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Testing Systems

You have installed a new light switch to each of
four rooms in your house and you want to test
that you did it right.

A complete test would require 2 = 16 tests!

room \test: |1 2 3 4 5
pedroom 0 1 1
nall 01011
pathroom 0 1 0
Kitchen 01110




Covering Arrays

A covering array C'A(n,r, k) is an r x n array with:
e entries from Z, (k is the alphabet),

e and between any two rows all pairs from Z, occur.
(This property is called qualitative independence.)

e CAN(r, k) is the fewest number of columns such that a
covering array with » rows on a k alphabet exists.
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A covering array C'A(n,r, k) is an r x n array with:
e entries from Z, (k is the alphabet),

e and between any two rows all pairs from Z, occur.
(This property is called qualitative independence.)

e CAN(r, k) is the fewest number of columns such that a
covering array with » rows on a k alphabet exists.

Thisisa CA(5,4,2)

o O O O
P, P R O
P P O Bk
P O R BB
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e Extremal Set Theory

* Sperner’s Theorem and the
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binary covering arrays.
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Two Areas of Covering Arrays

e Extremal Set Theory

* Sperner’s Theorem and the
Erdos-Ko-Rado Theorem can be used for
binary covering arrays.

*x Extend such results to partition systems.

e Graph Theory
= Add a graph structure to covering arrays.
* Use methods from algebraic graph theory.
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Binary Covering Arrays

A 01-vector can be viewed as the characteristic vector of a
set.

00111 and 01011 and 00110
12345 12345 12345
{3,4,5} and {2, 4,5} and {3, 4}

e A set system is a collection of subsets of an n-set.

e The rows of a binary covering array correspond to a
set system.

Covering Arrays on Graphs: — p.5/4
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Qualitatively Independent Sets

A set system F is qualitatively independent if for
distinct sets A, B € F,

ANB#0 AnNB#0 AnB#0 AnB#0.

If sets A and B are qualitatively independent,
knowing : € A gives no information if : € B.
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Sperner Set Systems

e A k-set system is a set system with subsets of size k.

e A setsystem F is a Sperner system if for any two
distinct sets A, B € F, A € B.(incomparable)

{1,2,3,4}

) T

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

== I

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

~f Y1

{1} {2} {3} {4}
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Sperner’s Theorem

Theorem (Sperner - 1928) Let F be a Sperner set system
over an n-set. Then

2. Equality holds if and only if F is the system of all
sets of size |n/2]| or [n/2].
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Sperner’s Theorem

Theorem (Sperner - 1928) Let F be a Sperner set system
over an n-set. Then

1 |7l < (L /QJ)

2. Equality holds if and only if F is the system of all
sets of size |n/2]| or [n/2].

If F Is a qualitatively independent set system on an n-set,
F*={AA:AcF}
IS a Sperner set system. In particular,

Fl <3 (Ln/?J)
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Intersecting Set Systems

e A i-intersecting k-set system is a k-set system in which
any two sets have intersection of size at least ¢.

e Atrivially t-intersecting k-set system is the collection of
all k-sets which contain a given t-set.

A trivially t-intersecting k-set system on an n-set has

cardinality
n—1t
k—t)
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Erdos-Ko-Rado Theorem

Theorem (Erdés, Ko and Rado - 1961) For n sufficiently large,
If 7 Is a t-intersecting k-set system on an n-set then

L |7 < (7)),

2. and F meets this bound only if it is a trivially ¢-
Intersecting set system.
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Erdos-Ko-Rado Theorem

Theorem (Erdés, Ko and Rado - 1961) For n sufficiently large,
If 7 Is a t-intersecting k-set system on an n-set then

L |7 < (7)),

2. and F meets this bound only if it is a trivially ¢-
Intersecting set system.

e Wilson 1984 -Forn > (t + 1)(k —t + 1) the largest
t-intersecting set system is a trivially ¢-intersecting set
system.

e Ahlswede and Khachatrian 1997 - Gave the maximal
t-intersecting k-set system for all values of n.
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Qualitatively Independent Sets

Theorem (Kleitman and Spencer, Katona - 1973)

CAN(r,2) = min {n ; (Ln%]i 1) > 7‘}.

