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Introduction

● Many emerging applications have diverse latency 

requirements
○ Intelligent transportation, Industry automation, Online 

gaming, High-frequency trading

● An enabling technology to support latency-sensitive 

applications is network virtualization
○ Facilitates deployment of multiple virtual networks (VNs) with 

varying latency requirements on the same substrate network

○ Virtual network embedding maps VN nodes and links to 

substrate resources while guaranteeing latency constraints

● We focus on transport network as our substrate 

that connects Point of Presence (PoP) nodes
○ Optical network is the dominant technology due to its high-

bandwidth and low-latency 

○ Create lightpaths to embed virtual links 3
Substrate Network

Virtual Network



Elastic Optical Networks (EON)

● Traditional fixed-grid technology allocates 

spectrum in coarse-grained fashion

○ Inefficient - supports only 50 or 100 

GHz wavelength grids

○ Rigid - allows limited transmission 

configurations for each data rate  

● Elastic Optical Networks (EONs) are 

emerging to overcome the limitations

○ Enables finer granularity (12.5GHz) 

with arbitrary number of spectrum 

slices based on customer demand

○ Facilitates tuning of transmission 

configurations as per the need
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Key contribution

● Existing literature represents latency 

requirements on virtual links (VLinks)
○ Cannot provide end-to-end latency guarantees

● We propose path-based latency requirements 

on virtual networks, called as VPath
○ Latency constraint is enforced along an entire path 

between PoPs

○ More flexibility in selecting substrate paths and 

transmission configurations for embedding VLinks

● How to distribute latency budgets to VLinks 

without violating path-based latency 

requirements?

VN request with path-based 
latency requirements
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Latency model for a lightpath

● Node processing latency:
○ Transponders: ≈ 30 ns

○ FEC processing: ≈ 10 𝜇s (standard) or ≈ 150 𝜇s (super)

● Path latency
○ Fiber propagation: 4.9 𝜇s/km 

○ Amplifiers: 150 ns

○ ROADMs: O(nano seconds)

● Zero queueing delay 
○ By allocating dedicated resource on source and destination nodes

○ On intermediate nodes, data is optically switched - no queue buildup 6



Problem statement

Inputs:

● EON substrate Network
○ K-shortest path between each pair of nodes

● A set of transmission configurations

● VN request:
○ VLinks have bandwidth demand in Gbps

○ Path-based latency constraints

○ Given node mapping

Approach:

● Embedding a VLink by splitting its 

demand into multiple substrate paths
○ One path can be used more than once

Outputs: 

● To embed each VLink, select
○ A set of substrate paths and appropriate 

transmission configurations

○ Spectrum slice allocation

Objective: 

● Minimize total spectrum resource 

allocation for the VN embedding 

(Primary)

● Minimize the total number of splits, i.e., 

transponders (Secondary)
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Problem Formulation: Constraints

● An spectrum slice on a fiber link can be allocated to at most one split

● Each VLink demand is provisioned using up to a maximum (q) splits
○ Each split is realized using a transmission configuration satisfying its optical reach

○ Sum of the data rates carried by the splits is equal to the VLink demand

VLink
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Constraints (Cont’d)

● Spectral contiguity and continuity:
○ Slices assigned to each split must be adjacent on each link of a substrate path (Contiguity)

○ Same set of slices should be assigned to each split along all links of a substrate path (Continuity)

VLink
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● Differential delay constraints:
○ The difference between the maximum and minimum latency of the splits provisioning a VLink should 

be less than DDmax

Constraints (Cont’d)

VLink

Max allowed differential delay:

DDmax= 3 ms
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● Differential delay constraints:
○ The difference between the maximum and minimum latency of the splits provisioning a VLink should 

be less than DDmax

Constraints (Cont’d)

VLink

Max allowed differential delay:

DDmax= 3 ms
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Constraints (Cont’d)

● Latency constraints for VPath:
○ The latency of each VLink embedding is equal to the maximum latency among its splits

○ The sum of the latencies of the VLinks on a VPath should satisfy the latency constraint

VN Request
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Constraints (Cont’d)

● Latency constraints for VPath:
○ The latency of each VLink embedding is equal to the maximum latency among its splits

○ The sum of the latencies of the VLinks on a VPath should satisfy the latency constraint

VN Request
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Constraints (Cont’d)

VN Request
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● Latency constraints for VPath:
○ The latency of each VLink embedding is equal to the maximum latency among its splits

○ The sum of the latencies of the VLinks on a VPath should satisfy the latency constraint



Objective

● Minimize total spectrum resource allocation for the VN embedding (Primary)

● Minimize the total number of splits (Secondary)

Primary obj: 4 + 6 = 10 slices
Secondary obj = 2 splits

Primary obj: 6 +  4 + 6 = 16 slices
Secondary obj = 3 splits
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Heuristic Algorithm

● Composed of 2 main steps

● Step 1: Choosing a VLink to be embedded next and computing an estimation of the 

latency budget for the VLink in terms of the candidate substrate paths
○ Most constrained VLink in terms of spectrum slice availability and latency

● Step 2: Finding an optimal embedding for the chosen VLink
○ Splits the VLink demand among multiple candidate paths 

○ Uses the most spectrally efficient transmission configuration for each of the selected paths

