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1.1. Abstract
Virtualization is instigating a paradigm shift in the networking industry, to
keep up with emerging applications quality of service requirements, massive
growth in traffic volume, and to reduce capital and operational expenditures.
Network virtualization coupled with function virtualization enable network
providers to offer on-demand virtualized networks and services. Network slic-
ing goes a step further by facilitating a new business model, namely Network-
as-a-Service, to offer dedicated and customized network slices (i.e., partitions
of physical infrastructure) to multiple tenants, while ensuring proper isolation.
However, this shift introduces new challenges for network providers and calls
for intelligent and automated management. Artificial Intelligence and Machine
Learning are considered as enablers for the automated deployment and man-
agement of virtualized networks and services. This chapter exposes the state-
of-the-art research that leverages Artificial Intelligence and Machine Learning
to address complex problems in deploying and managing virtualized networks
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and services. It also delineates open, prominent research challenges and oppor-
tunities to realize automated management of virtualized networks and services.

Keywords:Network Virtualization, Network Functions Virtualization, Net-
work Slicing, Machine Learning

1.2. Introduction
Virtualization is instigating a revolutionary change in the networking industry,
similar to that of the computer industry in the 80’s. Indeed, before IBM com-
patibles and Windows, the mainframe computer industry in the late 70’s and
early 80’s was closed with vertically integrated specialized hardware, operat-
ing system and applications—all from the same vendor. A revolution happened
when open interfaces started to appear, the industry became horizontal and
innovation exploded. A similar revolution is happening in the networking indus-
try, which previously had the “mainframe” mindset relying on vendor specific,
proprietary and vertically integrated solutions. Network Virtualization (NV)
and the provision of open interfaces for network programming, are expected to
foster innovation and rapid deployment of new network services.

The idea of NV gained momentum to address the Internet ossification prob-
lem by enabling radically different architectures [4]. The current Internet suffers
from ossification, as the Internet size and rigidity make it difficult to adopt new
networking technologies [56]. For example, the transition from Internet Proto-
col version 4 (IPv4) to IPv6 has started more than a decade ago, while IPv6
adoption rate is still significantly low as reported by major service providers
(i.e., less than 30% of Google users have adopted IPv6 [1]). It is becoming in-
creasingly cumbersome to keep up with emerging applications quality of service
(QoS) requirements of bandwidth, reliability, throughput, and latency in an os-
sified Internet. NV solves the ossification problem by allowing the coexistence
of multiple virtual networks (VNs), each customized for a specific purpose on
the shared Internet. Although the idea of NV originated to address the Inter-
net ossification, NV has been adopted as a diversifying attribute of different
networking technologies, including wireless [34], radio access [19], optical [29],
data center [6], cloud computing [28], service-oriented [21], software-defined
networking (SDN) [20, 10], and Internet of Things (IoT) [3].

Another prolific application of virtualization in networking is the adop-
tion of virtualized network services through network functions virtualization
(NFV). NFV decouples network or service functions from underlying hard-
ware, and implements them as software appliances, called virtual network func-
tions (VNFs), on virtualized commodity hardware. Numerous state-of-the-art
VNFs have already shown the potential to achieve near-hardware performance
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[38, 64]. Moreover, NFV provides ample opportunities for network optimization
and cost reduction. First, hardware-based network or service functions come
with high capital expenditures, which can be reduced by deploying VNFs on
commodity servers. Second, hardware appliances are usually placed at fixed
locations, whereas in NFV, a VNF can be deployed on any server in the net-
work. VNF locations can be determined intelligently to meet dynamic traffic
demand and better utilize network resources. NFV opens-up the opportunity
to simultaneously optimize VNF locations and traffic routing paths, which can
significantly reduce the network operational expenditure. Finally, hardware-
based functions are difficult to scale, whereas NFV offers to cost-efficiently
scale VNFs on-demand. A service-function chain (SFC) is an ordered sequence
of VNFs composing a specific service [23]. For example in a typical data center
(DC) network, traffic from a server passes through an intrusion detection sys-
tem (IDS), a firewall, and a network address translator (NAT) before reaching
the Internet.

Virtualizing networks and services facilitate a new business model, namely
Network-as-a-Service (NaaS), which provides a separation between the applica-
tions and services, and the networks supporting them [17]. Network operators
can adopt the NaaS model to partition their physical network resources into
multiple VNs (also called network slices) and lease them to service providers
[40]. In turn, service providers use VNs to offer services with diverse QoS
requirements, without any investment in establishing and managing a phys-
ical infrastructure. A perfect incarnation of the NaaS model is network slic-
ing for 5th generation (5G) mobile networks. Using network slicing, a single
5G physical network can be sliced into multiple isolated logical networks of
varying sizes and structures, dedicated to different types of services. These
“self-contained” VNs should be flexible enough to simultaneously accommo-
date diverse business-driven use cases from multiple service providers on a
common network infrastructure, and created on-demand according to the ser-
vice providers’ requirements.

The benefits of virtualized networks and services come at the cost of addi-
tional management challenges for network operators. First, a network operator
has to orchestrate VNs/network slices in such a way that they can coexist in a
single infrastructure, without affecting each other. Hence, smart orchestration
decisions need to be carried out to provision VNs satisfying requirements from
diverse users and applications, while ensuring desired resource utilization. This
also involves configuring a large number of virtual instances and their operating
parameters. The initial orchestration and configuration need to be adapted to
cope with time-varying traffic demands and change in network states. Second,
the added virtualization layer introduces new attack and failure surfaces across
different administrative and technological domains. For instance, any failure in
the underlying physical resource can propagate to the hosted virtual resources,

3



though the reverse is not always true. Similarly, remediation and mitigation
mechanism for one VN should not jeopardize the operation of coexisting VNs.
These diverse challenges call for automated management that cannot be sat-
isfied with the traditional, reactive human-in-the loop management approach.
The management of VNs should be intelligent to leverage the sheer volume
of operational data generated within a live network, and take automated de-
cisions for different operational and management actions. Therefore, Artificial
Intelligence (AI) and Machine Learning (ML) can play pivotal roles for real-
izing the automation of control and management for VNs and their services
[5, 13].

AI and ML techniques have been widely used in addressing networking
problems in the last few decades [5, 13]. However, when it comes to virtualized
network management, the lack of real-world deployment of virtualized services
impedes the application of AI and ML techniques. Despite that, there has
been a recent surge in research efforts that aim to leverage ML in addressing
complex problems in NV environment. This chapter summarizes state-of-the-
art research and outlines potential avenues in the application of AI and ML
techniques in virtualized network and service management. The rest of the
chapter is organized as follows. We provide a detailed technology overview of
virtualized networks and services in Section 1.3. We present state-of-the-art
research that apply AI and ML in three core sub-areas of virtualized networks
and services, namely NV, NFV, and network slicing in Section 1.4. We conclude
the chapter in Section 1.5 with a brief summary, and outline possible research
avenues to advance the state-of-the-art in applying AI and ML for managing
virtualized networks and services.

1.3. Technology Overview
Virtualization in networking is not a new concept. Virtual channels in X.25-
based telecommunication networks (e.g., ATM networks) allow multiple users
to share a large physical channel. Virtual Local Area Networks (VLANs) parti-
tion a physical LAN among multiple logical LANs with elevated levels of trust,
security, and isolation. Similarly, virtual private networks (VPNs) offer ded-
icated communications that connect multiple geographically distributed sites
through private and secure tunnels over public communication networks (e.g.,
the Internet). Overlay networks (e.g., PlanetLab) create virtual topologies on
top of the physical topology of another network. Overlays are typically im-
plemented in the application layer, though various implementations at lower
layers of the network stack do exist. These technologies deploy narrow fixes
to specific problems without a holistic view of the interactions between coex-
isting virtual networks. Therefore, in this section we provide a comprehensive
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Figure 1.1: Technologies for virtualizing network functions with examples

overview of different technologies that enable virtualtization of networks and
services.

