, educating users on the dangers
of typosquatting, and encouraging the use of trusted sources
for domain registration.

The process of MAM is described in the third part of
Algorithm 1. We check if the words produced from the two
previous modules match any brand names or keywords in a
list. The Levenshtein algorithm [10], [11] is used to measure
how similar a word is to the brand names or keywords. It
calculates the distance between two words based on the num-
ber of changes (such as adding, removing, or changing letters)
needed to convert one word into another. A similarity measure
can be defined reversely to the distance. Such a similarity
measure represents the graded degrees of non-maliciousness
rather than crisp Boolean decisions. Accordingly, fuzzy sets
and fuzzy logic [12] are appropriate rather than traditional
crisp sets and Boolean logic. A fuzzy set uses a membership
function to represent the degrees to which an object belongs to
a set. Fuzzy logic generalizes the two truth values in Boolean
logic into continuous degrees of truth, and accordingly, the
logic operations are also redefined. With respect to the MAM
module, the found words or similar words in the Algorithm 1
wordlist are represented as a fuzzy set. The similarity measure
defines its membership function, representing the membership
degrees of the words to the found word or similar word. Using
fuzzy sets and fuzzy logic, the MAM module tackles the
challenge of detecting both phishing and legitimate cases by



introducing a graded transition between the two cases rather
than a sharp shift.

B. OFMCDM Feature Evaluation

This step evaluates the URL features produced by the
previous step as well as the HTML features. We present
an OFMCDM method to evaluate the features. Fuzzy logic,
fuzzy multi-criteria decision-making (FMCDM), and natural
language processing (NLP) are commonly used together in
phishing website detection to address the complexity and am-
biguity of the problem. Fuzzy logic is used to handle imprecise
and uncertain data, allowing for a more nuanced assessment
of the likelihood of a phishing website. FMCDM combines
fuzzy logic with multiple criteria decision-making (MCDM).
MCDM performs the ranking of decision alternatives based
on multi-criteria. In the context of phishing website detection,
FMCDM is adopted to investigate the detection decisions,
represented by fuzzy sets, based on multi-features as criteria.
NLP is used to analyze the content of a website and identify
text or language patterns commonly used in phishing attacks.
Combining these techniques allows a more comprehensive
and effective approach to phishing website detection to be
achieved [13].

Our detection process first searches for the presence of
hexadecimal values (represented by % in the URL), which
can appear on both legitimate and phishing websites. Legiti-
mate websites use them to replace special characters such as
question marks, commas, spaces, or colons. Phishing websites
use them to conceal the actual URL by replacing letters and
numbers with hexadecimal values. To distinguish between
them, we convert the hexadecimal values to their numerical
representation in the ASCII table and check if the resulting
number represents a valid letter or number.

Furthermore, we use parallel computing to improve the
efficiency of our algorithm. As shown in Fig. 2, it consists
of a master process for data processing and a slave process
for URL checking. If the slave process finds the input URL
in the trained dataset, there is no need to enter the master
process. However, if the URL is not in the trained dataset, it
goes through the master process.

The master process creates the Database after the Algorithm
2 is performed. The PhishingDetection procedure relies on the
URLs variable defined outside the procedure. The algorithm
uses a nested for loop to iterate over the phishing features
and URLs and calculates a score for each URL based on the
number of Key Phishing Characters (KPC) it contains. The
variable keeps track of the number of phishing features found
in the current URL and is used to calculate the phishing score.
If the phishing score is greater than or equal to a threshold,
the URL is declared as phishing. Otherwise, it is declared as
benign.

We have a 10-layer system to detect phishing websites,
where each layer has two rules checking for phishing char-
acteristics shown in Table I. If the website URL and HTML
features match these rules, it gets a score of 0.1. The final

Start

Collect Non-Phishing Dataset Collect Phishing Dataset

Create Database

Next URL in the Database?

