
Early Detection of Intrusion in SDN
Md. Shamim Towhid

Department of Computer Science
University of Regina, Canada

mty754@uregina.ca

Nashid Shahriar
Department of Computer Science

University of Regina, Canada
nashid.shahriar@uregina.ca

Abstract—An intrusion detection system (IDS) is an essential
component of any modern network. The purpose of an IDS is
to detect intrusion and generate appropriate alarms so that the
intrusion can be mitigated. Implementing an IDS in a Software
Defined Network (SDN) is easier since an SDN controller has
a centralized view of the whole network. Researchers have
made many efforts to use machine learning (ML) for developing
network-based IDS in SDN. The network-based IDS analyzes
different characteristics of incoming network traffic to detect
intrusion. Early detection of intrusion is crucial for an IDS
because if the intrusion is not detected quickly enough, it
can cause severe damage, such as data breaches and service
shutdowns. This paper focuses on detecting intrusion in SDN as
early as possible using real-time flow-based features. Our aim is
to detect intrusion with less amount of packets per flow, which
not only facilitates early intrusion detection but also is useful
when an intrusion flow has less number of packets. We show that
although ML models perform well in offline training on a dataset,
their performance decreases ∼25% when fewer packets are used
to generate features for the ML model. In all our experiments,
a simple Random Forest (RF) algorithm outperforms a complex
deep learning model on a publicly available dataset for intrusion
detection in SDN.

Index Terms—Real-time intrusion detection, SDN, machine
learning, flow-based features

I. INTRODUCTION

Networks are becoming increasingly complex to support
heterogeneous needs of the varieties of applications and enor-
mous volume of traffic. Manual management processes are
becoming tedious and error-prone to manage these complex
networks. Therefore, modern networks are shifting towards
automation and softwarization using technology like Software-
Defined Networking (SDN) [1]. SDN is a network architecture
that allows centralized control over the network by decoupling
the control plane from the data plane. Here, the control plane
refers to the activities that define network operations, such
as traffic routing, failover recovery, congestion control, etc.
On the other hand, the data plane is only responsible for
forwarding traffic based on the configurations supplied by
the control plane. Since the control plane has a centralized
network view, it can make informed decisions for operating
and managing the network. Because of this advantage in SDN,
it is being deployed widely in different networks such as data-
centers, enterprise networks, and wide-area networks.

As SDN deployment in different networks is gaining mo-
mentum, so is the attention of attackers. Since the control
plane of an SDN is responsible for managing the network, it
can become a common target for attackers. An attacker can

intrude on a host in an SDN to gain unauthorized access
and steal sensitive information with a goal to attack the
controller eventually. Attacking the controller of an SDN
network, significant harm can be done as the controller is
considered the brain of an SDN. Probing, Web attacks, Botnet,
and Brute Force attacks are some examples of intrusion in an
SDN [2]. An IDS is a common way of defending a network
from such attacks. While host-based IDSs exploit system
logs and configurations, network-based IDSs analyzes traffic
pattern and packet characteristics to detect intrusions. Once
the intrusion is detected, there are several ways to mitigate
it, such as blocking the malicious traffic or constraining the
resources for the suspicious user.

Machine learning (ML) techniques have widely been used
to develop network-based IDSs as they facilitate discovering
hidden patterns in network data [3] Most existing work focuses
on achieving high accuracy using a new ML algorithm or
a feature selection method in offline training. However, less
attention is given on the early detection of an intrusion or
on intrusion carried out using fewer number of packets. Early
detection of an intrusion is critical as it can trigger mitigation
activities sooner before any harm is done to the network. On
the other hand, smart attackers may want to fool an IDS
by sending fewer number of packets. To fill this gap in the
literature, in this paper, we study ML-based IDSs’ performance
in terms of early detection and in the presence of fewer packets
from the attacker.