1.3.1. Virtualization of Network Functions
A Network Function (NF) is a functional block within a network infrastruc-
ture that has well-defined external interfaces and functional behaviour [38].
NFs in traditional wired networks can be classified in two categories: forward-
ing functions and value-added functions. Forwarding functions, such as routers,
switches, and transponders, provide the functionality to forward data along a
network path. On the other hand, value-added functions, such as Dynamic Host
Configuration Protocol (DHCP), Network Address Translation (NAT), Univer-
sal Plug and Play (UPnP), Firewall, Optimizer, and Deep Packet Inspectors
(DPI), offer additional capabilities to the data forwarding path. Similarly, net-
work functions in mobile networks are categorized in two classes: Radio Access
network (RAN) functions and core functions. We will discuss more about RAN
and core functions later when we discuss network slicing. In this sub-section,
we discuss two popular methods of virtualizing network functions as follows (a
summary is depicted in Fig. 1.1).

Resource partitioning. Partitioning is a convenient method to create mul-
tiple virtual entities on a single networking device (e.g., routers and switches)
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that provide forwarding functions. Resource partitioning can be achieved ei-
ther by hard partitioning (i.e., dedicated switch ports, CPU cores, cards) or
by soft partitioning (i.e., CPU execution capping, routing and forwarding ta-
ble partitioning). Hard partitioning provides excellent isolation but it requires
abundant hardware to implement. In contrast, soft partitioned instances may
not provide the highest level of isolation and security due to their shared na-
ture.

A hard partitioned router, called a Logical Router (LR), can run across
processors on different cards of a router device. All the underlying hardware
and software resources, including network processors, interfaces, and routing
and forwarding tables, are dedicated to an LR. Examples of logical routers
are “protected system domains” by Juniper Networks, or “logical routers” by
Cisco Systems. Hardware partitioned routers are mainly deployed in Points
of Presence (PoP) of network carriers to save space and power, and reduce
management overhead. Similarly, VLANs divide a physical switch into multiple
logical switches by grouping ports on a switch. How a switch does grouping
is implementation dependent, but a common solution is for the switch to tag
each frame with a VLAN ID as it arrives on a port. When the frame is sent
to another port, only the ports configured with the VLAN ID carried in the
frame will output the packet. A VLAN can also span multiple interconnected
switches using the IEEE standard 802.1Q. The limitation of VLAN is its low
scalability, primarily due to a maximum of 4094 VLANs in a layer-2 network.
To support a larger number of VLANs in a broadcast domain, VXLAN has
been developed for large multi-tenant DC environments. In the optical domain,
multiflow transponders can be used to create a number of subtransponders from
the hardware resource pool [29]. These subtransponders can be used to carry
different flows arriving from a single router interface by using flow identifiers.

Examples of soft partitioning include Virtual Routing and Forwarding
(VRF) that allow multiple instances of routing and forwarding tables to co-
exist within the same router. The various routing and forwarding tables may
be maintained by a single process or by multiple processes (e.g., one process
for each routing and forwarding table). Routing protocols should understand
that certain routes may be placed only in certain VRFs. The routing protocols
manage this by peering within a constrained topology, where a routing proto-
col instance in a VRF peers with other instances in the same virtual network.
Another example of soft partitioning is FlowVisor that slices the flowspace
of OpenFlow switches based on OpenFlow match fields, such as switch port,
MAC addresses, and IP addresses. FlowVisor basically acts as a proxy between
OpenFlow switches and controllers, and intercepts messages between them. By
abstracting the OpenFlow control channel, FlowVisor provides mechanisms for
bandwidth, switch CPU, and flowspace isolation.
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Virtualized network functions. The main idea of VNFs is to decouple the
physical network equipment from the functions that run on them. A VNF is
an implementation of a NF that is deployed on virtual resources, such as a
VM or container [38]. A single VNF may be composed of multiple internal
components, and hence it could be deployed over multiple VMs/containers, in
which case each VM/container hosts a single component of the VNF.

For instance, a virtual router (vRouter) is a software function that imple-
ments the functionality of a Layer 3 IP routing in software. The underlying
physical resources are shared with other co-hosted VMs. In a well-implemented
vRouter, users can see and change only the configuration and statistics for
“their” router. Examples of vRouter include Alpine Linux, Mikrotik RouterOS,
Brocade vRouter, Untangle, and Vyatta. Similarly, a virtual switch (vSwitch)
is a software emulation of a physical switch that performs functions, such as
traffic switching, multiplexing, and scheduling. It detects which VMs are logi-
cally connected to each of its virtual ports and uses this information to forward
traffic to the correct VMs. Examples of vSwitch include Open vSwitch, Cisco
Nexus 1000v, and VMware virtual switch. Due to the diversity of value-added
NFs, different kinds of VNFs may exist based on different network layers.
Even for each kind of NF, there may be multiple implementations with differ-
ent features by various vendors. For example, the virtual NAT implemented
by VMware provides a way for VMs to communicate with the host, while
the one implemented by NFWare is extended to the carrier-grade level. For a
comprehensive list of VNF products, the reader is referred to [64].

There are pros and cons of deploying a VNF on top of a VM or container. In
case of VMs, the entire operational function of a VM is isolated completely from
that of the host and other guest VMs. Hence, VM-based virtualization enforces
a stronger isolation among VMs and the physical machine, and is regarded as
a more secure and reliable solution. However, VM-based virtualization suffers
from scalability and performance issues, due to the overhead of emulating a full
computer machine within a VM. In contrast, containers do not need hardware
indirection and run more efficiently on top of host OS, whereas each VM runs
as an independent OS. Hence, containers can be used to deploy VNFs in a
more flexible and agile way but with a reduced level of isolation and security.
Recently, unikernels have emerged as lightweight alternatives that take the best
of both VM- and container-based virtualization. Unikernels usually package the
VNFs with only the required libraries, unlike VMs that provide an entire guest
OS.

1.3.2. Link Virtualization
Link virtualization technologies enable creation of virtual links that can con-
nect physical or virtual NFs. A virtual link can consist of a single physical
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Figure 1.2: Link virtualization technologies with examples

link or can encompass a sequence of physical links forming a path. In this
sub-section, we discuss two popular technologies of virtualizing network links
as follows (a summary is depicted in Fig. 1.2).

Physical layer partitioning. Using various multiplexing technologies, a wired
(e.g., fiber, copper cable) or wireless (e.g., wireless spectrum) physical medium
can be split into distinct channels or time slots. A set of channels or time slots
are then assigned to a virtual link with a specific bit rate such that the sender
and receiver of the virtual link get the illusion that they own the physical
medium. The type of multiplexing technique depends on the physical medium
properties, the associated constraints and impairments. For example, a wireless
link can be partitioned using time division multiplexing (TDM), frequency divi-
sion multiplexing (FDM), or code division multiple access (CDMA). A combi-
nation of different multiplexing techniques can also be applied to achieve higher
bandwidth, such as for broadband wireless networks. Orthogonal frequency-
division multiple access (OFDMA) can be described as a combination of FDM
and TDM multiple access, where the resources are partitioned in both time and
frequency domains, and slots are assigned along the OFDM symbol index, as
well as OFDM sub-carrier index. In fiber-optic communications, wavelength-
division multiplexing (WDM) is a technology that multiplexes a number of
optical carrier signals onto a lightpath (i.e., a set of concatenated optical fiber
links) by using different wavelengths (i.e., colors) of laser light. This is simi-
lar to FDM, since wavelength and frequency communicate the same informa-
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tion. Physical layer multiplexing provides hard partitioning and better isola-
tion among virtual links, since physical medium resources are assigned in a
dedicated manner to virtual links.

Virtualization at higher layers. At higher layers (e.g., link, network, or
application layers) link resource partitioning is achieved by allocating a spe-
cific bandwidth (i.e., transmission bit rate, link capacity) to a virtual link.
Such partitioning can be enforced by rate-limiting or allocating an appropriate
amount of link queues and link buffers. Since virtualization at higher layers is
achieved through soft-partitioning of link resources, isolation between virtual
links is especially critical. To ensure isolation among virtual links two popular
methods include: i) Labeling and ii) Tunnelling.