F Is a qualitatively independent set system on an n-set.
Assume n IS even.

e By Sperner's Theorem |F| < 1(7) = (77)).

n_1

e The set of all 5-Sets that contain 1 meets this bound.

Covering Arrays on Graphs: — p.11/4.



Qualitatively Independent Sets

Theorem (Kleitman and Spencer, Katona - 1973)

CAN(r,2) = min {n ; (Ln%]i 1) > 7‘}.

F Is a qualitatively independent set system on an n-set.
Assume n is odd.

e Ifasetin F is larger than 21, replace it with its

complement (this makes n sufficiently large).
o F isintersecting, by EKR, |F| < (%21).

e The set of all ”T‘l-sets that contain 1 meets this bound.
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The rows of a covering array with a k-alphabet and n
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000111222 012012012
1234567809 1 23456 7 89
123456789 147|258|369

e A L-partition of an n-set is a set of £ disjoint non-empty
subsets (called classes) of the n-set whose union Is
the n-set.
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Larger Alphabets

The rows of a covering array with a k-alphabet and n
columns determine k-partitions of an n-set.

000111222 012012012
1234567809 1 23456 7 89
123456789 147|258|369

e A L-partition of an n-set is a set of £ disjoint non-empty
subsets (called classes) of the n-set whose union Is
the n-set.

e A k-partition of n-set is uniform if each class is size

Covering Arrays on Graphs: — p.12/4.
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gualitatively independent if
P,NQ; # () for all : and j.

For two k-partitions to be gualitatively independent, both
need to have all classes of size at least k.
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Qualitative Independence

Partitions P = {Py,..., P} and Q = {Q1,...,Q} are
gualitatively independent if
P,NQ; # () for all : and j.

For two k-partitions to be gualitatively independent, both
need to have all classes of size at least k.

Can we extend Sperner’s Theorem and the Erd0s-Ko-
Rado Theorem to partitions?
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Sperner Partition Systems

A k-partition system P is a Sperner partition system if for
all distinct P, € P, with P ={P,,..., P} and

Q:{Qla"'7Q/€}1
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Sperner Partition Systems

A k-partition system P is a Sperner partition system if for
all distinct P, € P, with P ={P,,..., P} and

Q:{Qla"'an}1
P, Q;foralli g e{l,... k}.

e |f a partition system is gqualitatively independent,
then it is also a Sperner partition system.

e A Sperner partition system can be considered as a
resolvable Sperner set system.

Covering Arrays on Graphs: — p.14/4.



Sperner’s Theorem for Partitions

Theorem (Meagher, Moura and Stevens - 2005) Let F
be a Sperner k-partition system on an n-set.
e If n = ck, then
ck—1
LA < £(0) = (C5)
2. Only uniform systems meet this bound.

e lfn=ck+rwith0<r <k, then

1 n
< .
7l < (k—r)—%M(C)

n—c
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Intersecting Partitions

e Partitions are intersecting if they have at least one
class in common.

e A trivially intersecting partition system is a partition
system with all the partitions that contain a given class.

Theorem (P. L. Erd6s and Székely - 2000) For n sufficiently
large, the largest intersecting k-partition system on an
n-set Is a trivially intersecting partition system.

Covering Arrays on Graphs: — p.16/4.



Intersecting Uniform Partitions

e For n = ck, a trivially intersecting uniform
k-partition system is a uniform k-partition
system on an n-set with all the uniform
k-partitions that contain a given class.



Intersecting Uniform Partitions

For n = ck, a trivially intersecting uniform
k-partition system is a uniform k-partition
system on an n-set with all the uniform
k-partitions that contain a given class.

If n = ck, a trivially intersecting uniform
k-partition system on an n-set has size

o)) )




Erdos-Ko-Rado for Partitions

Theorem (Meagher and Moura - 2004) Let k,c > 1
and n = kc. Let F be an intersecting uniform
k-partition system on an n-set. Then,

1.
2.

FI < gm0 () )

f 7 meets this bound, then F is a trivially
Intersecting uniform partition system.