This paper aims to develop an IDS for SDN using ML
techniques to detect intrusions as early as possible by using
real-time packet-level statistics from an SDN. We use only
an initial subset of packets from a flow between two hosts to
calculate the features because our goal is to detect intrusions
sooner with fewer packet samples. Here, a flow is defined
as a collection of packets between two hosts with the same
source IP address, destination IP address, source port number,
destination port number, and protocol. Again, the flow of
packets can be bidirectional, meaning that we consider both
forward and backward packets between two hosts to be part
of the same flow. Our experiments using real-time features
from an SDN-based intrusion detection dataset show that RF
can outperform complex deep-learning models, such as, Long
short-term memory (LSTM) [10] by a large margin (∼9%)
when fewer training samples are present in the training set
(shown in Table II). We also show that while ML models
perform well in offline training on a dataset, their accuracy



decreases when fewer packets are used to calculate the fea-
tures.

The following section provides our literature review. Sec-
tion III describes our ML model selection process for early
intrusion detection. Our dataset preparation for early intrusion
detection, along with all the experiments for early intrusion
detection, are discussed in Section IV. Finally, we conclude
the paper by discussing how ML models can be leveraged in
an SDN environment for intrusion detection, followed by some
possible research directions.

II. RELATED WORK

The research community has made many attempts to solve
the intrusion detection problem. Most of the recent works
focus on ML techniques to detect intrusion. Researchers use
both traditional ML-based and deep-learning algorithms to
detect intrusion. Some research works combine deep learning
and traditional ML algorithms to get the best from both worlds.
In this section, we discuss some of these works.

The authors in [4] address the lack of appropriate datasets
for intrusion detection in SDN networks. As a centralized net-
work architecture, SDN traffic has some unique characteristics.
The SDN architecture also introduces some new attack vectors
in addition to the attack vectors of conventional networks.
Since the intrusion detection system’s performance highly de-
pends on the dataset’s characteristics, an SDN-specific dataset
is necessary. InSDN [4] is the most recent publicly available
dataset for intrusion detection in an SDN environment.

The authors in [2] use Xgboost [5] to detect intrusion and
benign traffic on the InSDN dataset. Xgboost is a decision
tree-based boosting algorithm that combines multiple decision
trees sequentially to classify the traffic. According to paper
[2], Xgboost is the most successful algorithm for intrusion
detection in terms of accuracy, although it requires a lot
of labeled data and computational resources. According to
the survey shown in [2], deep learning methods can not
outperform Xgboost considerably. Our experiments also use
the InSDN dataset. This dataset and our data preparation steps
are described in section IV-A.

The authors in [6] combine Convolutional Neural Network
(CNN) with other traditional machine learning algorithms
such as RF, K-Nearest Neighbor (KNN), and Support Vector
Machine (SVM) for the intrusion detection task in an SDN.
A new regularization method is proposed along with the
hybrid model to handle the overfitting problem. Therefore,
the proposed method works well in binary and multi-class
classification. Similar to [2], paper [6] also uses the InSDN
dataset for the experiments along with the other two publicly
available benchmark datasets collected from traditional/non-
SDN networks. In all the datasets, the proposed method
outperforms the state-of-the-art approach according to the
experimental results shown in [6]. However, our experiments
found that the RF algorithm outperforms the proposed method
using the same features from the InSDN dataset. Details of this
experiment are given in section III.

In [7], the authors formulate the intrusion detection problem
as anomaly detection. The idea in anomaly or outlier detection
is to train a machine learning model only to identify benign
data patterns. Then during the evaluation, we can compare
the difference between the learned pattern of benign data and
the pattern in the test data. The model classifies the data
as an anomaly if the difference between the learned pattern
and the test data pattern exceeds a predefined threshold. One-
class SVM (OC-SVM) [8] is an algorithm to train a machine-
learning model for anomaly detection. OC-SVM cannot oper-
ate with a massive and high-dimensional dataset. Therefore,
[7] uses an LSTM autoencoder to represent data in low
dimensional space. Then the low-dimensional data is used to
train the OC-SVM model. The accuracy of anomaly detection
algorithms highly depends on the purity of the training data.
The model cannot detect anomalies with reasonable accuracy
if the training data contains some anomalous samples.