Labeling involves specifying certain fields (e.g., tags, IDs, etc.) in the packet
header that serve for identification and isolation of virtual links. For instance,
VLANs apply tags to network packets and handle these tags in switches—
creating the appearance and functionality of network traffic that is physically
on a single network but acts as if it is split between separate virtual networks.
VLANs can be used to distinguish data from different VLANs and to help
form data paths for the broadcasting domain. Similarly, Multiprotocol Label
Switching (MPLS) and Label switched path (LSP) technologies can be used to
specify the path that data packets take. In MPLS, labels identify virtual links
(paths) between non-adjacent NFs. This requires MPLS capable routers (e.g.,
label-switched routers) to forward packets to outgoing interface based only on
label value, unlike using IP addresses in traditional routers.

Tunneling is a popular method for link virtualization that has been adopted
by many different technologies, such as VPN and VLAN. It ensures isolation
of traffic from multiple virtual networks transported over a shared network.
It also provides direct connection between network devices that are not physi-
cally adjacent. Tunneling is performed by using encapsulation and occasionally
encryption techniques. A number of different tunneling technologies exist, in-
cluding IEEE 802.1Q, Layer 2 Tunneling Protocol (L2TP), Generic Routing
Encapsulation (GRE), Internet Protocol security (IPsec), and L3VPN.

1.3.3. Network Virtualization
As discussed in the previous two sub-sections, both NFs and links can be in-
dependently virtualized while being oblivious to each other. It is also possible
to virtualize only NFs and use non-virtualized links to connect VNFs and
vice versa. In contrast, network virtualization seeks to create slices of a net-
work, i.e., virtual networks at the particular networking layer. For instance,
a virtual network in the IP layer comprises of vRouters/vSwitch and overlay
IP links connecting them, whereas a virtual network in the optical layer con-
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nects multiflow transponders through optical lightpaths. It should be noted
that a given virtual network should have its own resources, including its own
view of the network topology, its own portions of link bandwidths, dedicated
CPU resources in NFs, and its own slices of CPU, forwarding/routing tables
in switches and routers. Such a holistic network virtualization can be achieved
through network hypervisors that abstract the physical network (e.g., commu-
nication links, network elements, and control functions) into logically isolated
virtual networks [10]. A number of network hypervisors, such as OpenVirteX,
FlowVisor, OpenSlice, MobileVisor, RadioVisor, and Hyper-Flex, have been
developed for different network technologies. The reader is referred to [10] for
a more comprehensive survey of network virtualization hypervisors.

1.3.4. Network Slicing
Network Slicing extends the concept of network virtualization in the context of
5G mobile networks from two perspectives. First, a 5G network slice is an end-
to-end (E2E) virtual network that spans multiple technological and adminis-
trative network segments (e.g., wireless radio, access/core transport networks,
Multi-access Edge (MEC) and central DCs), whereas a traditional virtual net-
work concerns only one particular network technology, such as wired transport
or wireless network. Examples of network slices are shown in Fig. 1.3 where
the blue network slice goes all the way to the central DC and green network
slice terminates at the central office of a mobile network. E2E perspective of
network slices offer more opportunities to optimize the deployment of network
slices, and meet fine-grained QoS requirements. Second, network slicing allows
to virtualize RAN and core NFs, and include them within a network slice that
are typically not considered by conventional VNs. Virtualizing RAN and core
NFs enable a more flexible way of creating, operating, managing, and deleting
network slices on-demand. It also allows to deploy these VNFs with the appro-
priate capacity at the right place, to meet stringent requirements (e.g., E2E
latency) imposed by 5G services.

Let us now discuss more about RAN and core NFs. The most common RAN
functions responsible for baseband processing are: Service Data Adaptation
Protocol (SDAP), Radio Resource Control (RRC), Packet Data Convergence
Protocol (PDCP), Radio Link Control (RLC), Medium Access Control (MAC),
and Physical (PHY) layer functions. In traditional mobile networks, Baseband
Units (BBUs), co-located with antennas, are responsible for performing RAN
NFs. However, in 5G RAN architecture, these NFs are envisioned to be vir-
tualized and placed on commodity servers deployed either at antenna sites or
MECs. Due to the strict timing requirements of some NFs, the RAN NFs are
grouped in two entities: Central Unit (CU) and Distributed Unit (DU) [2].
DU hosts time-critical functions, such as MAC, RLC, and PHY, and serves a
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Figure 1.3: Examples of network slices

number of mobile users within the DU’s coverage. On the other hand, CU may
host time-tolerant functions, such as SDAP, PDCP, and RRC, and can serve
multiple DUs. Both DU and CU can also be considered as aggregated VNFs
and deployed on VMs/containers on servers located at antenna sites or MECs.

Similarly, a new core network architecture for 5G mobile networks, namely
the Next Generation (NG) core, that separates the current Evolved Packet
Core (EPC) functions into more fine-granular NFs has been proposed [2]. The
most prominent NFs in NG core are: Access and Mobility Management Func-
tion (AMF), Session Management Function (SMF), Policy Control Function
(PCF), User Plane Function (UPF), and Unified Data Management (UDM).
These core NFs can also be considered as VNFs and easily deployed in a vir-
tualized environment. The benefit of this service oriented RAN and core archi-
tecture is that it allows for sharing of fine-granular VNFs among network slices
without compromising the performance and QoS requirements. For instance in
Fig. 1.3, green and blue network slices share CU and UPF NFs while using
completely dedicated RAN and core NFs and their application functions (e.g.,
cache, control, or server). Similarly, the control plane functions, such as RLC,
MAC, AMF, and PCF, can be shared between slices while using dedicated
user plane functions, including PDCP and UPF. Finally, the network slices
that require the highest level of security (e.g., public safety or first responder’s
slice) may use dedicated VNFs not shared with others.
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1.3.5. Management and Orchestration
SDN has the potential to simplify network configuration and reduce manage-
ment complexity. In contrast to today’s networks, where control and forwarding
functions are tightly coupled and embedded within each network device (i.e.,
switches and routers), SDN accumulates the control functionality in a logi-
cally centralized and programmable control plane, which is decoupled from
the forwarding plane. The control plane is implemented in software (i.e., SDN
controller) on one or more dedicated compute servers, has a global network
view, and provides a unified interface to configure and control the network.
On the other hand, packet forwarding remains the responsibility of the switch-
es/routers and is implemented on commodity hardware.

Management and Orchestration (MANO) is quintessential to unlock the
full potential of network virtualization, which includes seamless operation and
efficient delivery of services. OpenStack is an open source cloud computing
platform that controls large pools of virtual resources to build and manage
private/public clouds. However, with the advent of NFV, OpenStack has be-
come a crucial component in NFV MANO, as a Virtualized Infrastructure
Manager (VIM). It is responsible for dynamic management of NFV infrastruc-
ture (NFVI) hardware resources (i.e., compute, storage and networking) and
software resources (i.e., hypervisors), offering high availability and scalabil-
ity. OpenStack also facilitates additional features in NFVI, including service
function chaining and network slicing. Open Platform for NFV (OPNFV), a
carrier-grade, open source platform also leverages OpenStack as it’s VIM so-
lution [55].

Open Network Automation Platform (ONAP) and Open Source MANO
(OSM) are two prominent NFV MANO initiatives. ONAP, a open source
project hosted by the Linux Foundation, offers real-time, policy-driven or-
chestration of both physical and virtualized NFs, to facilitate efficient and
automated delivery of on-demand services and support their lifecycle manage-
ment. All ONAP components are offered as Docker containers, allowing for
custom integration in different operator environments. It also allows for inte-
gration with multiple VIMs, VNFMs and SDN controllers. ONAP primarily
consists of two components: (i) design-time, and (ii) run-time, each having
sub-components.

ONAP’s design-time component offers a service design and creation (SDC)
environment, that supports OASIS Topology and Orchestration Specification
for Cloud Applications (TOSCA), for describing resources and services (i.e.,
assets), along with their associated policies and processes. It’s run-time com-
ponent executes the policies prepared in the design-time, which pertain to
monitoring, data collection, analytics, service orchestration, etc. ONAP lever-
ages the Closed Loop Automation Management Platform (CLAMP), to enable
lifecycle management of VNFs and automate E2E deployment processes. In
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contrast, OSM is an ETSI initiative to offer cost-effective and automated de-
livery of services. Both ONAP and OSM conform to the ETSI NVF Reference
architecture. A comparative evaluation of ONAP and OSM, with respect to
features and performance gaps, is provided in [65]. Authors in [48, 49] pro-
pose an architecture for network slice management on top of ONAP, while [30]
enhances OSM (along with OpenStack and OpenDaylight SDN controller) to
enable service deployment across a multi-domain infrastructure.