Partially Intersecting Partitions

e Partitions P ={P,..., P} and QQ = {Q,...,Q} are
t-partially intersecting if there exist an ¢+ and a ;5 so that

P,NQ;| > t.
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Partially Intersecting Partitions

e Partitions P ={P,..., P} and QQ = {Q,...,Q} are
t-partially intersecting if there exist an ¢+ and a ;5 so that

P,NQ;| > t.

e A trivially partially ¢t-intersecting partition system is a
partition system with all partitions that have a class
that contains a given ¢-set.
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Partially Intersecting Partitions

e Partitions P ={P,..., P} and QQ = {Q,...,Q} are
t-partially intersecting if there exist an ¢+ and a ;5 so that

P,NQ;| > t.

e A trivially partially ¢t-intersecting partition system is a
partition system with all partitions that have a class
that contains a given ¢-set.

Conjecture (Czabarka - 2000) For some values of n the
largest partially 2-intersecting k-partition system on an
n-set is a trivially intersecting partition system.
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Uniform Partitions

e A trivially partially ¢-intersecting uniform partition
system is a uniform partition system with all partitions
that have a class that contains a given t-set.
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Uniform Partitions

e A trivially partially ¢t-intersecting uniform partition
system is a uniform partition system with all partitions
that have a class that contains a given t-set.

If n = ck, a trivially partially ¢-intersecting uniform
k-partition system on an n-set has size

(Cf—_tt) (k - 1)! (k_) (Ck;%) ()

Covering Arrays on Graphs: — p.20/4.



EKR for Partitions - version 2

Conjecture (Meagher and Moura - 2005) Let n = ck
and F be a partially ¢t-intersecting uniform par-
tition system. Then,

ck—t ck—c\ (ck—2c C
1. |f| S (c—t)(k—ll)!( c )( c ) (c)
2. F meets this bound only if it is a trivially par-
tially ¢t-intersecting uniform k-partition sys-
tem.




EKR for Partitions - version 2

Conjecture (Meagher and Moura - 2005) Let n = ck
and F be a partially ¢t-intersecting uniform par-
tition system. Then,

ck—t ck—c\ (ck—2c C
1. |f| S (c—t)(k—ll)!( c )( c ) (c)
2. F meets this bound only if it is a trivially par-
tially ¢t-intersecting uniform k-partition sys-
tem.

We have partial results for several values of n, &
and t.
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Open Problems

e How can we use Sperner’s Theorem and the
Erdos-Ko-Rado Theorem for partitions to get
bounds for covering arrays with higher
alphabets?

e Give a complete Erd0s-Ko-Rado Theorem for
t-intersecting partitions.

e Prove an Erdos-Ko-Rado type result for
partially ¢-intersecting partitions.

e Develop a theory of extremal partition
systems
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Adding a Graph Structure

Added light switches to 4 rooms and you want to test the
system quickly.

You plan on using a covering array, but you know that there
can be no problems between the wiring in the bedroom
and the kitchen.

room \ test: |1 2 3 4
bedroom |0 O 1 1
hall 0 1 0 1
pathroom |0 1 1 O
kitchen O 0 1 1

Covering Arrays on Graphs: — p.23/4.



Covering Arrays on Graphs

A covering array on a graph G, denoted CA(n, G, k), Is:
e an r x n array where r = |V (G)],
e with entries from Z,, (k is the alphabet),
e rows for adjacent vertices are gualitatively independent.

e CAN(G,k) is the fewest number of columns such that
a covering array on the graph with a k-alphabet exists.
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A complete graph, denoted K,, is the graph with r vertices
and distinct vertices are adjacent.
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Background

A complete graph, denoted K,, is the graph with r vertices
and distinct vertices are adjacent.

e Standard covering arrays correspond to covering
arrays on complete graphs, a CA(n, K,, k) is a
CA(n,r k).

e Bshouty and Serroussi (1988) proved that finding
CAN(G,?2) for any graph is NP-hard.