Feature Extraction
Suspicious Character

Number of Dots and Slashes
Keywords and Brand Name Check

Multiple Occurrence (.com, http, https)

Train Dataset using OFMCDM/IRF

Train Classifiers

End

Master Process

OFMCDM/IRF

Slave Process

Yes

Fig. 2: The flow chart of OFMCDM with parallel computing

score of the website ranges from 0 to 1, with 0 being a low-
risk website and 1 being a high-risk phishing website. For
simplicity, we treat each rule equally important in identifying
potential web security threats and adopt equal weights accord-
ingly. One may easily generalize it into unequal weights if they
could be given by a meaningful context.

C. Webpage Classification Based on Improved Random Forest

The RF method binds a collection or a forest of decision
trees. It can be utilized for both classification and regression
with high robustness and accuracy. We present an IRF method
as our classification for detecting phishing websites. As shown
in Fig. 3, the proposed IRF first generates a random set of
parameters for creating trees in the forest for each class.
Each tree will be built according to the information gained
from attributes in the training dataset. Secondly, the set of
parameters is split to minimize the information gain. Each
object that passes from the nodes of trees accumulates the
decision weight for each class. Finally, the decision trees are
created based on the chosen threshold of different levels of
leaves. Each leaf contains the calculated weight for a particular
class with size and its reference point. Each part of the text
is sampled from the URL and ends in a leaf of a tree. The
following equation is used to calculate the probability of the



TABLE I: The rule base in the ten layers of assessing webpages.

Layer Number Rule base Layer weight
1 Lengthy URL used as a connection. Using an IP address rather than a DNS name. 0.1
2 Many dots in the IP Address. Utilizing a changed port number. 0.1
3 Untrustworthy SSL certificate. Below a half year is the domain’s duration. 0.1
4 Redirected pages and insecure websites. Requiring additional time to access accounts. 0.1
5 Accessing accounts requires extra time. Employing Java Scripts to conceal information. 0.1
6 Picture synchronization with other websites. Under Google’s blacklist for that site. 0.1
7 Rule using forms with a submit button. Popping up windows. 0.1
8 Higher emphasis on responsiveness and safety. Honger access times to individuals. 0.1
9 Server form handler (SFH). Using mouse-over to make the link invisible. 0.1

10 In online address bars, prefixes and suffixes are added. Using @ sign and hexadecimal characters. 0.1

Algorithm 2 FMCDM Feature Evaluation

1: Input URLs
2: procedure PHISHINGDETECTION
3: for each URL in URLs do
4: score← 0
5: KPC ← 0
6: for each phishing feature do
7: if URL contains phishing feature then
8: score← score+ feature weight
9: KPC ← KPC + 1

10: end if
11: end for
12: if KPC > 0 then
13: phishing score← score/KPC
14: if phishing score ≥ threshold then
15: Return URL weight
16: end if
17: else
18: Return URL weight
19: end if
20: end for
21: end procedure

patch of text falling under any class:

pr(h(c, x, z) | Leaf t(y)) =
pr(dist(x, y, z) | c,Leaf t(y))

pr(c | Leaf t(y))
.

(1)
The notation h(c, x, z) represents a latent variable that captures
the relationship between the class label c, the input text x, and
the context information z. In the context of a machine learning
model, this latent variable represents the internal state of the
model that helps to predict the class label for a given input
text. To improve performance, one can use more informative
features or representations of the input text and context, model
the relationships between variables in a more expressive way,
and use more advanced inference techniques to estimate the
posterior distribution of the latent variable.

The left-hand side of Equation (1) represents the conditional
probability pr(h(c, x, z) | Leaf t(y)). This is the probability
of the latent variable h taking on the value h(c, x, z) given
that we have observed a leaf node Leaf t(y) with label y.
Specifically, we are interested in the probability of h taking
on a particular value h(c, x, z) given that we have observed

Generate a basic random forest from the training dataset

Collect the attributes appearing in the basic random forest

Use the Random Forest classifier to find the subset
of the attributes in the training dataset

Initialize the weight for each attribute

Ai ∈ D is not tested in the DT

Initialize Ai to zero Calculate the minimum depth

Calculate the class conditional probability
and classify each instance

Calculate the class conditional probabilities

Calculate the prior probability for each class

True False

Fig. 3: The flow chart of IRF

a leaf node Leaf t(y). The right-hand side of Equation (1)
is about the probability of a hypothesis (in this case, the
value of h) in light of new evidence (in this case, the
observed leaf node Leaf t(y) with label y). The numerator
pr(dist(x, y, z) | c,Leaf t(y)) represents the likelihood of the
observed data dist(x, y, z) (i.e., the distance between x and
y and z) given the value of c and the observed leaf node
Leaf t(y) with label y. The denominator pr(c | Leaf t(y))
represents the prior probability of c given the observed leaf
node Leaf t(y) with label y.