An Artificial Intelligence (AI) system is developed in [9]
to propose an intrusion detection system based on only flow-
based features in an SDN environment. The AI system period-
ically gathers statistical information about flows from the SDN
OpenFlow [19] switches. Then, it analyzes traffic information
by extracting and aggregating a set of pre-defined features. The
authors in [9] show that only flow-based features are enough
to detect intrusion with high accuracy. In our experiments,
we also use only flow-based features. However, instead of
collecting features periodically, we collect features by limiting
the number of packets, allowing us to detect attacks earlier.
Attacks like DoS/DDoS usually send a lot of packets within a
concise amount of time. Therefore, collecting features from the
packet level should speed up the intrusion detection process.

A deep learning algorithm is proposed in [10] to detect
DDoS attacks that use LSTM. LSTM models work well for
long sequential input data. The authors in [10] consider the
flow of packets as sequential input to the LSTM model.
Although the LSTM model shows good performance when
a large number of packets are given as input to the model, it
falls short when we limit the number of packets per flow in
our experiments.

Authors in [11] propose a lightweight CNN model to detect
DDoS attacks. In addition to the proposed deep learning
model, their focus is on the early detection of intrusion. At
first, a time window is defined, and the maximum packet
number is fixed within that time window. Then the authors
calculate features using the chosen number of packets and
feed it to the proposed CNN algorithms. On the other hand,
in our experiments, we fix the number of packets per flow
instead of fixing the time window, which enables us to detect
attacks that involve a small number of packets.

Most earlier works focus on achieving high accuracy using
a new ML algorithm or a feature selection method in offline
training. In contrast to the state-of-the-art, we aim to detect
intrusion as early as possible using real-time features. We use
the InSDN dataset to prepare data to facilitate early intrusion
detection. We vary the number of packets used from a flow to
calculate our features and train ML models to detect intrusion.



Fig. 1. Confusion Matrix of CNN+RF Fig. 2. Confusion Matrix of Random Forest Fig. 3. Confusion Matrix of Xgboost

Our experiments show that the RF algorithm can achieve good
accuracy compared to the LSTM-based deep learning approach
when features are calculated by limiting the number of packets
per flow.

III. ML MODEL SELECTION FOR INTRUSION DETECTION

Our first goal is to select an appropriate machine learning
algorithm that provides a good trade-off between accuracy
and computational complexity based on the InSDN dataset.
As mentioned in [4], the InSDN dataset is collected using a
testbed of four virtual machines. The testbed is prepared using
the Mininet [13] and ONOS [15] SDN controller. Data is avail-
able both in CSV format and in pcap format. There are seven
types of attack traffic in the InSDN dataset. These include
web attacks (cross-site scripting, SQL injection), password-
guessing attacks, malware (botnet attack), probing (version
scan, port scan, service discovery), exploitation, DoS, and
DDoS.

We have implemented the hybrid method proposed in [6]
and use the same set of 9 features as [6] in our experiment.
As mentioned in section II, the authors of the paper [6]
combine CNN and RF for training. There are two stages of
training according to [6]. At first, CNN layers are trained
in a binary classification setup where the last layer of the
model is a fully connected layer with two neurons. Next, the
final fully connected layer is discarded in the second stage
of training. Hence, the output of the CNN model is a 128-
dimensional feature vector. The RF algorithm is trained on this
feature vector instead of the actual features. The result of this
method is shown in Fig. 1. We select the confusion matrix for
evaluating the ML model because it gives us a complete view
of its performance. For example, we can see from Fig. 1 that
1899 benign traffic is misclassified as attack by the combined
model, whereas 493 attack traffic is misclassified as normal.
Since we can reproduce the result of [6], our next goal was
to improve this result which can help us select a suitable ML
model to be used in our early intrusion detection.

