Covering Arrays on Graphs:

Extremal Partition Theory and Qualitative Independence Graphs

Karen Meagher

kmeagher@math.uwaterloo.ca

University of Waterloo

You have installed a new light switch to each of four rooms in your house and you want to test that you did it right.

You have installed a new light switch to each of four rooms in your house and you want to test that you did it right.

You have installed a new light switch to each of four rooms in your house and you want to test that you did it right.

room \ test:	1	2	3	4	5
bedroom	0	0	1	1	1
hall	0	1	0	1	1
bathroom	0	1	1	0	1
kitchen	0	1	1	1	0

You have installed a new light switch to each of four rooms in your house and you want to test that you did it right.

room \ test:	1	2	3	4	5
bedroom	0	0	1	1	1
hall	0	1	0	1	1
bathroom	0	1	1	0	1
kitchen	0	1	1	1	0

You have installed a new light switch to each of four rooms in your house and you want to test that you did it right.

room \ test:	1	2	3	4	5
bedroom	0	0	1	1	1
hall	0	1	0	1	1
bathroom	0	1	1	0	1
kitchen	0	1	1	1	0

You have installed a new light switch to each of four rooms in your house and you want to test that you did it right.

room \ test:	1	2	3	4	5
bedroom	0	0	1	1	1
hall	0	1	0	1	1
bathroom	0	1	1	0	1
kitchen	0	1	1	1	0

You have installed a new light switch to each of four rooms in your house and you want to test that you did it right.

room \ test:	1	2	3	4	5
bedroom	0	0	1	1	1
hall	0	1	0	1	1
bathroom	0	1	1	0	1
kitchen	0	1	1	1	0

Covering Arrays

A covering array CA(n, r, k) is an $r \times n$ array with:

- entries from \mathbb{Z}_k (k is the alphabet),
- and between any two rows all pairs from \mathbb{Z}_k occur. (This property is called qualitative independence.)
- CAN(r,k) is the fewest number of columns such that a covering array with r rows on a k alphabet exists.

Covering Arrays

A covering array CA(n, r, k) is an $r \times n$ array with:

- entries from \mathbb{Z}_k (k is the alphabet),
- and between any two rows all pairs from \mathbb{Z}_k occur. (This property is called qualitative independence.)
- CAN(r,k) is the fewest number of columns such that a covering array with r rows on a k alphabet exists.

This is a CA(5, 4, 2)

0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
0 0 0	1	1	1	0

Two Areas of Covering Arrays

- Extremal Set Theory
 - * Sperner's Theorem and the Erdős-Ko-Rado Theorem can be used for binary covering arrays.
 - * Extend such results to partition systems.

Two Areas of Covering Arrays

- Extremal Set Theory
 - * Sperner's Theorem and the Erdős-Ko-Rado Theorem can be used for binary covering arrays.
 - * Extend such results to partition systems.
- Graph Theory
 - * Add a graph structure to covering arrays.
 - * Use methods from algebraic graph theory.

A 01-vector can be viewed as the characteristic vector of a set.

A 01-vector can be viewed as the characteristic vector of a set.

00111 and 01011 and 00110

A 01-vector can be viewed as the characteristic vector of a set.

00111	and	01011	and	00110
1 2 3 4 5		1 2 3 4 5		1 2 3 4 5

A 01-vector can be viewed as the characteristic vector of a set.

00111	and	01011	and	00110
1 2 3 4 5		1 2 3 4 5	5	1 2 3 4 5
{3, 4, 5}	and	{2, 4,	5} and	{3, 4}

A 01-vector can be viewed as the characteristic vector of a set.

• A set system is a collection of subsets of an *n*-set.

A 01-vector can be viewed as the characteristic vector of a set.

- A set system is a collection of subsets of an n-set.
- The rows of a binary covering array correspond to a set system.

A set system \mathcal{F} is qualitatively independent if for distinct sets $A, B \in \mathcal{F}$,

$$A \cap B \neq \emptyset$$
 $\overline{A} \cap B \neq \emptyset$ $A \cap \overline{B} \neq \emptyset$ $\overline{A} \cap \overline{B} \neq \emptyset$.

A set system \mathcal{F} is qualitatively independent if for distinct sets $A, B \in \mathcal{F}$,

$$A\cap B\neq\emptyset\quad \overline{A}\cap B\neq\emptyset\quad A\cap \overline{B}\neq\emptyset\quad \overline{A}\cap \overline{B}\neq\emptyset.$$

A set system \mathcal{F} is qualitatively independent if for distinct sets $A, B \in \mathcal{F}$,

$$A\cap B\neq\emptyset\quad \overline{A}\cap B\neq\emptyset\quad A\cap \overline{B}\neq\emptyset\quad \overline{A}\cap \overline{B}\neq\emptyset.$$

If sets A and B are qualitatively independent, knowing $i \in A$ gives no information if $i \in B$.

Sperner Set Systems

• A k-set system is a set system with subsets of size k.