1.4. State-of-the-art

1.4.1. Network Virtualization
The embedding of VNs into substrate networks is a critical aspect of network
virtualization. The virtual network embedding (VNE) is a resource allocation
problem that involves embedding virtual nodes and links to substrate nodes
and links, respectively. For successful network embedding, it is paramount that
resources are allocated efficiently. VNE is a well studied problem that has been
proved to be NP-hard [15, 22]. As a result, several linear programming algo-
rithms, mixed integer programming algorithms, as well as heuristic algorithms
have been proposed in the research literature. Most of the proposed heuris-
tic algorithms solve the problem in two stages: (i) node embedding first, and
(ii) link embedding next. In the first stage, substrate nodes are ranked based
on a specific metric (e.g., availability) and a greedy node mapping strategy is
applied where mapping is decided by rank results. In the second stage, the vir-
tual links are usually mapped to the shortest path that has enough bandwidth
resources between nodes. On the other hand, linear programming and mixed
integer programming algorithms are used to solve the VNE problem in a single
stage, by simultaneously mapping nodes and links.

The majority of VNE solutions perform static mappings and resource allo-
cations i.e., they do not consider the remapping of embedded VNs by migrating
virtual nodes and/or links or adjusting the resource allocated to the VN, as
new requests are received, or the network load, traffic pattern changes. Indeed,
this is counter-intuitive, considering the dynamic nature of Internet traffic.
The proven inefficiency of static resource allocation motivated the emergence
of dynamic solutions. ML, in particular reinforcement learning (RL), have been
proven particularly efficient for solving the dynamic resource allocation prob-
lem, considering the higher complexity of the problem compared to static VNE.
Table 1.1 provides a summary of the state-of-the-art that addresses VNE and
resource allocation.

Mijumbi et al. [35] address the dynamic resource allocation problem using a
RL-based approach. They model the substrate network as a decentralized sys-
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tem of Q-learning agents, associated to substrate nodes and links. The agents
use the Q-learning to learn an optimal policy to dynamically allocate network
resources to virtual nodes and links. The reward function encourages high vir-
tual resource utilization, while penalizing packet drops and high delays. The
agents ensure that while the virtual networks have the resources they need,
at any given time only the required resources are reserved for this purpose.
Simulations show that the RL-based dynamic resource allocation significantly
improves the VN acceptance ratio, and the maximum number of accepted VN
requests at any time, in comparison to the static approach. The approach also
ensures that VN’s QoS requirements, such as packet drop rate and virtual link
delay, are not affected.

In a subsequent work [36], Mijumbi et al. leverage artificial neural networks
(ANNs) and propose an adaptive resource allocation mechanism, which unlike
the Q-learning-based solution in [35], does not restrict the state-action space.
Similar to [35], resource allocation decisions are made in a decentralized fashion
by RL agents associated to each substrate node and link. Each agent relies on
an ANN whose input is the status of the substrate node (respectively link) and
embedded virtual nodes (respectively links), and that outputs an allocation
action. An error function that evaluates the desirability of the ANN output is
used for training purposes. The objective of the error function is to encourage
high virtual resource utilization, while penalizing packet drops and high delays.
Simulations show that the ANN-based RL solution outperforms the Q-learning-
based solution, which is attributed to a state-action space expressed at a finer
granularity.

In [62, 61], Yao et al. build on the intuition that network requests follow
an invariable distribution, such that if an embedding algorithm works well for
historical VN requests, it is likely to have the same performance for incoming
VN requests. They propose in [62] a two-phased VNE algorithm i.e., a pol-
icy gradient RL-based node-mapping phase, followed by a breadth-first search
for the shortest paths between the selected host nodes in the link-mapping
phase. The node-mapping agent is implemented as an ANN. It is trained with
historical network data and tuned using policy gradient based on the average
revenue-to-cost ratio metric. The agent’s goal is to observe the current sta-
tus of the substrate network and output node mapping decisions. The status
of the substrate network is represented by a matrix that combines topologi-
cal features and resource usage extracted from every substrate node. In [61],
this matrix is further reduced using a spectrum analysis method. The reduced
matrix is combined with a reduced form of the substrate network adjacency
matrix. Perturbation is applied to the resulting matrix every time an embed-
ding occurs, in lieu of systematic updates for reduced complexity. Simulations
show that the model devised in [61] outperforms the original model from [62].

More recently, Yao et al. [63] explore replacing the ANN node-mapping
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agent with a Recurrent Neural Network (RNN), after formulating VNE as
a time-series problem. The intuition is that node embedding is a continuous
decision process. The RNN agent, implemented as a seq2seq model, is trained
with historical network data and fine tuned using the policy gradient algorithm
based on the long-term average revenue-to-cost ratio metric. Simulation results
show an improvement compared to the original model from [62] in terms of
request acceptance ratio, long term revenue and long term revenue-to-cost
ratio.

In [11], Blenk et al. study the online VNE satisfiability problem. They
propose a RNN-based classifier that, for a given VN request, outputs whether
the embedding is possible or not. The model is meant to run prior to the VNE
algorithm per se, as an admission control procedure. The goal is to save time
and resources that might be wasted trying to satisfy an embedding request that
cannot be satisfied, at least not in an acceptable time, in the current state of
the substrate network. The authors additionally devise a novel, relatively low-
complexity representation of the substrate network, as well as VN requests that
combine topological features and resource usage. Simulations show that their
classifier is highly accurate and significantly reduces the overall computational
time for the online VNE problem, without severely impacting the performance
of embedding.

In their continued effort to speedup and improve rigorous online VNE al-
gorithms, Blenk et al. in [12], leverage Hopfield networks to devise a VNE
preprocessing mechanism that performs search space reduction and candidate
subgraph extraction. More precisely, the designed Hopfield network computes
a probability for each substrate node to be part of the candidate subgraph for
a given embedding request. A rigorous VNE algorithm is then used to find the
final embedding solution within the extracted subgraph. Simulations show that
the proposed preprocessing step improves the runtime and/or performance of
most of the tested online VNE algorithms, depending on the parameters of the
Hopfield network, which have to be determined beforehand.

Yan et al. [60] build on recent advancements in deep learning and propose a
deep RL solution to the node mapping problem, to reduce the overall runtime
of the VNE algorithm. The authors focus on the static allocation of substrate
resources. They use Graph Convolutional Networks (GCN), for the learning
agent to extract spatial features in the substrate network and find the optimal
node mapping. The learning agent is trained using a parallel policy gradient
approach, which is shown to converge faster and perform better than sequential
training. In addition to rewarding higher acceptance ratio and revenue-to-cost
ratio, the used reward signal also encourages policy exploration and is shown
to lead to higher performance than more traditional reward functions. The
proposed deep RL solution is shown to outperform state-of-the-art non-ML
embedding algorithms.
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Table 1.1: Summary of the state-of-the-art for virtual network
embedding.

Ref. Problem/Objective Features ML Technique

[35]
Dynamic resource allocation
to achieve high resource
utilization and QoS

virtual resource
substrate resource

RL with Q-learning

[36]
Dynamic resource allocation
to achieve high resource
utilization and QoS

virtual resource
substrate resource

RL with ANN

[62, 61]
Node mapping to achieve
high revenue-to-cost ratio

CPU
bandwidth
topological features

RL with ANN

[63]
Node mapping to achieve
high revenue-to-cost ratio

CPU
bandwidth
degree

RL with RNN

[11] VNE admission control
CPU
bandwidth
topological features

RNN

[12]
Substrate subgraph extraction
to speed up VNE process

CPU
bandwidth
topological features

Hopfield network

[60]

Node mapping to achieve
high acceptance ratio,
high revenue-to-cost ratio,
and load balancing

CPU
bandwidth
embedding status

Deep RL with GCN

1.4.2. Network Functions Virtualization

1.4.2.1. Placement
Placement of SFCs can have varying objectives, such as minimizing the cost of
placement, cost of operation (e.g., licensing fee, energy consumption), service-
level agreement (SLA) and QoS requirements. This problem is known to be
NP-hard, making it difficult or even prohibitive to solve it optimally for large
problem instances. Furthermore, heuristics tend to be inefficient in the face of
high number of constraints and changes in network dynamics [44, 53]. Recently,
RL has been explored to facilitate SFC placement in virtualized environments.
Traditional RL maintains a Q-table to store policies (i.e., Q-values), the RL
agent uses feedback from the environment to learn the best sequence of actions
or policy to optimize a cumulative reward. However, it does not scale for large
state-action space [59]. In contrast, deep RL leverages NNs to learn the Q-
function that map states, actions to Q-values. Deep RL can be classified into
value-based, such as deep Q-learning network (DQN), and policy-based ap-
proaches. Table 1.2 provides a summary of the state-of-the-art that addresses
NFV placement.