We then apply RF, and Xgboost algorithms on the same
InSDN dataset inspired by the observation in [2] that men-
tions decision tree-based models generally perform better for
intrusion detection. Results of RF and Xgboost algorithms are
shown in Fig. 2 and Fig. 3, respectively. Note that although

there is a class imbalance in the InSDN dataset, we do not
perform any additional steps to balance the data. This is
because, in [6], the authors do not balance the data for binary
classification. Therefore, for a fare comparison, we do not
balance the classes in the dataset.

We can see that both RF and Xgboost algorithms outperform
the proposed method of [6] using the exact dataset and features
for training and testing. The CNN+RF method, presented in
[6], is more computationally expensive than the standalone
RF or Xgboost model. Hence, training and inference time is
more extensive in the CNN+RF model. On the other hand,
although Xgboost is showing slightly better performance than
RF, Xgboost is more computationally expensive than RF. The
total training time of RF is 19.58 seconds, whereas Xgboost
takes 57.31 seconds to complete the training. Therefore, we
select the RF algorithm for early intrusion detection described
in the following section.

IV. EARLY DETECTION OF INTRUSION IN SDN

In this section, our focus is shifted toward the early detection
of intrusion in SDN. First, we describe the data preparation
steps for early intrusion detection, then our experiments and
results are described.

A. Dataset preparation

We prepare multiple datasets for our experiments using the
InSDN dataset mentioned earlier. The data is available in pcap
(an extension of the file used for network packet capturing)
and CSV files in the InSDN dataset. We use the pcap files to
prepare our dataset. At first, we divide all the flows present
in the InSDN dataset into two sets. One for training and the
other to test the ML model. We use a 70:30 split to prepare
the training and test set. Since we aim to detect intrusion as
early as possible, we prepare datasets with fewer packets per
flow. For example, if a flow has an M number of packets, first,
we divide that flow into multiple sub-flows using k (k < M)
number of packets in each sub-flow. So, there are N = ⌊M/k⌋
sub-flows generated from a flow with M packets. Then, to
prepare the dataset, we take the first n ≤ N sub-flows from
each flow. If the sub-flow number of a particular flow is less
than n, then we ignore that flow. To prepare multiple datasets,
we try different values for k and n. A dataset is represented



as Dk,n throughout the paper. To create sub-flows from the
InSDN dataset, we use a python package named Scapy [17].
After creating sub-flows from the actual flow, we calculate the
same 9 features mentioned in [6]. These features are protocol,
duration of k packets, number of forward packets among the
k packets, the total length of the forward packets, mean of
the length of forward packets, packet rate, byte rate, mean of
inter-arrival time, and standard deviation of inter-arrival time.
Table I shows the number of sub-flows per class (attack (a)
and benign (b)) in the training and test set for different values
of k and n. All our prepared datasets and source code for all
the experiments are publicly available in [14].

TABLE I
CLASS DISTRIBUTIONS FOR DIFFERENT VALUES OF k AND n

k n Train set size Test set size

3

1 978 (a) 443 (a)
5953 (b) 2573 (b)

2 1955 (a) 886 (a)
11907 (b) 5146 (b)

3 2932 (a) 1329 (a)
17861 (b) 7719 (b)

4 3909 (a) 1772 (a)
23815 (b) 10292 (b)

5 4886 (a) 2215 (a)
29769 (b) 12865 (b)

4

1 5488 (a) 2302 (a)
5319 (b) 2290 (b)

2 10976 (a) 4604 (a)
10638 (b) 4580 (b)

3 16464 (a) 6906 (a)
15957 (b) 6870 (b)

4 21952 (a) 9208 (a)
21276 (b) 9160 (b)

5 27440 (a) 11510 (a)
26595 (b) 11450 (b)

5

1 397 (a) 160 (a)
4785 (b) 2042 (b)

2 794 (a) 320 (a)
9570 (b) 4084 (b)

3 1191 (a) 480 (a)
14355 (b) 6126 (b)

4 1588 (a) 640 (a)
19140 (b) 8168 (b)