III. EXPERIMENTAL ANALYSIS

We demonstrate the effectiveness of the proposed OFM-
CDM/IRF approach to detecting phishing in the early life



of an attack. The experiments assert that by combining and
generating techniques in multiple areas, such as MCDM, fuzzy
logic, NLP, and ML, our OFMCDM/IRF model can provide
an effective and efficient way to detect phishing websites.

A. Dataset Preparation for Experiments

We collected our data from various reliable sources [14],
[15]. PhishTank is a shared platform for data and Internet
knowledge [16]. A project called OldPhishTank was run by
OpenDNS, which was brought up by Cisco in 2015. The
current database, known as NewPhishTank, is owned and run
by the cybersecurity company Cofense. Security researchers,
businesses, and individuals use these databases to detect and
restrict access to known harmful websites in order to defend
against phishing attempts. After registration, engineers and
researchers can download a verified URL list of various
formats. We downloaded the dataset in the CSV file format
and compiled the first set of 10,000 URLs. It should be noted
that the criminal tactics used to steal sensitive information
are changing over time. We have selected 10,000 URLs for
sensitive identity theft to track these new URL features and
closely mimic the actual situation. Data were also collected
from two public directories Alexa and DMOZ for non-phishing
URLs, phishing URLs, and unknown URLs. Alexa and DMOZ
servers were used to select a total of 20,000 URLs randomly.
We randomly selected 10,000 URLs as phishing and 10,000
URLs as non-phishing. Among them 20% were Unknown
URLs, and for labeling these unknown URLs we follow the
approach described below.

Our approach adopts and extends a few existing methods
for unknown URLs, each of which is capable of giving us
an answer on its own about whether a website is a phishing
site. These methods have different levels of effectiveness
and credibility. So we assign a weight to each method and
combine their results to calculate the health of a website by
the following formula of Website Health (WH):

WH =
(W1V1 +W2V2 + ...+WnVn)

n
, (2)

where W1,W2, ...,Wn are the weights for n methods, and
V1, V2, .., Vn are values representing the results from the
methods. Specifically, Vi is +1 if method i classifies the
website as non-suspicious and -1 if it classifies the website
as suspicious. If WH is negative, the website is considered
suspicious. Otherwise, it is legitimate. The value of WH also
reflects the degree of suspicion. For negative values, the less
the WH , the more suspicious the website.

In the experience from our research experiment, we are
currently using four methods:

• The first method is URL-based. Its value is denoted as
Vurl. Its weight is 0.5 or 50%.

• The second method is whitelist checking. Its value is
denoted as Vwhite. Its weight is 1 or 100%.

• The third method is blacklist checking. Its value is
denoted as Vblack. Its weight is 1 or 100%.

• The fourth method is content-based checking. Its value is
denoted as Vcontent. Its weight is 1.5 or 150%.

We do not normalize the weights because normalization is not
always necessary or appropriate in every ML model. In our
case, the normalization of weights also introduces additional
computational overhead, which can slow down the training
process and increase the memory requirement of our model.
With the above four methods, the formula for our current
implementation becomes:

WH =
(0.5 ∗ Vurl + 1 ∗ Vwhite + 1 ∗ Vblack + 1.5 ∗ Vcontent)

4
.

(3)
The splitting ratio between training and testing data can

vary depending on the size of the dataset. In this paper, we
use a splitting ratio to use 70% of the data for training and
the remaining 30% for testing.