Sperner Set Systems

- A k-set system is a set system with subsets of size k.
- A set system \mathcal{F} is a Sperner system if for any two distinct sets $A, B \in \mathcal{F}$, $A \not\subseteq B$.(incomparable)

Sperner Set Systems

- A k-set system is a set system with subsets of size k.
- A set system \mathcal{F} is a Sperner system if for any two distinct sets $A, B \in \mathcal{F}$, $A \not\subseteq B$.(incomparable)

Sperner's Theorem

Theorem (Sperner - 1928) Let $\mathcal F$ be a Sperner set system over an n-set. Then

- 1. $|\mathcal{F}| \leq \binom{n}{\lfloor n/2 \rfloor}$.
- 2. Equality holds if and only if \mathcal{F} is the system of all sets of size $\lfloor n/2 \rfloor$ or $\lceil n/2 \rceil$.

Sperner's Theorem

Theorem (Sperner - 1928) Let \mathcal{F} be a Sperner set system over an n-set. Then

- 1. $|\mathcal{F}| \leq \binom{n}{\lfloor n/2 \rfloor}$.
- 2. Equality holds if and only if \mathcal{F} is the system of all sets of size $\lfloor n/2 \rfloor$ or $\lceil n/2 \rceil$.

If \mathcal{F} is a qualitatively independent set system on an n-set,

$$\mathcal{F}^* = \{A, \overline{A} : A \in \mathcal{F}\}$$

is a Sperner set system. In particular,

$$|\mathcal{F}| \le \frac{1}{2} \binom{n}{|n/2|}.$$

Intersecting Set Systems

• A *t*-intersecting *k*-set system is a *k*-set system in which any two sets have intersection of size at least *t*.

Intersecting Set Systems

- A t-intersecting k-set system is a k-set system in which any two sets have intersection of size at least t.
- A trivially t-intersecting k-set system is the collection of all k-sets which contain a given t-set.

Intersecting Set Systems

- A t-intersecting k-set system is a k-set system in which any two sets have intersection of size at least t.
- A trivially t-intersecting k-set system is the collection of all k-sets which contain a given t-set.

A trivially t-intersecting k-set system on an n-set has cardinality

$$\binom{n-t}{k-t}$$
.

Erdős-Ko-Rado Theorem

Theorem (Erdős, Ko and Rado - 1961) For n sufficiently large, if \mathcal{F} is a t-intersecting k-set system on an n-set then

- 1. $|\mathcal{F}| \leq \binom{n-t}{k-t}$,
- 2. and \mathcal{F} meets this bound only if it is a trivially tintersecting set system.

Erdős-Ko-Rado Theorem

Theorem (Erdős, Ko and Rado - 1961) For n sufficiently large, if \mathcal{F} is a t-intersecting k-set system on an n-set then

- 1. $|\mathcal{F}| \leq \binom{n-t}{k-t}$,
- 2. and \mathcal{F} meets this bound only if it is a trivially t-intersecting set system.
- Wilson 1984 For $n \ge (t+1)(k-t+1)$ the largest t-intersecting set system is a trivially t-intersecting set system.
- Ahlswede and Khachatrian 1997 Gave the maximal t-intersecting k-set system for all values of n.

Theorem (Kleitman and Spencer, Katona - 1973)

$$CAN(r,2) = \min \left\{ n : \binom{n-1}{\lfloor n/2 \rfloor - 1} \ge r \right\}.$$

Theorem (Kleitman and Spencer, Katona - 1973)

$$CAN(r,2) = \min \left\{ n : {n-1 \choose |n/2|-1} \ge r \right\}.$$

 \mathcal{F} is a qualitatively independent set system on an n-set.

Theorem (Kleitman and Spencer, Katona - 1973)

$$CAN(r,2) = \min \left\{ n : {n-1 \choose \lfloor n/2 \rfloor - 1} \ge r \right\}.$$

 \mathcal{F} is a qualitatively independent set system on an n-set. Assume n is even.

- By Sperner's Theorem $|\mathcal{F}| \leq \frac{1}{2} \binom{n}{\frac{n}{2}} = \binom{n-1}{\frac{n}{2}-1}$.
- The set of all $\frac{n}{2}$ -sets that contain 1 meets this bound.

Theorem (Kleitman and Spencer, Katona - 1973)

$$CAN(r,2) = \min \left\{ n : \binom{n-1}{\lfloor n/2 \rfloor - 1} \ge r \right\}.$$

 \mathcal{F} is a qualitatively independent set system on an n-set. Assume n is odd.

- If a set in \mathcal{F} is larger than $\frac{n-1}{2}$, replace it with its complement (this makes n sufficiently large).
- \mathcal{F} is intersecting, by EKR, $|\mathcal{F}| \leq \binom{n-1}{\frac{n-1}{2}}$.
- The set of all $\frac{n-1}{2}$ -sets that contain 1 meets this bound.

Larger Alphabets

The rows of a covering array with a k-alphabet and n columns determine k-partitions of an n-set.