In [42], Pei et al. translate QoS requirements as a penalty when failing to
serve a SFC request (SFCR) in VNF placement. They employ double-DQN
(DDQN) that includes two NNs, one for selecting state, action and the other
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Table 1.2: Summary of the state-of-the-art for ML-based placement in NFV.

Ref. Problem/Objective Features ML Technique

[42]
Minimize operational cost
and penalty for rejecting
SFCR

CPU, memory, bandwidth Deep RL with DDQN

[67]
Minimize cost of provisioning
VNFs on multi-core servers
for SFCRs

CPU
RL with Q-learning
and ε-greedy policy

[44]
Maximize the number of
SFCs based on QoS
requirements

CPU, memory, storage,
bandwidth

Deep RL with DDPG
and MCN

[53]
Minimize infrastructure
power consumption

CPU, storage, bandwidth,
propagation delay

NCO with stacked
LSTM and policy
gradient

[59]

Minimize operational cost
and maximize QoS w.r.t.
total throughput of
accepted SFCR

CPU, memory, bandwidth,
latency

Deep RL with policy
gradient

[14]
Minimize discrepancy in
predicted and actual total
response time

Transmission, propagation,
processing times, CPU,
storage

RL with Q-learning
and ε-greedy policy

for evaluating the Q-value. Once the DDQN has been trained, it can be used
for VNF placement. Each action has an associated reward that reflects the
influence of the action on the network. After deployment, the DDQN evaluates
the performance of the actions and selects the highest reward action according
to a threshold-based policy, to trigger horizontal scaling. After VNF placement,
the authors use SFC-MAP [43] to construct the routing paths for the ordering
required in the SFCRs.

In contrast, to avoid expensive bandwidth consumption, Zheng et al. [67]
jointly optimize the cost of provisioning VNFs on multi-core servers (i.e., VNF
assignment to CPU core). However, there is still unpredictability in VNF de-
ployment, such as the random arrival of SFCRs, resources consumed and cost
of provisioning. The authors leverage Q-learning to alleviate the need to know
the state transitions a priori. They employ value iteration to select a uniform,
random action, implement it, and evaluate the reward. In this way, their ap-
proach updates the Q-table to identify the state transitions and be resilient
in the face of changing rate of SFCRs. The authors leverage an ε-greedy algo-
rithm that strikes a balance between exploration and exploitation, and control
the influence of historical experience. On the other hand, Quang et al. [44] em-
ploy deep Q-learning (DQL) to maximize the number of SFCs on a substrate
network, while abiding by infrastructure constraints. They leverage deep de-
terministic policy gradient (DDPG), where deep NNs (DNNs) i.e., actor and
critic, separately learn the policy and Q-values, respectively. The authors im-
prove DDPG by using multiple critic network (MCN) for an action, where the
actor NN is updated with the gradient of the best critic in the MCN, thus
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improving convergence time.
The Neural Combinatorial Optimization (NCO) paradigm is extended by

Solozabal et al. [53], to optimize VNF placement. Their NCO leverages a NN to
model the relationship between problem instances (i.e., states) and correspond-
ing solutions (i.e., actions), where the model weights are learnt iteratively via
RL, specifically policy gradient method. Once the RL agent converges, given
a problem instance, it returns a solution. This allows to infer a placement pol-
icy for a given SFCR that minimizes the overall power consumption of the
infrastructure (i.e., the cost function or reward), given constraints, such as
availability of virtual resource and service latency thresholds. The constraints
are incorporated into the cost function using Lagrange relaxation, which in-
dicates the degree of constraint dissatisfaction. For NN, the authors employ
stacked Long Short-term Memory (LSTM), which allows to accommodate for
SFCs of varying sizes. The authors show that the proposed agent when used
in conjunction, improves the performance of the greedy First-Fit heuristic.

In [59], Xiao et al. jointly address the following SFC deployment challenges:
(i) capturing the dynamic nature of service request and network state, (ii) han-
dling the different network service request traffic characteristics (e.g., flow rate)
and QoS requirements (e.g., bandwidth and latency), and (iii) satisfying both
provider and customer objectives i.e., minimize operation cost and maximize
QoS, respectively. For the first challenge, the authors leverage MDP to model
the dynamic network state transitions, where a state is represented as the
current network resource utilization (i.e., CPU, memory and bandwidth) and
impact of current SFCs, while the action corresponds to the SFC deployment
corresponding to an arriving service request. For the second challenge, the au-
thors employ policy gradient based deep RL to automatically deploy SFCs.
After RL convergence, it provides SFC deployment solution to each arriving
request, abiding by resource constraints. They address the third challenge by
jointly maximizing the weighted total throughput of accepted service requests
(i.e., income) and minimizing the weighted total cost of occupied servers (i.e.,
expenditure), as the MDP reward function (i.e., income minus expenditure).
Via trace-driven simulation, the authors show their approach to outperform
greedy and Bayesian learning-based approaches, providing higher throughput
and lower operational cost on average.

Bunyakitanon et al. [14] define end-to-end service level metrics (e.g., VNF
processing time, network latency, etc.) in support of VNF placement. They ac-
count for heterogeneous nodes with varying capabilities and availability. The
authors purport that their Q-learning based model generalizes well across het-
erogeneous nodes and dynamically changing network conditions. They predict
the service level metrics and take actions that maximize the reward for correct
predictions. The Q-values are updated using a weighted average of new and
historical Q-values. The reward incorporates an acceptable margin of error,
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with the highest reward for predicting a value that equals the actual value.
They employ an ε-greedy policy to strike a balance between exploration and
exploitation, starting with an equal probability to explore or exploit. Then,
they generate a random number, and compare it to the ε-greedy value to steer
towards exploration or exploitation. The authors show that their model has
the best performance with approximately 94% in exploration and 6% in ex-
ploitation.

1.4.2.2. Scaling
VNF resource scaling assumes an initial deployment of SFCs, with the pri-
mary objective of accommodating for the changes is service demand. Static
threshold-based scaling is relatively simple to implement, where pre-defined
thresholds are used per performance metric, such as CPU utilization, band-
width utilization, etc. For example, Ceilometer, in OpenStack Heat, can be
used to create alarms based on CPU utilization thresholds to spin up or termi-
nate VNFIs [37]. However, it is not only non-trivial to choose these thresholds,
they may also require frequent updates to accommodate for the varying ser-
vice requirements. Table 1.3 provides a summary of the state-of-the-art that
addresses NFV scaling.

Static threshold-based scaling is reactive and unable to cope with sudden
changes in service demand, leading to resource wastage and SLA violations.
Moreover, over provisioning can lead to low resource utilization and high op-
erational costs, while under provisioning can result in service disruption and
even outage. Tang et al. [54] propose an alternative to static threshold-based
scaling mechanisms, which is SLA-aware and resource efficient. They model
VNF scaling as a MDP and leverage Q-learning to decide on the scaling pol-
icy. In the evaluation on daily busy-and-idle and bursty traffic scenarios, their
approach outperforms static threshold-based and voting policy-based (e.g., ma-
jority of the performance metrics have to agree to a scaling action, based on
their respective thresholds) approaches, while striking a trade-off between SLA
guarantee for network services and VNF resource consumption.