○ Allocates spectrum slices on each link of the path

○ Finds the actual latency of the VLink based on the selected paths to help determine the latency of a 

VPath in step 1
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Step 1: Finding Next VLink Algorithm

● Estimate latency budgets for all VLinks yet to be embedded 
○ Assigned budgets do not violate any latency constraint 

○ Determines the number of candidate paths to use for the VLinks

● The number of available slices on the candidate paths satisfying the assigned 

latency budget is maximized for the most constrained VLink
○ Spectrum resource availability is the bottleneck

○ Compute using binary search on the number of available spectrum slices 

○ Check if the number of slices can be used without violating any latency constraint

● Return the VLink with the minimum number of available slices that does not 

violate the assigned latency budget
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Step 1: Finding Next VLink Algorithm (Cont’d)

Estimating a latency budget for each VLink

VN Request
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Step 1: Finding Next VLink Algorithm (Cont’d)

Estimating a latency budget for each VLink

VN Request

7 Slices 14 Slices

Goal: Maximize the number of slices 
for the VLink with minimum number 
of usable slices
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Step 1: Finding Next VLink Algorithm (Cont’d)

Estimating a latency budget for each VLink

VN Request

8 Slices 10 Slices

Goal: Maximize the number of slices 
for the VLink with minimum number 
of usable slices

20



Estimating a latency budget for each VLink

Step 1: Finding Next VLink Algorithm (Cont’d)

8 Slices 10 Slices

Goal: Maximize the number of slices 
for the VLink with minimum number 
of usable slices

7 Slices 14 Slices
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● Compute link embedding using an exhaustive search considering all possible
○ Path selection (considering splitting)

■ All multiset of candidate paths with size <= q

■ Assigning data rate satisfying VLink demand

○ Transmission configuration selection

■ Choose a configuration supporting the datarate along the distance of a path in the multi-set

○ Spectrum slice assignment

■ First-fit slice allocation

● Select the combination of <path, transmission configuration, slice assignment> that 

minimizes the objective
○ Extends an algorithm published in [1] 

● Additional pruning
○ Multi-sets of paths that violate differential delay constraint

○ Solutions requiring more slices than a lower bound computed using dynamic programming

1. Shahriar, Nashid et al. “Achieving a Fully-Flexible Virtual Network Embedding in Elastic Optical Networks.” IEEE INFOCOM 2019 - IEEE Conference on Computer 

Communications (2019): 1756-1764.

Step 2: Optimal embedding for a VLink

Specifying Splits
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Evaluation - Small Scale Benchmark

● Nobel Germany1 EON
○ 17 Nodes and 26 Links

● Number of spectrum slices per link
○ Fixed grid: 12 slices of 50 GHz

○ Flex grid: 48 slices of 12.5 GHz

● Possible configurations provided by industry partner 

● Max number of splits (q) is 4

● VNs are generated synthetically
○ Fixed node mapping

○ 8 VNodes

○ Variable LNR: from 1 to 2.5 (8 to 20 VLinks)

○ Latencies: Latency of the shortest path * 𝛼 (𝛼 >= 1)

L(𝛼) = L(path with lowest latency) ✕ 𝛼
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Evaluation - Small Scale Benchmark 
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● Impact of the latency constraints on resource utilization

● Compared variants

○ Fixed-L(𝛼)-DD(𝛽):
■ Fixed grid

■ 𝛼: latency factor

■ 𝛽: max differential delay

○ Flex-(𝛼)-DD(𝛽):
■ Flex grid

■ 𝛼: latency factor

■ 𝛽: max differential delay  



Evaluation - Small Scale Benchmark
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● Metrics

○ NDP (Fixed/Flex) 

■ Avg. number of 

distinct path

used to embed a 

VLink 

○ NSU (Fixed/Flex)

■ Avg. number of 

splits used to 

embed a VLink

● Impact of differential delay on substrate path selection



Evaluation - Small Scale Benchmark
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● Optimality of heuristic
● Compared variants

○ Fixed grid EON
○ Flex grid EON
○ Varying latency and 

differential delay for 
both cases



Evaluation - Steady State Analysis

● Arrival and departure time for VNs
○ Arrival rate: Poisson distribution

■ 4 to 12 VNs per 100 time units

○ VN life time: Exponential distribution

■ Mean of 100 time units

● VN and SN properties
○ 8 VNodes

○ Random number of VLinks: 8 to 28

○ Nobel Germany flex grid EON: 320 slices of 12.5 GHz

● Simulation time: 10000 time units
○ Excluding the first 1000 time units

● 5 different simulation scenarios

● Report VN blocking ratio
○ Percentage of VNs that could not be embedded
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Evaluation - Steady State Analysis
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Evaluation - Steady State Analysis
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● Virtual network embedding over EON
○ Path-based latency guarantees

○ Considering full flexibility in all transmission parameters of an EON

● An ILP based optimization model

● A faster heuristic algorithm that obtains near optimal solutions

● Key takeaways
○ Latency constraints has less impact on spectrum usage but profound impact on blocking

○ Flexibilities of an EON help reduce these impact

● Future work
○ Different cost function to decrease blocking probability

○ Design an admission control to maximize the revenue

Conclusion & Future Work
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