Two Approaches in the Study of Covering Arrays

Karen Meagher

kmeagher@math.uwaterloo.ca

University of Waterloo

You have installed a new light switch to each of four rooms in your house and you want to test that you did it right.

You have installed a new light switch to each of four rooms in your house and you want to test that you did it right.

You have installed a new light switch to each of four rooms in your house and you want to test that you did it right.

room \ test:	1	2	3	4	5
bedroom	0	0	1	1	1
hall	0	1	0	1	1
bathroom	0	1	1	0	1
kitchen	0	1	1	1	0

You have installed a new light switch to each of four rooms in your house and you want to test that you did it right.

room \ test:	1	2	3	4	5
bedroom	0	0	1	1	1
hall	0	1	0	1	1
bathroom	0	1	1	0	1
kitchen	0	1	1	1	0

You have installed a new light switch to each of four rooms in your house and you want to test that you did it right.

room \ test:	1	2	3	4	5
bedroom	0	0	1	1	1
hall	0	1	0	1	1
bathroom	0	1	1	0	1
kitchen	0	1	1	1	0

You have installed a new light switch to each of four rooms in your house and you want to test that you did it right.

room \ test:	1	2	3	4	5
bedroom	0	0	1	1	1
hall	0	1	0	1	1
bathroom	0	1	1	0	1
kitchen	0	1	1	1	0

You have installed a new light switch to each of four rooms in your house and you want to test that you did it right.

room \ test:	1	2	3	4	5
bedroom	0	0	1	1	1
hall	0	1	0	1	1
bathroom	0	1	1	0	1
kitchen	0	1	1	1	0

Covering Arrays

A covering array CA(n, r, k) is an $r \times n$ array with:

- \star entries from \mathbb{Z}_k (k is the alphabet),
- * and between any two rows all pairs from \mathbb{Z}_k occur. (This property is called qualitative independence.)
- \star CAN(r,k) is the fewest number of columns such that a covering array with r rows on a k alphabet exists.

Covering Arrays

A covering array CA(n, r, k) is an $r \times n$ array with:

- \star entries from \mathbb{Z}_k (k is the alphabet),
- * and between any two rows all pairs from \mathbb{Z}_k occur. (This property is called qualitative independence.)
- \star CAN(r,k) is the fewest number of columns such that a covering array with r rows on a k alphabet exists.

This is a CA(5, 4, 2)

0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
0 0 0 0	1	1	1	0

Two Areas of Covering Arrays

- ★ Extremal Set Theory
 - The Erdős-Ko-Rado Theorem and Sperner's Theorem apply to binary covering arrays.
 - * Extend such results to partition systems.

Two Areas of Covering Arrays

- * Extremal Set Theory
 - The Erdős-Ko-Rado Theorem and Sperner's Theorem apply to binary covering arrays.
 - * Extend such results to partition systems.
- * Graph Theory
 - * Add a graph structure to covering arrays.
 - Use methods from algebraic graph theory.

A length-n 01-vector is a characteristic vector of an n-set.

A length-n 01-vector is a characteristic vector of an n-set.

00111	and	010	11	and	00110
1 2 3 4 5		1 2 3	4 5		1 2 3 4 5
{3, 4, 5}	and	{2,	4, 5}	and	{3, 4}

A length-n 01-vector is a characteristic vector of an n-set.

 \star A set system is a collection of subsets of an n-set.

A length-n 01-vector is a characteristic vector of an n-set.

- \star A set system is a collection of subsets of an n-set.
- \star A k-set system is a set system with subsets of size k.

A length-n 01-vector is a characteristic vector of an n-set.

- \star A set system is a collection of subsets of an n-set.
- \star A k-set system is a set system with subsets of size k.
- * The rows of a binary covering array correspond to a set system.

A set system \mathcal{F} is qualitatively independent if for distinct sets $A, B \in \mathcal{F}$,

$$A \cap B \neq \emptyset$$
 $\overline{A} \cap B \neq \emptyset$ $A \cap \overline{B} \neq \emptyset$ $\overline{A} \cap \overline{B} \neq \emptyset$.