B. Performance Metric

For the performance metrics, we consider phishing as posi-
tive (P) and benign as negative (N). As shown by the confusion
matrix in Table II, real phishing websites classified as phishing
are true positive (TP); those classified as benign are false
negative (FN). Real benign websites classified as phishing
are false positives (FP); those classified as benign are true
negatives (TN). Based on it, we evaluate the performance using
precision, recall, F1-score, and accuracy (ACC). Precision is
also called positive predictive value (PPV). Recall is also
called sensitivity or true positive rate (TPR). F1-score is the
harmonic mean of precision and recall. These measures are
calculated as follows:

PPV =
TP

TP + FP
,

TPR =
TP

TP + FN
,

F1− score =
2TP

2TP + FP + FN
,

ACC =
TP+ TN

TP+ FP + TN+ FN
. (4)

TABLE II: The confusion matrix for phishing and benign

Real
Predicted Phishing (P) Benign (N)

Phishing (P) TP FN
Benign (N) FP TN

C. Experimental Results

The specifications of our experimental environment are
as follows: Python 3.7 (64-bit), Windows 11 Pro (64-bit)
operating system, processor Intel Core (TM) i3-6320 CPU
@ 3.90GHz, and install memory (RAM) 8GB with hard disk
drive 1TB. We perform the experiments on eight representable
algorithms individually, including IRF, RF, Decision Tree,
SVM, Naive Bayes, KNN, AdaBoost, and XGBoost. Table
III describes the different detection results. SVM performance
is the worst overall. RF and IRF both outperform other



TABLE III: Experimental results with different classifiers

Classifier PPV TPR F1-score ACC
Improved Random Forest 0.990 0.991 0.990 99.55%
Random Forest 0.970 0.990 0.980 97.98 %
Decision Tree 0.964 0.977 0.971 97.02 %
SVM 0.957 0.955 0.94 94.45 %
Random Forest 0.970 0.990 0.980 97.98 %
Naive Bayes 0.940 0.977 0.958 95.67 %
KNN 0.940 0.977 0.958 95.67 %
Adaboost 0.908 0.963 0.935 93.24%
XGB 0.96 0.985 0.955 96.64%

TABLE IV: Experimental results of ensemble learning

Classifier PPV TPR F1-score ACC
RF+SVM+ParallelComputing 0.990 0.990 0.990 99.01 %
RF+SVM 0.970 0.980 0.960 96.98 %
DecisionTree+SVM 0.974 0.966 0.963 98.05 %
SVM 0.957 0.955 0.94 94.45 %
NaiveBayes+SVM+DecisionTree 0.987 0.866 0.876 87.6 %
RF+SVM+DecisionTree 0.879 0.876 0.876 87.9%

algorithms by using multiple features. The best accuracy is
99.55%, which demonstrates the effectiveness of our method.

We also performed experiments using different combina-
tions of algorithms for ensemble learning. The results are given
in Table IV. The highest accuracy of 99.01% is achieved by
the combination of RF, SVM and Parallel Computing. The
combination of RF, SVM and Decision Tree performed the
worst overall.

D. Comparison with other works

Table V shows the performance of our proposed approach
and other related works. We obtained the results of most
related works from their papers and reproduced some of
them for fair comparison. We compare all approaches with
respect to TPR, false positive rate (FPR), ACC, whether
or not they are search-engine-independent solutions (SEI),
third-party-service-independent solutions (3rdI), and language-
independent solutions (LI). The measure FPR is calculated
based on the confusion matrix in Table II as:

FPR =
FP

FN+ TN
. (5)

As shown in Table V, the proposed OFMCDM/IRF model
provides the highest accuracy. The work of Tan et al. [8] and
Chen et al. [31] achieved higher TPR than our approach. How-
ever, these two methods produce much higher FPR. Almost
all previous methods used search engines in datasets [14],
[32]. However, there are some problems associated to their
approaches. First, no real new sites appear at the top of
search results, and this main feature leads to a challenging
situation. Second, search engines do not produce accurate
results in non-English queries [8]. Another work of Zhang etal.
[22] achieved the lowest FPR. However, their work is third-
party-service-dependent and language-dependent. Our method
performs better by helping search engines find non-existent
websites and produce lower FPR.