5 1985 (a) 800 (a)
23925 (b) 10210 (b)

6

1 279 (a) 138 (a)
4325 (b) 1842 (b)

2 558 (a) 276 (a)
8650 (b) 3684 (b)

3 837 (a) 414 (a)
12975 (b) 5526 (b)

4 1116 (a) 552 (a)
17300 (b) 7368 (b)

5 1395 (a) 690 (a)
21625 (b) 9210 (b)

We select the minimum value for k as 3 because there are
TCP flows in the dataset. We know that the first few packets for
a TCP connection are handshake packets. Therefore, detecting
an attack or benign traffic using the first one or two packets
would be meaningless. ICMP and UDP packets are also
present in the dataset.

From Table I, it is clear that the attack flows have fewer
packets than benign flows. As a result, when we increase the
value of k, the number of sub-flows decreases for the attack

class. The only exception is when k = 4, we see a large
number of attack traffic in the dataset compared to k = 3.
That is because, for every value of k, we create the dataset
for n = 5 first. Then we create datasets for other values of n as
a subset of Dk,5. The reason for doing this is we want to take
only those flows that can be divided into at least 5 sub-flows.
When k = 4 and n = 5, we are getting more flows that can
be divided into at least 5 sub-flows. On the bright side, when
k = 4, we see a balance between attack and benign traffic,
whereas, for other cases, there is an imbalance between attack
and benign class.

B. Evaluation of ML models

We train two ML models on the datasets shown in Table
I. RF is selected because of its better performance in our
first experiment. We use the default hyperparameters of the
RF model defined in the sklearn [16] library for all our
experiments. We implement the LSTM-based deep learning
model proposed in [10]. In [10], the authors calculate packet-

TABLE II
EVALUATION METRICS ON THE EARLY DETECTION DATASET

k n Model Accuracy(%) Precision(%) Recall(%) F1(%)

3

1 LSTM 85.31 42.66 50.00 46.04
RF 98.84 98.73 96.61 97.63

2 LSTM 91.21 91.39 71.77 77.37
RF 98.46 97.41 96.39 96.89

3 LSTM 92.18 92.86 74.76 80.44
RF 98.34 97.20 96.13 96.65

4 LSTM 92.41 92.28 76.02 81.43
RF 98.23 97.18 95.67 96.40

5 LSTM 94.89 93.38 85.42 88.81
RF 98.27 96.90 96.15 96.52

4

1 LSTM 90.14 90.83 90.15 90.10
RF 99.24 99.24 99.24 99.24

2 LSTM 95.32 95.37 95.32 95.32
RF 99.35 99.35 99.35 99.35

3 LSTM 96.32 96.38 96.32 96.32
RF 99.40 99.41 99.41 99.40

4 LSTM 97.15 97.18 97.15 97.15
RF 99.43 99.43 99.43 99.43

5 LSTM 97.65 97.66 97.65 97.65
RF 99.42 99.42 99.42 99.42

5

1 LSTM 92.73 46.37 50.00 48.11
RF 98.46 97.78 90.53 93.80

2 LSTM 92.73 46.37 50.00 48.11
RF 98.57 96.66 92.46 94.44

3 LSTM 92.73 46.37 50.00 48.11
RF 98.49 96.39 92.08 94.11

4 LSTM 92.73 46.37 50.00 48.11
RF 98.54 96.70 92.15 94.29

5 LSTM 92.73 46.37 50.00 48.11
RF 98.52 96.84 91.89 94.20

6

1 LSTM 93.03 46.52 50.00 48.19
RF 98.48 96.51 91.48 93.83

2 LSTM 93.03 46.52 50.00 48.19
RF 98.54 97.25 91.17 93.97

3 LSTM 93.03 46.52 50.00 48.19
RF 98.74 97.391 92.73 94.88

4 LSTM 93.03 46.52 50.00 48.19
RF 98.71 97.15 92.69 94.79

5 LSTM 93.03 46.52 50.00 48.19
RF 98.72 96.67 93.21 94.86

level features and use them as sequential input. In our case, we
use the same model on our flow-level features created for early