A set system \mathcal{F} is qualitatively independent if for distinct sets $A, B \in \mathcal{F}$,

$$A \cap B \neq \emptyset$$
 $\overline{A} \cap B \neq \emptyset$ $A \cap \overline{B} \neq \emptyset$ $\overline{A} \cap \overline{B} \neq \emptyset$.

Sperner Set Systems

* A set system \mathcal{F} is a Sperner system if for any two distinct sets $A, B \in \mathcal{F}$, $A \not\subseteq B$.

Sperner Set Systems

* A set system \mathcal{F} is a Sperner system if for any two distinct sets $A, B \in \mathcal{F}$, $A \not\subseteq B$.

Sperner's Theorem

Theorem (Sperner - 1928) Let \mathcal{F} be a Sperner set system over an n-set. Then

- 1. $|\mathcal{F}| \leq \binom{n}{\lfloor n/2 \rfloor}$.
- 2. Equality holds if and only if \mathcal{F} is the system of all sets of size $\lfloor n/2 \rfloor$ or $\lceil n/2 \rceil$.

Sperner's Theorem

Theorem (Sperner - 1928) Let \mathcal{F} be a Sperner set system over an n-set. Then

1.
$$|\mathcal{F}| \leq \binom{n}{\lfloor n/2 \rfloor}$$
.

2. Equality holds if and only if \mathcal{F} is the system of all sets of size $\lfloor n/2 \rfloor$ or $\lceil n/2 \rceil$.

If \mathcal{F} is a qualitatively independent set system on an n-set, then

$$\mathcal{F}^* = \{A, \overline{A} : A \in \mathcal{F}\}$$

is a Sperner set system. In particular,

$$|\mathcal{F}| \le \frac{1}{2} \binom{n}{|n/2|}.$$

Intersecting Set Systems

* A t-intersecting k-set system is a k-set system in which any two sets have intersection of size at least t.

Intersecting Set Systems

- * A t-intersecting k-set system is a k-set system in which any two sets have intersection of size at least t.
- * A trivially t-intersecting k-set system is the collection of all k-sets which contain a given t-set.

Intersecting Set Systems

- * A t-intersecting k-set system is a k-set system in which any two sets have intersection of size at least t.
- \star A trivially t-intersecting k-set system is the collection of all k-sets which contain a given t-set.

A trivially t-intersecting k-set system on an n-set has cardinality

$$\binom{n-t}{k-t}$$
.

Erdős-Ko-Rado Theorem

Theorem (Erdős, Ko and Rado - 1961) For n sufficiently large, if \mathcal{F} is a t-intersecting k-set system on an n-set then

- 1. $|\mathcal{F}| \leq \binom{n-t}{k-t}$,
- 2. and \mathcal{F} meets this bound only if it is a trivially tintersecting set system.

Theorem (Kleitman and Spencer, Katona - 1973)

$$CAN(r,2) = \min \left\{ n : {n-1 \choose |n/2|-1} \ge r \right\}.$$

Theorem (Kleitman and Spencer, Katona - 1973)

$$CAN(r,2) = \min \left\{ n : {n-1 \choose \lfloor n/2 \rfloor - 1} \ge r \right\}.$$

 \mathcal{F} is a qualitatively independent set system on an n-set.

Theorem (Kleitman and Spencer, Katona - 1973)

$$CAN(r,2) = \min \left\{ n : {n-1 \choose \lfloor n/2 \rfloor - 1} \ge r \right\}.$$

 \mathcal{F} is a qualitatively independent set system on an n-set. Assume n is even.

- \star By Sperner's Theorem $|\mathcal{F}| \leq \frac{1}{2} \binom{n}{\frac{n}{2}} = \binom{n-1}{\frac{n}{2}-1}$.
- \star The set of all $\frac{n}{2}$ -sets that contain 1 meets this bound.

Theorem (Kleitman and Spencer, Katona - 1973)

$$CAN(r,2) = \min \left\{ n : \binom{n-1}{\lfloor n/2 \rfloor - 1} \ge r \right\}.$$

 \mathcal{F} is a qualitatively independent set system on an n-set. Assume n is odd.