Covering Arrays on Graphs: — p.25/4.
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e an edge preserving map between the vertices
two graphs
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f(u), f(v) € H are also adjacent



Graph Homomorphisms

A homomorphism, f : G — H IS

e an edge preserving map between the vertices
two graphs

o if vertices u,v € GG are adjacent then vertices
) € H are also adjacent

5K




Bounds from Complete Graphs

For a graph G, the size of a maximum clique, denoted
w(G), is the largest integer such that
Kw(G) — G
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Bounds from Complete Graphs

For a graph G, the size of a maximum clique, denoted
w(G), is the largest integer such that

Kw(G) — G
The chromatic number, denoted (&), is the smallest
Integer such that

G — K, (G).

There is a lower bound from maximum clique size

CAN (w(G), k) < CAN(G, k)
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Bounds from Complete Graphs

For a graph G, the size of a maximum clique, denoted
w(G), is the largest integer such that

Kw(G) — G
The chromatic number, denoted (&), is the smallest
Integer such that

G — K, (G).

There is a lower bound from maximum clique size

CAN(w(G), k) < CAN(G, k) < CAN(x(G), k),
and an upper a bound from the chromatic number.

Covering Arrays on Graphs: — p.27/4.
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Qualitative Independence Graph

Define the qualitative independence graph (I (n, k) as follows:

e the vertex set is the set of all k-partitions of an n-set
with every class of size at least £,

e and vertices are connected if and only if the partitions
are gualitatively independent.
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Qualitative Independence Graph

Define the qualitative independence graph (I (n, k) as follows:

e the vertex set is the set of all k-partitions of an n-set
with every class of size at least £,

e and vertices are connected if and only if the partitions
are gualitatively independent.

The graph Q1(4,2):

12|34

14]23 13(24

By construction, CAN(QI(n, k), k) < n.

Covering Arrays on Graphs: — p.29/4.
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The Graph Q1(5, 2)

12|345

Interesting facts

134125 L /| NU T\ 145|23

about this graph
12 A - o V(QI(5,2)) =10
% e w(QI(5,2) =4
11111 -\ i o x\(QI(5,2)) =5

CAN(QI(5,2),2) =5 < 6 = CAN(5,2).
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Why Is Q1(n, k) Interesting?

Theorem (Meagher and Stevens - 2002) An r-cligue
in Q1(n, k) corresponds to a covering array with
r rows, n-columns on a k alphabet.

Theorem (Meagher and Stevens - 2002) A covering
array on a graph G with n columns and alpha-
bet k exists if and only if there is a graph homo-
morphism

G — QI(n, k).
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Facts for )I(n,2)

Theorem (Kleitman and Spencer, Katona - 1973)

w(QI(n,2)) = (Ln J_—11>

Theorem (Meagher and Stevens - 2002)

X(QI(n,2)) = B (fnwﬂ

Theorem (Meagher and Stevens - 2002) If CAN (G, 2) < n,
then there exists a uniform binary covering array on ¢
with n columns. (Each row has [7]| O'sand | 7] 1's.)

Covering Arrays on Graphs: — p.32/4.
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e Vertices are uniform k-partitions of a k?-set.

e |t is a vertex-transitive graph.

e It is an arc-transitive graph.
An independent set in a graph is a set of vertices in
which no two are adjacent.

e The set of all partitions with 1 and 2 in the same class
IS an independent set.
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Facts for Q1 (k?, k)

e Vertices are uniform k-partitions of a k?-set.
e |t is a vertex-transitive graph.

e It is an arc-transitive graph.

An independent set in a graph is a set of vertices in
which no two are adjacent.

e The set of all partitions with 1 and 2 in the same class
IS an independent set.

123456789 127]458(369

This is a partially 2-intersecting k-partition system on a k?-set.

Covering Arrays on Graphs: — p.33/4.
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Results from Independent Set

Chromatic number is bounded,
kE+1
X(QI(k* k) < ( ) )

e Assign a unigue colour to each distinct pair
a,be{1,2,...k+1}.

e For avertex vin QI(k* k), if a and b are in the
same class of the partition corresponding to
v, assign v the colour given to the pair a and b.