intrusion detection. These two selected models’ performances
are compared in Table II. We use accuracy, precision, recall,
and F1 score as evaluation metrics. These are standard metrics
to evaluate an ML model for classification. One thing to note
here is the LSTM model takes three-dimensional data as input.
Therefore, we create input data for LSTM by combining the
sub-flows in one dimension. So, the input shape for the LSTM
model is (B × n× f ). Here, B is the batch size, and f is the
number of features which is 11 in our case. The feature size
is 11 because we use the one-hot encoding of the protocol
feature. Since three protocols are present in the dataset, we
get 11 features after one-hot encoding of the protocol feature.

From Table II, we see that RF outperforms the LSTM model
for all values of k and n. Furthermore, when there is a low
number of training data (D3,1,D5,1,D5,2), the LSTM model
is overfitting. Therefore, the recall score becomes precisely
50%. That means the LSTM model predicts the same class
(attack or benign) for all the data. LSTM performs best when
the training size is reasonably high, and there is a balance in
the training data, i.e., D4,5. On the other hand, RF is doing
better in all cases. From this experiment, we can conclude that
RF is practical when there is a small number of training data.
Even when there is an imbalance in the data, RF is doing
better according to the result in Table II. RF model takes
∼4.3 microseconds on average to classify a data point in the
test set, whereas the LSTM model takes ∼62.5 microseconds.
Therefore, considering the low inference time, the RF model
is preferable to the LSTM model for early intrusion detection.

TABLE III
NEW DATASET SIZE AFTER ADDING DATA FROM OTHER n VALUES

k n Train set size Test set size

5

1 79538 (a) 800 (a)
28930 (b) 10210 (b)

2 71920 (a) 800 (a)
16328 (b) 10210 (b)

3 3681 (a) 800 (a)
19680 (b) 10210 (b)

4 1876 (a) 800 (a)
22356 (b) 10210 (b)

5 1985 (a) 800 (a)
23925 (b) 10210 (b)

We can compare RF with LSTM in the previous experiment
because we use the same test dataset for RF and LSTM.
However, we cannot compare different RF models in Table
II, which is essential to understand the effect of limiting
the number of sub-flows(n) in the training set. Therefore,
we design another experiment to understand the effect of
limiting the number of sub-flows. In other words, by limiting
the number of sub-flow, we are limiting the total number
of packets from a single flow in the training set. In this
experiment, we fix the value of k to 5. From Table I, we see
that when k = 5, if we vary n from 1 to 5, the total training
size increases gradually. Therefore, if we train the RF model
on these datasets by fixing the test set, different training set
sizes can affect the performance of the RF model. For a fare
comparison, we added sub-flows from other values of n to the

Fig. 4. Evaluation metrics of RF models on new dataset

dataset where the total training size is less than D5,5. The new
dataset size is shown in Table III. We use the same test set
to evaluate all the RF models in this experiment because the
goal is to compare them.

Fig. 4 shows the evaluation metrics for all the RF models.
The same experiment is run five times, and the average for
each evaluation metric is shown in Fig. 4. Fig. 4 shows that
for lower values of n, the performance of the RF model is poor
compared to RF models trained with larger n values. When
the RF model is trained with fewer total packets per flow
(k = 5, n = 1), the model’s accuracy decreases, although the
total training size is larger than other datasets (k = 5, n = 5).
The precision score has improved the most when the value of
n increases. The precision score is an indicator of the false
positive rate of the model. A higher precision score indicates
that the model has a low false positive rate. When n = 5,
the RF model achieves the highest precision score. A false
positive is crucial when developing an IDS because it can
affect a service provider’s quality of Service (QoS). From this
experiment, we conclude that a complex ML model does not
always perform better than traditional ML algorithms, and
further research is required to improve the performance of
early intrusion detection.