Proactive scaling leverages service demand and, or threshold predictions
to dynamically allocate resources to SFCs. ML is an ideal technique to per-
form predictions based on historical data, while ML features play a pivotal
role in its performance. Cao et al. [16] use novel ML features for scaling, which
include VNF and infrastructure level metrics. They train a NN on labeled
data, to capture the complex relationships between resource allocation, VNF
performance and service demand. However, labeling is not only cumbersome,
tedious, and error prone, it requires NFV domain expert knowledge. The au-
thors prioritize resource allocation for VNFs based on urgency and attempt to
distribute load across all instances of the VNF, using traffic forwarding rules.
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Table 1.3: Summary of the state-of-the-art for ML-based scaling in NFV.

Ref. Problem/Objective Features ML Technique

[54]
Trade-off between SLA and
VNF resource consumption

CPU, memory, storage,
bandwidth, network users
and requests

RL with Q-learning

[16]
Learning resource allocation
and VNF performance
relationship

VNF internal statistics
(e.g., request queue size)
and resource utilization

NN, decision table,
random forest,
logistic regression,
näıve bayes

[51] Meet service demands

Performance measurements
(e.g., max sustainable
traffic load) and resource
requirements (e.g., CPU,
memory)

Support vector
regression, decision
tree, multi-layer
perceptron, linear
regression, ensemble

[52]
Predict VNFC resource
reliability

QoS requirements Bayesian learning

[37]
Predict VNFC resource
reliability

CPU, memory, link delay GNN with FNNs

[45]
Predict VNFIs, and
minimize QoS violations
and operational cost

Time of day, measured
traffic load at different
time units, and changes
in traffic

Multi-layer percep.,
bayesian network,
reduced error pruning
tree, random and C4.5
decision trees, random
forest, decision table

[50]

Minimize average oper.
cost, SLA violation and
VNF latency w.r.t. resizing,
deployment, off-loading

CPU, memory, QoS
Deep RL with twin
delayed DDPG and
DNN

However, if existing instances of a VNF cannot meet the service demand, new
instances must be spawned using VNF placement algorithms. While Cao et
al. [16] show the benefit of composite features (i.e., VNF and infrastructure
level), Schneider et al. [51] promote the use of ML for creating performance
profiles that precisely capture the complex relationships between VNF perfor-
mance and resource requirement. On the other hand, Shi et al. [52] leverage
MDP to scale VNF components (VNFCs). To improve MDP performance, the
authors employ Bayesian learning and use historical resource usage of VN-
FCs to predict future resource reliability. These predictions are leveraged in
an MDP to dynamically allocate resources to VNFCs, and facilitate system
operation without disruption. Their approach outperforms greedy methods in
overall cost.

Mijumbi et al. [37] draw logical relationships among VNFCs in a SFC,
to forecast future resource requirements. The novelty lies in identifying re-
lationships among VNFCs that may or may not be ordered within a VNF.
The authors leverage graph NN (GNN) to model each VNFC in the SFC as
two parametric functions, each modeled as a feedforward NN (FNN). These
pairs of FNN are responsible for learning the resource requirements of the
VNFC, using historical resource utilization information from the VNFC and
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its neighboring VNFCs (i.e., using the first FNN), followed by prediction of
future resource requirements of the VNFC (i.e., using the second FNN). The
authors employ backpropagation-through-time to update the NN weights and
improve prediction performance. Similar to [16], they also leverage VNF (e.g.,
CPU utilization, memory, processing delay) and infrastructure level (e.g., link
capacity, latency) features. Their model yields the lowest mean absolute per-
centage error, when the prediction window size is within the training window
size. Otherwise, the prediction accuracy suffers, requiring model retaining.

In [45], Rahman et al. use traffic measurements and scaling decisions across
a time period to extract features and define classes for ML classifiers (e.g., ran-
dom forest, decision table, multi-layer perceptron, etc.). The features represent
measured service demand and its change from recent history, while classes rep-
resent the number of VNFIs. These features and classes are used to train
ML classifiers and predict future scaling decisions. The authors leverage two
classifiers, the first predicts scaling to avoid QoS violations, while the other
predicts scaling to reduce operational cost. In the face of inaccurate scaling
predictions and, or delays in VM startup time, ML classifiers trained to re-
duce QoS violations stay in a state of degraded QoS for shorter periods of
time. Containerization has been shown to reduce startup times for VNFIs and
significantly improve QoS.

Roig et al. [50] use unlabeled data to decide on vertical, horizontal scal-
ing or offloading to a cloud, based on service requests, operational cost, QoS
requirements and end-user perceived latency. The authors employ a parame-
terized action MDP, where a set of continuous parameters are associated with
each action. The actions correspond to the user-server assignment, while the
parameters identify the scaling of VNF server resources (i.e., compute and stor-
age). This allows for selecting different servers for users requesting the same
VNF service to increase sensitivity to end-user perceived latency and enable
asynchronous manipulation of server resources. The authors leverage deep RL
that parameterizes the policy, and employ actor and critic NNs to learn the
policy using a twin delayed DDPG. A DNN is used to approximate the pol-
icy that optimizes the weighted average of latency, operational cost and QoS.
Since the weights can be adjusted and used to update the policy, it not only
performs well under constant service demand, it quickly adapts to variation in
service requests and is resilient to changes in network dynamics.

1.4.3. Network Slicing

1.4.3.1. Admission Control
Admission control dictates whether a new incoming slice request should be
granted or rejected based on available network resources, QoS requirements
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Table 1.4: Summary of the state-of-the-art for ML-based admission
control approaches in network slicing

Ref. Problem/Objective ML Technique

[7]
Maximize monetization
of infrastructure provider,
while ensuring slice SLAs

Deep RL framework with two different NNs

[47]
Minimize loss of revenue
and loss due to penalties
in service degradation

Resource prediction and RL

[26]
Maximize resource utilization
while respecting slice priorities

RL with Q-learning

of the new request and its consequence on the existing services, and ensuring
available resources for future requests. Evidently, accepting a new request gen-
erates revenue for the network provider. However, it may degrade the QoS of
existing slices, due to scarcity of resources, consequentially violating SLA and
incurring penalties, loss in revenue. Therefore, there is an inherent trade-off
between accepting new requests and maintaining or meeting QoS. Admission
control addresses this challenge and aims to maximize the number of accepted
requests without violating SLA. Several research efforts, as outlined below,
have addressed the slice admission control problem from different perspectives
using ML. Table 1.4 provides a summary of the state-of-the-art for ML-based
admission control approaches in network slicing.

Bega et al. [7] present a network slice admission control algorithm that
maximizes the monetization of the infrastructure provider, while ensuring slice
SLAs. The algorithm achieves the objective by autonomously learning the
optimal admission control policy, even when slice behavior is unknown and
data is unlabeled. The authors consider two types of slices: i) inelastic, whose
throughput should always be above the guaranteed rate, and ii) elastic, whose
throughput is allowed to fall below the guaranteed rate during some periods,
as long as the average stays above this value. Since the type of the slice, its
arrival and departure are unknown in advance, it is impossible to establish the
ground truth for the admission control problem. Therefore, the authors propose
a deep RL approach that interacts with the environment and takes decision
at a given state, while receiving feedback from past experiences. Their deep
RL framework uses two different NNs, one to estimate the revenue for each
state when accepting the slice request, and another to reject the request. The
framework then selects the action with the highest expected revenue, and the
reward for the action is fed back to RL. Through evaluation, the authors show
that their proposed algorithm performs close to the optimal under a wide range
of configurations, and outperforms näıve approaches and smart heuristics.

Raza et al. [47] address the network slice admission control problem by
taking into account revenues of accepted slices, and penalties proportional
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to performance degradation, if an admitted slice cannot be scaled up later
due to resource contention. The authors propose a supervised learning (SL)-
and a RL-based algorithm for slice admission control. The SL-based solution
leverages prediction for the incoming slice requirement, and future changes in
requirement for the incoming slice and all other slices currently provisioned.
This facilitates identification of possible degradation in performance upon ad-
mission, for the incoming slice or currently provisioned slices, which results in
slice rejection. On the other hand, the RL-based algorithm learns the relation-
ship between slice requirement and current resource allocation, along with the
overall profit. This relationship guides slice admission policy, allowing to only
accept slices that are likely to experience/create minimal to no degradation in
performance. The objective of the admission policy is loss minimization, where
the loss has two components: (i) loss of revenue due to rejecting slice requests,
and (ii) the loss incurred due to penalties in service degradation, as described
in [46].