- * If a set in \mathcal{F} is larger than $\frac{n-1}{2}$, replace it with its complement (this makes n sufficiently large).
- \star \mathcal{F} is intersecting, by EKR, $|\mathcal{F}| \leq \binom{n-1}{\frac{n-1}{2}}$.
- \star The set of all $\frac{n-1}{2}$ -sets that contain 1 meets this bound.

The rows of a covering array with a k-alphabet and n columns determine k-partitions of an n-set.

The rows of a covering array with a k-alphabet and n columns determine k-partitions of an n-set.

000111222

012012012

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

123|456|789

147|258|369

The rows of a covering array with a k-alphabet and n columns determine k-partitions of an n-set.

```
000111222
012012012

123456789
123456789

123|456|789
147|258|369
```

* A k-partition of an n-set is a set of k disjoint non-empty subsets (called classes) of the n-set whose union is the n-set.

The rows of a covering array with a k-alphabet and n columns determine k-partitions of an n-set.

```
000111222
012012012

123456789
123456789

123|456|789
147|258|369
```

- * A k-partition of an n-set is a set of k disjoint non-empty subsets (called classes) of the n-set whose union is the n-set.
- \star A k-partition of n-set is uniform if each class is size n/k.

Qualitative Independence

Partitions $P = \{P_1, \dots, P_k\}$ and $Q = \{Q_1, \dots, Q_k\}$ are qualitatively independent if $P_i \cap Q_j \neq \emptyset$ for all i and j.

Qualitative Independence

Partitions $P = \{P_1, \dots, P_k\}$ and $Q = \{Q_1, \dots, Q_k\}$ are qualitatively independent if $P_i \cap Q_j \neq \emptyset$ for all i and j.

Can we extend Sperner's Theorem and the Erdős-Ko-Rado Theorem to partitions?

Sperner Partition Systems

A k-partition system \mathcal{P} is a Sperner partition system if for all distinct $P, Q \in \mathcal{P}$, with $P = \{P_1, \dots, P_k\}$ and $Q = \{Q_1, \dots, Q_k\}$, $P_i \not\subseteq Q_i$ for all $i, j \in \{1, \dots, k\}$.

Sperner Partition Systems

A k-partition system \mathcal{P} is a Sperner partition system if for all distinct $P,Q\in\mathcal{P}$, with $P=\{P_1,\ldots,P_k\}$ and $Q=\{Q_1,\ldots,Q_k\}$, $P_i\not\subseteq Q_j$ for all $i,j\in\{1,\ldots,k\}$.

* A partition system that is qualitatively independent is a Sperner partition system.

Sperner's Theorem for Partitions

Theorem (Meagher, Moura and Stevens - 2005) Let \mathcal{F} be a Sperner k-partition system on an n-set.

- \star If n = ck, then
 - 1. $|\mathcal{F}| \leq \frac{1}{k} \binom{n}{c} = \binom{ck-1}{c-1}$.
 - 2. Only uniform systems meet this bound.
- \star If n = ck + r with $0 \le r < k$, then

$$|\mathcal{F}| \le \frac{1}{(k-r) + \frac{r(c+1)}{n-c}} \binom{n}{c}.$$

Intersecting Partitions

* Partitions are intersecting if they have at least one class in common.

Intersecting Partitions

- * Partitions are intersecting if they have at least one class in common.
- * A trivially intersecting partition system is a partition system with all the partitions that contain a given class.

Intersecting Partitions

- * Partitions are intersecting if they have at least one class in common.
- * A trivially intersecting partition system is a partition system with all the partitions that contain a given class.
- * If n = ck, a trivially intersecting uniform k-partition system on an n-set has size

$$\frac{1}{(k-1)!} \binom{ck-c}{c} \binom{ck-2c}{c} \cdots \binom{c}{c}.$$

Erdős-Ko-Rado for Partitions

Theorem (Meagher and Moura - 2004)

Let $k, c \ge 1$ and n = kc.