V. DISCUSSION AND RESEARCH DIRECTION

For real-time intrusion detection, features like flow duration
and total forward packet length are not well suited, although
many researchers use them in offline training. In this paper, we
propose to use real-time features such as packet count rate and
average packet size and evaluate the performance of the RF
model (best performer in offline settings) for early detection
of intrusion in SDN. Our evaluation result shows that the
accuracy of the RF model trained on the features of the entire
time series of flows decreases as we want earlier detection. To
improve this performance, few-shot learning can be used. Few-
shot learning is an ML method that makes predictions based
on a limited number of training samples. This area of ML,



along with Feature engineering approaches, can be explored
to improve the performance of the early detection problem.

The most common way to detect intrusion in SDN is to
send a FlowStatsRequest message periodically to the data
plane and extract the required features from the reply message.
This message exchange between the control and data planes
introduces overhead in the network. This overhead may be
negligible in a small-scale network. But for an extensive
network, it may introduce additional overhead. If we can move
our detection to the data plane, this overhead is no longer an
issue. Data plane programming using P4 [18] switches can be
leveraged for this purpose. Simple algorithms like RF can be
implemented on the programmable switch easily compared to
the complex deep learning models.

It is interesting to see what happens if entirely unknown
attack samples are present in the test set. For example, if
we remove all the flows of the Web attack from the training
set but the test set contains flows from the Web attack. This
is especially applicable to zero-day attacks where attackers
inject a novel attack that is unseen by the IDS. The recent
development around transfer learning can be explored to detect
such zero-day attacks.

Our experiments consider only two classes (Attack and
Benign). But in reality, if we want to mitigate different types
of attacks on the network differently, we need to identify the
type of attack. In that case, we need to consider multi-class
classification. Traditional ML algorithms, such as RF, cannot
do well on multi-class classification because the samples from
different attack class share similar features. Deep learning
models can be helpful in multi-class scenarios because these
models can learn the complex patterns in the data.

VI. CONCLUSION

In this paper, we study real-time intrusion detection in SDN,
focusing on detecting intrusion as early as possible using real-
time flow-based features. By using real-time features from an
SDN-based intrusion detection dataset, we show that although
ML models perform well in offline training on a dataset, the
accuracy of the ML model decreases for early intrusion detec-
tion. We also show that a simple Random Forest algorithm can
beat powerful deep-learning models. We conclude that more
research is needed to fully understand the spectrum of this
problem, as several possible research directions are outlined
as part of our future work. We hope this work will ignite the
research community to address the problem of early intrusion
detection in the SDN environment.

ACKNOWLEDGEMENT

This work was supported in part by funding from the Inno-
vation for Defence Excellence and Security (IDEaS) program
from the Department of National Defence (DND).

REFERENCES

[1] F. Z. Yousaf, M. Bredel, S. Schaller and F. Schneider, ”NFV and
SDN—Key Technology Enablers for 5G Networks,” in IEEE Journal
on Selected Areas in Communications, vol. 35, no. 11, pp. 2468-2478,
Nov. 2017, doi: 10.1109/JSAC.2017.2760418.

[2] Quang-Vinh Dang. 2021. Intrusion Detection in Software-Defined Net-
works. In Future Data and Security Engineering: 8th International
Conference, FDSE 2021, Virtual Event, November 24–26, 2021, Pro-
ceedings. Springer-Verlag, Berlin, Heidelberg, 356–371.

[3] Boutaba, R., Salahuddin, M. A., Limam, N., Ayoubi, S., Shahriar, N.,
Estrada-Solano, F., Caicedo, O. M. (2018). A comprehensive survey on
machine learning for networking: evolution, applications and research
opportunities. Journal of Internet Services and Applications, 9(1), 1-99.

[4] M. S. Elsayed, N. -A. Le-Khac and A. D. Jurcut, ”InSDN: A Novel
SDN Intrusion Dataset,” in IEEE Access, vol. 8, pp. 165263-165284,
2020, DOI: 10.1109/ACCESS.2020.3022633.