An RL-based solution for cross-slice congestion control problem in 5G net-
works, which impacts the slice admission control process, is proposed by Han
et al. [26]. Their solution identifies active slices with loose requirements i.e.,
their amount of allocated resources can be reduced based on resource availabil-
ity, slice requirements, and the queue state. The identified slices’ resources are
then scaled down, to make room for a larger number of higher priority slices.
To achieve this, the authors use Q-learning that can learn optimal resource
re-allocation strategy, by jointly maximizing resource utilization and respect-
ing slice priorities. The evaluation results show that the proposed solution is
able to increase the percentage of accepted slice requests, without negatively
affecting the performance of high priority slices.

1.4.3.2. Resource Allocation
An E2E network may simultaneously require radio, network, computing, and
storage resources from multiple network segments. An emerging challenge for
the network provider is how to concurrently manage multiple interconnected
resources. Due to the dynamic demand of services, the frequency of slice re-
quests, their occupation time and requirements are not known a priori, while
the resources are limited. Hence, dynamically allocating resources in real-time
to maximize a specific objective is another challenge for the network provider.
Table 1.5 provides a summary of the state-of-the-art for ML-based resource
allocation approaches in network slicing.

Wang et al. [58] propose a two-stage network slice resource allocation frame-
work based on RL (i.e., Q-learning). The first stage performs the mapping of
virtual protocol stack functions of a network slice to physical server node. The
second stage manages remote radio unit (RRU) association, sub-channel and
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Table 1.5: Summary of the state-of-the-art for ML-based resource allocation
approaches in network slicing

Ref. Resource Type Problem/Objective ML Technique

[58]

Virtual protocol
stack functions, RRU
association, sub-channel
and power allocation

Maximize service utility
in terms of the difference
between revenue and expense

RL with ε-greedy
Q-learning

[32] VMs and bandwidth
Minimize processing delays
for received requests and
resource usage costs

RL with policy
gradient methods

[8] Service capacity requirement
Maximize revenues
in short- and long-term
resource reallocation

ANN-based deep
learning prediction

[33]
Slice bandwidth allocation and
scheduling of SFC flows

Maximize the weighted
sum of spectrum efficiency
and QoE

RL with Deep Q-Learning

[27] Bandwidth or time-slots
Maximize SSR
and spectrum efficiency

Dueling GAN-DDQN

[57]
Computing, storage,
and radio resources

Maximize the long-term
average reward

RL (Q-learning, DQL,
deep double Q-learning,
and deep dueling)

power allocation. Instead of applying one Q-learning model to solve the joint
problem, the authors use two ε-greedy Q-learning models sequentially, to keep
the model scalable. The optimization goal of the proposed model is to max-
imize the service utility (i.e., difference between revenue and expenditure) of
the whole network, where the revenue comes from the service rate, and the ex-
penditure comes from the virtual function deployment cost and E2E delay loss.
Simulation results show that compared to the baseline schemes (e.g., minimum
cost function deployment and radio resource allocation maximizing signal to
noise ratio), the proposed algorithm can increase the utility of the whole sys-
tem. However, there is an upper limit, due to the limited node resources, while
simulation is performed only on a few tens of users in the system.

A deep RL approach is proposed by Koo et al. [32], which addresses the
network slice resource allocation problem by considering unknown slice arrival
characteristics, and heterogeneous SLA and resource requirements (e.g., VMs,
bandwidth, memory). The slice resource allocation pertains to allocating VMs
and bandwidth for each slice, with the objective of minimizing processing de-
lays for received requests and resource usage costs. The authors formulate the
resource allocation problem as an MDP, where the constrained multi-resource
optimization problem is formulated for each service upon arrival and a batch
of services. For both types of request, RL models are trained offline to learn
efficient resource allocation policies, which are used in real-time resource allo-
cation. The policies are stochastic, and determine real valued resource alloca-
tions for each slice that has large and continuous action space. The authors
use policy gradient methods as opposed to Q-learning, which cannot represent
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stochastic and continuous action spaces. Simulations using both simulated and
real traces show that the model outperforms a baseline of equal-slicing strategy,
which fairly divides the resources among each slice.

Bega et al. [8] present DeepCog, a data analytics tool for cognitive man-
agement of resources in 5G network slices. DeepCog forecasts the capacity
needed to accommodate future traffic demands of individual network slices,
while accounting for the operator’s desired balance between resource over pro-
visioning (i.e., allocating resources exceeding the demand) and SLA violations
(i.e., allocating less resources than required). DeepCog uses a ANN-based deep
learning prediction mechanism that consists of an encoder with three layers of
three-dimensional convolutional NNs and a decoder implemented by multi-
layer perceptrons. The encoder-decoder structure is shown to predict service
capacity requirement with high accuracy, based on measurement data collected
in an operational mobile network. The authors claim that the structure is gen-
eral enough to be trained to solve the capacity forecast problem for different
network slices with diverse demand patterns. The capacity forecast returned by
DeepCog, can then be used by operators to take short- and long-term resource
reallocation decisions and maximize revenues.

In [33], Li et al. address resource management for network slicing inde-
pendently for radio resource slicing and priority-based core network slicing. In
the radio part, resource management pertains to slice bandwidth allocation to
maximize the weighted sum of spectrum efficiency and quality of experience
(QoE). For the core network slicing, the goal is to schedule flows to SFCs that
incur acceptable waiting times. For both of these problems, the authors leverage
DQL to find the optimal resource allocation policies, which enhance effective-
ness and agility of network slicing in a resource-constrained scenario. However,
their approach does not consider the affects of random noise on the calcula-
tion of spectrum efficiency and QoE for radio resource slicing. To overcome this
limitation, Hua et al. [27] combine distributional RL and Generative Adversar-
ial Network (GAN), to propose GAN-powered deep distributional Q network
(GAN-DDQN). Furthermore, the authors adopt a reward-clipping scheme and
introduce a dueling structure to GAN-DDQN (i.e., Dueling GAN-DDQN), to
separate the state-value distribution and the action advantage function from
the action-value distribution. This circumvents the inherent training problem
of GAN-DDQN. Simulation results show the effectiveness of GAN-DDQN and
Dueling GAN-DDQN over the classical DQL algorithms.

Huynh et al. [57] propose a resource management model that allows the
network provider to jointly allocate computing, storage, and radio resources
to different slice requests in a real-time manner. To deal with the dynamics,
uncertainty, and heterogeneity of slice requests, the authors adopt semi-MDP.
Then, several RL algorithms, i.e., Q-learning, DQL, deep double Q-learning,
and deep dueling, are employed to maximize the long-term average reward for
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the network provider. The key idea of the deep dueling algorithm is to use two
streams of fully connected hidden layers to concurrently train the value and
advantage functions, thus improving the training process. Simulation results
show that the proposed model using deep dueling can yield up to 40% higher
long-term average reward, and is a few thousand times faster compared to other
network slicing approaches. The advantage of the proposed model is that it can
accommodate adding more resources or removing some resources (i.e., scaling
out or scaling in, respectively) by considering some new events in the system
state space. However, the work of [57] overlooks the network resources that is
needed for an E2E slice provisioning.

1.5. Conclusion and Future Direction
Virtualized networks and services bring inherent challenges for network opera-
tors, which calls for automated management that cannot be satisfied with the
traditional, reactive human-in-the loop management approach. Furthermore,
the requirement for higher QoS and ultra-low latency services, necessitates in-
telligent management that should harness the sheer volume of data within a
network, and take automated management decisions. Therefore, AI and ML
can play a pivotal role to realize the automation of management for virtualized
networks and services. In the previous section, we discuss the state-of-the-art
in employing AI and ML techniques to address various challenges in manag-
ing virtualized networks and services, specifically in NV, NFV and network
slicing. In this section, we delineate open, prominent research challenges and
opportunities for holistic and automated management of virtualized networks
and services.