Let \mathcal{F} be an intersecting uniform k-partition system on an n-set. Then,

1.
$$|\mathcal{F}| \leq \frac{1}{(k-1)!} {\binom{ck-c}{c}} {\binom{ck-2c}{c}} \cdots {\binom{c}{c}}$$
.

2. If \mathcal{F} meets this bound, then \mathcal{F} is a trivially intersecting uniform partition system.

Adding a Graph Structure

Added light switches to 4 rooms and you want to test the system quickly.

Adding a Graph Structure

Added light switches to 4 rooms and you want to test the system quickly.

You plan on using a covering array, but you know that there can be no problems between the wiring in the bedroom and the kitchen.

Adding a Graph Structure

Added light switches to 4 rooms and you want to test the system quickly.

You plan on using a covering array, but you know that there can be no problems between the wiring in the bedroom and the kitchen.

room \ test:	1	2	3	4
bedroom	0	0	1	1
hall	0	1	0	1
bathroom	0	1	1	0
kitchen	0	0	1	1

- \star an $r \times n$ array where r = |V(G)|,
- \star with entries from \mathbb{Z}_k (k is the alphabet),
- * rows for adjacent vertices are qualitatively independent.
- \star CAN(G, k) is the fewest number of columns such that a covering array on the graph with a k-alphabet exists.

- \star an $r \times n$ array where r = |V(G)|,
- \star with entries from \mathbb{Z}_k (k is the alphabet),
- * rows for adjacent vertices are qualitatively independent.
- * CAN(G, k) is the fewest number of columns such that a covering array on the graph with a k-alphabet exists.

1	0	0	1	1	1
2	0	1	0	1	1
3	0	1	1	0	1
4	0	0	1	1	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1 ,	0 wo Approaches in the Study of Covering Arrays – p.19/2

- \star an $r \times n$ array where r = |V(G)|,
- \star with entries from \mathbb{Z}_k (k is the alphabet),
- * rows for adjacent vertices are qualitatively independent.
- \star CAN(G,k) is the fewest number of columns such that a covering array on the graph with a k-alphabet exists.

A covering array on a graph G, denoted CA(n, G, k), is:

- \star an $r \times n$ array where r = |V(G)|,
- \star with entries from \mathbb{Z}_k (k is the alphabet),
- * rows for adjacent vertices are qualitatively independent.
- * CAN(G, k) is the fewest number of columns such that a covering array on the graph with a k-alphabet exists.

Two Approaches in the Study of Covering Arrays – p.19/

- \star an $r \times n$ array where r = |V(G)|,
- \star with entries from \mathbb{Z}_k (k is the alphabet),
- * rows for adjacent vertices are qualitatively independent.
- * CAN(G, k) is the fewest number of columns such that a covering array on the graph with a k-alphabet exists.

- \star an $r \times n$ array where r = |V(G)|,
- \star with entries from \mathbb{Z}_k (k is the alphabet),
- * rows for adjacent vertices are qualitatively independent.
- * CAN(G, k) is the fewest number of columns such that a covering array on the graph with a k-alphabet exists.

- \star an $r \times n$ array where r = |V(G)|,
- \star with entries from \mathbb{Z}_k (k is the alphabet),
- * rows for adjacent vertices are qualitatively independent.
- * CAN(G, k) is the fewest number of columns such that a covering array on the graph with a k-alphabet exists.

Qualitative Independence Graph

Define the qualitative independence graph QI(n,k) as follows:

- \star the vertex set is the set of all k-partitions of an n-set with every class of size at least k,
- * and vertices are connected if and only if the partitions are qualitatively independent.

Qualitative Independence Graph

Define the qualitative independence graph QI(n,k) as follows:

- * the vertex set is the set of all k-partitions of an n-set with every class of size at least k,
- * and vertices are connected if and only if the partitions are qualitatively independent.

The graph QI(4,2):

Qualitative Independence Graph

Define the qualitative independence graph QI(n,k) as follows:

- \star the vertex set is the set of all k-partitions of an n-set with every class of size at least k,
- * and vertices are connected if and only if the partitions are qualitatively independent.