[5] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree
Boosting System. In Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD
’16). Association for Computing Machinery, New York, NY, USA,
785–794.

[6] Mahmoud Said ElSayed, Nhien-An Le-Khac, Marwan Ali Albahar, Anca
Jurcut, A novel hybrid model for intrusion detection systems in SDNs
based on CNN and a new regularization technique, Journal of Network
and Computer Applications, Volume 191, 2021, 103160, ISSN 1084-
8045, https://doi.org/10.1016/j.jnca.2021.103160.

[7] Mahmoud Said Elsayed, Nhien-An Le-Khac, Soumyabrata Dev, and
Anca Delia Jurcut. 2020. Network Anomaly Detection Using LSTM
Based Autoencoder. In Proceedings of the 16th ACM Symposium on
QoS and Security for Wireless and Mobile Networks (Q2SWinet ’20).
Association for Computing Machinery, New York, NY, USA, 37–45.
https://doi.org/10.1145/3416013.3426457.

[8] Mũnoz-Marı́, Jordi, et al. ”Semisupervised one-class support vector
machines for classification of remote sensing data.” IEEE transactions
on geoscience and remote sensing 48.8 (2010): 3188-3197.

[9] G. A. Ajaeiya, N. Adalian, I. H. Elhajj, A. Kayssi, and A. Chehab,
”Flow-based Intrusion Detection System for SDN,” 2017 IEEE Sympo-
sium on Computers and Communications (ISCC), 2017, pp. 787-793,
DOI: 10.1109/ISCC.2017.8024623.

[10] X. Yuan, C. Li and X. Li, ”DeepDefense: Identifying DDoS Attack
via Deep Learning,” 2017 IEEE International Conference on Smart
Computing (SMARTCOMP), Hong Kong, China, 2017, pp. 1-8, doi:
10.1109/SMARTCOMP.2017.7946998.

[11] R. Doriguzzi-Corin, S. Millar, S. Scott-Hayward, J. Martı́nez-del-Rincón
and D. Siracusa, ”Lucid: A Practical, Lightweight Deep Learning
Solution for DDoS Attack Detection,” in IEEE Transactions on Network
and Service Management, vol. 17, no. 2, pp. 876-889, June 2020, doi:
10.1109/TNSM.2020.2971776.

[12] B. A. Tama, M. Comuzzi and K. Rhee, ”TSE-IDS: A Two-Stage
Classifier Ensemble for Intelligent Anomaly-Based Intrusion Detec-
tion System,” in IEEE Access, vol. 7, pp. 94497-94507, 2019, DOI:
10.1109/ACCESS.2019.2928048.

[13] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop:
rapid prototyping for software-defined networks. In Proceedings of the
Ninth ACM SIGCOMM Workshop on Hot Topics in Networks, 2010.

[14] Early Intrusion Detection in SDN repository on GitHub.
[Online]. Available: https://github.com/shamimtowhid/
Early-Intrusion-Detection-in-SDN.

[15] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B.
Lantz, B. O’Connor, W. Snow, and G. Parulkar, “ONOS: Towards an
open, distributed SDN os,” in Proc. 3rd Workshop Hot Topics Softw.
Defined Netw., 2014, pp. 1–6.

[16] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pretten-
hofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthias Perrot, Édouard Duch-
esnay. Scikit-learn: Machine Learning in Python, Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011. [Online]. Available:
https://scikit-learn.org/. [Accessed: 1-Feb-2023].

[17] Philippe Biondi and Arnaud Ebalard. Scapy: a packet manipulation
tool for computer networks. [Online]. Available: https://scapy.net/. [Ac-
cessed: 1-Feb-2023].

[18] P4 (2022) Open Networking Foundation. Available at:
https://opennetworking.org/p4 (Accessed: March 10, 2023).

[19] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
OpenFlow: enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, vol. 38, no. 2, pp. 69-74, 2008.
[Online]. Available: https://www.openflow.org/. [Accessed: 1-Feb-2023].