Conjecture (Meagher 2005) x (QI(k*, k)) = (k_QH)
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Maximum Independent sets

We have two equivalent questions:

e |s this set the largest independent set In
QI(k*, k)?
(Is a(G) = (]7{—_22) (k—ll)! (k _k) (k Z%) o (ll:) ?)
e |s the largest partially 2-intersecting
k-partition system on a k*-set?

To solve this, we use algebraic graph theory!



Eigenvalues of Graphs

The adjacency matrix of a graph G on n vertices (labeled
1,2,...,n)isan

e n X n, 01-matrix denoted A(G)
e 1inthe ¢, 5 position if vertices ¢ and 5 are adjacent

e O if vertices : and 5 are not adjacent.
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Eigenvalues of Graphs

The adjacency matrix of a graph G on n vertices (labeled
1,2,...,n)isan

e n X n, 01-matrix denoted A(G)
e 1inthe ¢, 5 position if vertices ¢ and 5 are adjacent

e O if vertices : and 5 are not adjacent.

The eigenvalues of G are the eigenvalues of A(G).

Covering Arrays on Graphs: — p.36/4.
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Why Eigenvalues of Graphs?

If every vertex in a graph has degree d, then d Is
the largest eigenvalue. The corresponding
eigenvector Is the all ones vector.

Ratio Bound Let G be a vertex transitive
graph on n vertices with largest eigenvalue
d and least eigenvalue 7. Then

n

o(G) <

RIS
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Equitable Partitions

Equitable partition for a graph G:
e partition = of V(G) with cells C4, Cy, ..., C,,

o the number of vertices in C; adjacent to some
v € C; Is a constant b;;, independent of v.

Quotient graph of G over 7, G/« is the directed
graph with

e 1 cells C; as its vertices
e b;; arcs between the ;"and ;" cells.

The eigenvalues of G /7 are a subset of the
eigenvalues of G.



Equitable Partition on Q1(k?, k)

o Let F be the set of all uniform k-partitions of k2 with 1
and 2 in the same class
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and 2 in the same class

e The partition 7 = {F,V(QI(k* k))\F} is an equitable
partition.

The adjacency matrix of the quotient graph QI(k? k)/x is

0 k-1
k-1 tk—1 __ kb1
k k! Tk

Covering Arrays on Graphs: — p.39/4.



Equitable Partition on Q1(k?, k)

o Let F be the set of all uniform k-partitions of k2 with 1
and 2 in the same class

e The partition 7 = {F,V(QI(k* k))\F} is an equitable
partition.

The adjacency matrix of the quotient graph QI(k? k)/x is

0 k-1
k-1 tk—1 __ kb1
k k! Tk

For QI(k* k) and QI(k?, k)/m, the largest eigenvalue is

(k!5 =1 and the smallest eigenvalue is ‘(’“Zk_l.

Covering Arrays on Graphs: — p.39/4.
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Advanced Facts for QI (k*, k)

Using the eigenvalues with the ratio bound,
&(Q](kza k)) = (k—ll)! (12:22) (k l;k) T (Z)

The set of all partitions with 1 and 2 in the same
class is a maximum independent set in QI (k% k).

Theorem (Godsil and Meagher - 2005) Let
n = k* and F be a partially 2-intersecting
uniform  k-partition  system. Then,

FI < D) O E) ()
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Towards an EKR Theorem

We also want to prove that these are the only
maximum independent sets.

Theorem (Godsil and Newman - 2003) For £ = 3 all
maximum independent sets in Q1(9, 3)

are trivially partially 2-intersecting uniform par-
tition systems.

Their proof used the following fact:

Theorem (Mathon and Rosa - 1985) The graph Q1(9, 3)
IS a single graph in an association scheme.
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Current Work

e Mathon and Rosa’s association scheme can
be extended.

e This extension corresponds to the commutant
of a set of permutation matrices.

e In general the extension is a coherent
configuration not an association scheme.

e These permutation matrices are
representations of the symmetric group acting
on cosets for a wreath product

e \We do have an association scheme when this
representation is multiplicity-free.

Covering Arrays on Graphs: — p.42/4.
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