Our approach is compared to a number of works based on
different metrics in Table V. It should be noted that there

TABLE V: Comparison of OFMCDM/IRF and other works

Approach TPR FPR ACC SEI 3rdI LI
Montazer et al. [16] 88 12 88% Y N Y
Xiang et al. [17] 92 0.4 95.8% N N N
Gowtham et al. [18] 98.24 1.71 98.25% N N Y
Zhang et al. [19] 97 6 95% N N N
Tan et al. [8] 99.68 7.48 96.10% N N N
Chiew et al. [20] 99.8 13 93.4% N Y Y
El-Alfy et al. [21] 97.24 3.88 96.74% N N N
Zhang et al. [22] 98.64 0.53 99.04% Y N N
OFMCDM/IRF 99.55 2.5 99.02% Y Y Y

TABLE VI: Comparison of OFMCDM/IRF and other works
based on the number of features

Approach Number of features Feature approach Accuracy
Islam and Abawajy [23] 21 Hybrid 97%
Almomani et al. [24] 21 Hybrid 98%
Khonji et al. [25] 47 Hybrid 97%
Gansterer and Polz [26] 30 Hybrid 97%
Ramanathan et al. [27] 200 topics Content 97.7%
Ma et al. [28] 7 Hybrid 99%
Toolan and Carthy [29] 22 Hybrid 97%
Hamid and Abawajy [30] 7 Hybrid 92%
OFMCDM/IRF 42 Hybrid 99.55%

is no perfect approach that outperforms all the others in
all aspects. According to Table V, the proposed approach
OFMCDM/IRF has high TPR and ACC values compared to
the other approaches, although it has a lower FPR value than
the works from Xiang et al. [17], Gowtham et al. [18], and
Zhang et al. [22]. Nevertheless, OFMCDM/IRF has advantages
over these works in terms of providing independent solutions
as indicated by the columns of SEI, 3rdI, and LI. Overall, the
choice of approach would depend on the specific requirements
and constraints of the task at hand. In addition, it may not be
meaningful to compare different tables as they are evaluated
with different datasets.

E. Comparisons Based on the Number of Features

Table VI compares the proposed OFMCDM/IRF model with
other approaches based on the number of features. It shows
that our approach has obtained the highest accuracy among all
the approaches. Each row represents a study or approach, and
the columns show the number of features used, the approach
used to extract features (e.g., hybrid, content-based), and the
accuracy achieved in the study. The first four rows show
studies that used a hybrid approach with varying numbers
of features, ranging from 21 to 47. All these four studies
achieved high accuracy, indicating that a hybrid approach
using multiple features works effectively. The fifth row shows
a study by Ramanathan et al. [27] that used 200 topics as
features extracted with a content-based approach and achieved
an accuracy of 97.7%. The sixth and seventh rows show
studies using a hybrid approach extracting 7 and 22 features,
respectively. They achieved high accuracy of 99% and 97%.
The eighth row shows a study by Hamid and Abawajy [30]
that used a hybrid feature extraction approach producing
only 7 features and achieved a slightly lower accuracy of
92%. Finally, the last row shows our proposed approach that



extracted 42 features and achieved a high accuracy of 99.55%
because of using reasonable number of features.

IV. CONCLUSION AND FUTURE WORK

The proposed OFMCDM/IRF phishing website detection
model is a promising approach to detecting phishing websites.
This model uses a combination of fuzzy logic and multi-
criteria decision-making to optimize feature selection and an
improved random forest algorithm for classification. The use
of fuzzy logic and multi-criteria decision-making allows the
inclusion of subjective and uncertain data in the decision-
making process, making the model robust and reliable. The
improved random forest algorithm enhances the accuracy and
efficiency of classification. The experimental results show
that the proposed OFMCDM/IRF model outperforms existing
phishing website detection methods regarding a few standard
performance measures. This suggests that the OFMCDM/IRF
model can be a valuable tool for identifying and preventing
phishing attacks.

One direction for future work is to optimize the feature
selection process, using methods other than fuzzy logic and
MCDM. A second direction is to verify the effectiveness of
the OFMCDM/IRF model and extend its application with
various data sources such as social media or email phishing
attacks. A third direction is to explore the use of other machine
learning algorithms in the OFMCDM/IRF model, such as deep
learning or support vector machines, to improve the accuracy
and efficiency of phishing website detection.
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