Intelligent Monitoring. Monitoring requires the identification of Key Per-
formance Indicators (KPIs), such as perceived latency, alarms and utilization
of virtualized network components [18]. These play a crucial role in analytics
to facilitate automated decision making for managing virtualized networks and
services. It is quintessential that the employed measurement techniques collect
telemetry data with high accuracy, while minimizing overhead. However, mea-
surement can add significant overhead (e.g., consumed network bandwidth,
switch memory due to probing, and storage) when a large number of virtual-
ized network components are monitored at regularly occurring intervals. This
instigates the need for adaptive measurement schemes that can dynamically
tune monitoring rate and decide what to monitor. ML techniques, such as re-
gression, can facilitate adaptive monitoring by predicting telemetry data that
would have otherwise been measured. Another challenge is to devise mecha-
nisms for timely and high precision instrumentation to monitor KPIs for vir-
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tualized networks with demanding QoS requirements, especially for ultra-low
latency services.

Seamless Operation and Maintenance. ML-based predictive maintenance
can enable seamless operation of virtualized networks [13]. It involves infer-
ring future events based on measured KPIs, identifying causes of performance
degradation, and proactively taking preventive measures. An example of infer-
ence is to determine if a performance degradation (e.g., increased packet loss,
prolonged downtime) would lead to future QoS violations. It is also crucial
to infer causes (e.g., misconfiguration, failure) of performance degradation in
correlation with potential alarms. However, realizing this from the enormous
volume of telemetry data and stochastic nature of network events is challeng-
ing. Data-driven approaches, including ML, can be explored to address these
problems. Once the cause for performance degradation is identified, mitigation
workflows are needed to minimize the impact on KPIs. Deducing these work-
flows and optimally scheduling their execution with minimal interruption to
the existing traffic is non-trivial. However, RL seems well suited to the problem
and should be investigated to find optimal mitigation workflows.

Dynamic Slice Orchestration. In 5G mobile networks, an E2E virtual net-
work slice spans multiple network segments, each of which can have different
technological and physical constraints. For instance, the access network may
have limited bandwidth and scalability to minimize cost and energy, while the
core network may not have these issues of capacity or scalability. However,
the core network may have higher latency and energy footprint due to long
geographical distances and more complex network devices. Similar trade-offs
exist between edge and central DCs, with respect to processing capacity, la-
tency, and energy consumption. Therefore, it will be impractical to provision
a network slice for its peak traffic demand. Hence, dynamic slice provision-
ing algorithms must be investigated, where resource orchestration decisions
are facilitated by ML models for slice traffic volume prediction with temporal,
spatial considerations and QoS requirements. Such dynamic slice provisioning
will be enabled by NFV that allows for spawning on-demand virtualized NFs,
and SDN controllers that can route traffic to newly spawned NFs.

Automated Failure Management. Even with predictive maintenance, some
failures, such as fiber cuts and device burns are inevitable. Ability of a network
provider to quickly repair a failure is crucial to keep the network operational.
Failure management involves three steps: failure detection, localization, and
identification. The goal of failure detection is to trigger an alert after the fail-
ure has occurred. Once detected, the failed element (e.g., the node or link
responsible for the failure) must be localized in the network to narrow down
the root cause of failure. Even after localization, it might still be complex to
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understand the exact cause of the failure. For example, inside a network node,
the degradation can be due to misconfiguration or malfunction. To speed up
the failure repair process, all three steps of failure repair should be automated.
An interesting avenue of research is to develop ML models and algorithms for
automated failure detection, localization, and identification based on the data
generated in production networks. These models will decrease the mean time
to repair of failure events, thus improving the availability of a network slice or
a virtualized network/service.

Adaptation and Consolidation of Resources. The traffic demand and/or
QoS requirement of a virtualized network or a network slice may evolve over
time, due to change in number of users and communication patterns [25].
Hence, the initial resource allocation need to be adapted to accommodate for
such changes, while causing minimal to no disruption to existing traffic. This
calls for ML models to predict change in requirements in a timely and accurate
manner, to facilitate dynamic adaptation of resource allocation. Furthermore,
over time, arrival and departure of virtualized networks or network slices can
lead to fragmentation and skewed utilization of links and processing servers.
These, in turn, can impact the acceptance of future requests and result in un-
necessary energy consumption. One way to mitigate this is by re-optimizing
bandwidth allocation and periodically consolidating VMs or containers. The
solution should also output the sequence of operations (e.g., VM migration, vir-
tual link migration, and bandwidth re-allocation) that lead to a load-balanced
state. RL is an ideal technique to generate the sequence of operations needed
to reach the optimized state.

Sensitivity to Heterogeneous Hardware. In NFV deployment or in net-
work slices, VNFIs that reside on VMs or containers, are scaled to meet the ser-
vice demands. However, the performance of VNFs is sensitive to the underlying
hardware [16, 51]. For example, traffic processing capabilities of virtual CPUs
on Intel Xeon processor differ from AMD Opteron processor [16]. Similarly,
boot up time for VMs differ across VIMs, such as OpenStack, Eucalyptus, and
OpenNebula [37]. Nevertheless, most research assumes homogeneous hardware,
being oblivious to its impact on VNF performance. This is an oversimplifica-
tion, which can lead to inferior ML models and inaccurate scaling decisions
in practice. Therefore, it is quintessential to develop performance profiles [51],
which incorporate the sensitivity of VNF performance on different hardware.
In case of horizontal scaling, these profiles can be leveraged to accurately gauge
the impact on performance for new VNFIs on different physical servers. Indeed,
incorporating these profiles will increase the dimensionality of the scaling prob-
lem. A näıve option is to incorporate hardware-sensitivity as a cost. However,
building VNF performance profiles for different hardware is cumbersome. It
remains to be evaluated how these hardware-specific performance profiles will
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impact the accuracy of ML models and VNF scaling decisions.

Securing Machine Learning. Evidently, there has been a surge in the appli-
cation of ML for managing virtualized networks, ranging from placement and
scaling of VNFs to admission control in network slices. However, numerous
research assumes ML itself to be invincible. This is an unrealistic assumption,
as adversaries can poison the training data, or compromise the RL agent by
manipulating system states and policies, leading to inferior actions [9]. For ex-
ample, impeding actual resource consumption of substrate network can result
in sub-optimal SFC placement, leading to resource wastage and/or SLA viola-
tions. Inherently, ML models lack robustness against adversarial attempts. Ad-
versarial learning addresses this concern by leveraging carefully crafted adver-
sarial (i.e., fake) samples, with minor perturbations to regular inputs [24, 41].
These can be used to inculcate robustness into ML models against data poison-
ing attacks. GANs have been widely used to generate such adversarial samples.
GANs are a class of deep learning techniques that use two neural networks, dis-
criminator and generator, to compete with each other for model training. How-
ever, GANs can suffer from training instability, due to fake training data that
degrades model performance [31]. Therefore, ensuring convergence of GANs is
an open research problem. Furthermore, the use of GANs to harden RL agents
against complex threat vectors, is rather unexplored. Adversarial deep RL with
multi-agents [39, 66], trained across distributed virtualized environments, can
also help alleviate the impact of adversarial attempts.
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and Paolo Monti. Reinforcement learning for slicing in a 5g flexible ran.
Journal of Lightwave Technology, 37(20):5161–5169, 2019.

[47] Muhammad Rehan Raza, Carlos Natalino, Lena Wosinska, and Paolo
Monti. Machine learning methods for slice admission in 5g networks.
In OptoElectronics and Communications Conference (OECC) and 2019
International Conference on Photonics in Switching and Computing
(PSC), pages 1–3. IEEE, 2019.

[48] Veronica Quintuna Rodriguez, Fabrice Guillemin, and Amina Boubendir.
5g e2e network slicing management with onap. In Conference on

35



Innovation in Clouds, Internet and Networks and Workshops (ICIN),
pages 87–94. IEEE, 2020.

[49] Veronica Quintuna Rodriguez, Fabrice Guillemin, and Amina Boubendir.
Network slice management on top of onap. In IFIP/IEEE Network
Operations and Management Symposium (NOMS), pages 1–2. IEEE,
2020.

[50] Joan S Pujol Roig, David M Gutierrez-Estevez, and Deniz Gündüz. Man-
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