The graph QI(4,2):

By construction, $CAN(QI(n,k),k) \leq n$.

Graph Homomorphisms

A homomorphism, $f: G \rightarrow H$ is

- * a map between the vertices two graphs
- \star so that if vertices $u, v \in G$ are adjacent, then vertices $f(u), f(v) \in H$ are also adjacent

Graph Homomorphisms

A homomorphism, $f: G \rightarrow H$ is

- * a map between the vertices two graphs
- \star so that if vertices $u, v \in G$ are adjacent, then vertices $f(u), f(v) \in H$ are also adjacent

Why is QI(n,k) Interesting?

Theorem (Meagher and Stevens - 2002) An r-clique in QI(n,k) corresponds to a covering array with r rows, n-columns on a k alphabet.

Why is QI(n,k) Interesting?

Theorem (Meagher and Stevens - 2002) An r-clique in QI(n,k) corresponds to a covering array with r rows, n-columns on a k alphabet.

Theorem (Meagher and Stevens - 2002) A covering array on a graph G with n columns and alphabet k exists if and only if there is a graph homomorphism

$$G \to QI(n,k)$$
.

Facts for QI(n, 2)

Theorem (Kleitman and Spencer, Katona - 1973)

$$\omega(QI(n,2)) = \binom{n-1}{\lfloor \frac{n}{2} \rfloor - 1}$$

Facts for QI(n,2)

Theorem (Kleitman and Spencer, Katona - 1973)

$$\omega(QI(n,2)) = \binom{n-1}{\lfloor \frac{n}{2} \rfloor - 1}$$

Theorem (Meagher and Stevens - 2002)

$$\chi(QI(n,2)) = \left\lceil \frac{1}{2} \binom{n}{\left\lceil \frac{n}{2} \right\rceil} \right\rceil$$

Facts for QI(n,2)

Theorem (Kleitman and Spencer, Katona - 1973)

$$\omega(QI(n,2)) = \binom{n-1}{\lfloor \frac{n}{2} \rfloor - 1}$$

Theorem (Meagher and Stevens - 2002)

$$\chi(QI(n,2)) = \left\lceil \frac{1}{2} \binom{n}{\left\lceil \frac{n}{2} \right\rceil} \right\rceil$$

Theorem (Meagher and Stevens - 2002) If $CAN(G,2) \leq n$, then there exists a uniform binary covering array on G with n columns. (Each row has $\lceil \frac{n}{2} \rceil$ 0's and $\lfloor \frac{n}{2} \rfloor$ 1's.)

 \star Vertices are uniform k-partitions of a k^2 -set.

- \star Vertices are uniform k-partitions of a k^2 -set.
- * It is a vertex-transitive graph.

- \star Vertices are uniform k-partitions of a k^2 -set.
- * It is a vertex-transitive graph.
- * It is an arc-transitive graph.

- \star Vertices are uniform k-partitions of a k^2 -set.
- * It is a vertex-transitive graph.
- * It is an arc-transitive graph.

An independent set in a graph is a set of vertices in which no two are adjacent.

- \star Vertices are uniform k-partitions of a k^2 -set.
- * It is a vertex-transitive graph.
- * It is an arc-transitive graph.

An independent set in a graph is a set of vertices in which no two are adjacent.

* The set of all partitions with 1 and 2 in the same class is an independent set.

- \star Vertices are uniform k-partitions of a k^2 -set.
- * It is a vertex-transitive graph.
- * It is an arc-transitive graph.

An independent set in a graph is a set of vertices in which no two are adjacent.

* The set of all partitions with 1 and 2 in the same class is an independent set.

- \star Vertices are uniform k-partitions of a k^2 -set.
- * It is a vertex-transitive graph.
- * It is an arc-transitive graph.

An independent set in a graph is a set of vertices in which no two are adjacent.

* The set of all partitions with 1 and 2 in the same class is an independent set.

Is this set the largest independent set in $QI(k^2, k)$?