The rows of a covering array with a k-alphabet and n columns determine k-partitions of an n-set.

000111222

012012012

The rows of a covering array with a k-alphabet and ncolumns determine k-partitions of an n-set.

000111222

012012012

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

The rows of a covering array with a k-alphabet and n columns determine k-partitions of an n-set.

000111222

012012012

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

123|456|789

147|258|369

The rows of a covering array with a k-alphabet and n columns determine k-partitions of an n-set.

 000111222
 012012012

 123456789
 123456789

 123|456|789
 147|258|369

 A k-partition of an n-set is a set of k disjoint non-empty subsets (called classes) of the n-set whose union is the n-set.

The rows of a covering array with a k-alphabet and n columns determine k-partitions of an n-set.

```
      000111222
      012012012

      123456789
      123456789

      123|456|789
      147|258|369
```

- A k-partition of an n-set is a set of k disjoint non-empty subsets (called classes) of the n-set whose union is the n-set.
- A k-partition of n-set is uniform if each class is size n/k.

Qualitative Independence

Partitions $P = \{P_1, \dots, P_k\}$ and $Q = \{Q_1, \dots, Q_k\}$ are qualitatively independent if $P_i \cap Q_j \neq \emptyset$ for all i and j.

Qualitative Independence

Partitions $P = \{P_1, \dots, P_k\}$ and $Q = \{Q_1, \dots, Q_k\}$ are qualitatively independent if $P_i \cap Q_j \neq \emptyset$ for all i and j.

For two k-partitions to be qualitatively independent, both need to have all classes of size at least k.

Qualitative Independence

Partitions $P = \{P_1, \dots, P_k\}$ and $Q = \{Q_1, \dots, Q_k\}$ are qualitatively independent if $P_i \cap Q_j \neq \emptyset$ for all i and j.

For two k-partitions to be qualitatively independent, both need to have all classes of size at least k.

Can we extend Sperner's Theorem and the Erdős-Ko-Rado Theorem to partitions?

Sperner Partition Systems

A k-partition system \mathcal{P} is a Sperner partition system if for all distinct $P,Q\in\mathcal{P}$, with $P=\{P_1,\ldots,P_k\}$ and $Q=\{Q_1,\ldots,Q_k\}$,

$$P_i \not\subseteq Q_j$$
 for all $i, j \in \{1, \dots, k\}$.

Sperner Partition Systems

A k-partition system \mathcal{P} is a Sperner partition system if for all distinct $P,Q\in\mathcal{P}$, with $P=\{P_1,\ldots,P_k\}$ and $Q=\{Q_1,\ldots,Q_k\}$,

$$P_i \not\subseteq Q_j$$
 for all $i, j \in \{1, \dots, k\}$.

 If a partition system is qualitatively independent, then it is also a Sperner partition system.

Sperner Partition Systems

A k-partition system \mathcal{P} is a Sperner partition system if for all distinct $P,Q\in\mathcal{P}$, with $P=\{P_1,\ldots,P_k\}$ and $Q=\{Q_1,\ldots,Q_k\}$,

$$P_i \not\subseteq Q_j$$
 for all $i, j \in \{1, \dots, k\}$.

- If a partition system is qualitatively independent, then it is also a Sperner partition system.
- A Sperner partition system can be considered as a resolvable Sperner set system.

Sperner's Theorem for Partitions

Theorem (Meagher, Moura and Stevens - 2005) Let \mathcal{F} be a Sperner k-partition system on an n-set.

- If n = ck, then
 - 1. $|\mathcal{F}| \leq \frac{1}{k} \binom{n}{c} = \binom{ck-1}{c-1}$.
 - 2. Only uniform systems meet this bound.
- If n = ck + r with $0 \le r < k$, then

$$|\mathcal{F}| \le \frac{1}{(k-r) + \frac{r(c+1)}{n-c}} \binom{n}{c}.$$

Intersecting Partitions

 Partitions are intersecting if they have at least one class in common.

Intersecting Partitions

- Partitions are intersecting if they have at least one class in common.
- A trivially intersecting partition system is a partition system with all the partitions that contain a given class.

Intersecting Partitions

- Partitions are intersecting if they have at least one class in common.
- A trivially intersecting partition system is a partition system with all the partitions that contain a given class.

Theorem (P. L. Erdős and Székely - 2000) For n sufficiently large, the largest intersecting k-partition system on an n-set is a trivially intersecting partition system.

Intersecting Uniform Partitions

• For n=ck, a trivially intersecting uniform k-partition system is a uniform k-partition system on an n-set with all the uniform k-partitions that contain a given class.

Intersecting Uniform Partitions

- For n=ck, a trivially intersecting uniform k-partition system is a uniform k-partition system on an n-set with all the uniform k-partitions that contain a given class.
- If n = ck, a trivially intersecting uniform k-partition system on an n-set has size

$$\frac{1}{(k-1)!} \binom{ck-c}{c} \binom{ck-2c}{c} \cdots \binom{c}{c}.$$

Erdős-Ko-Rado for Partitions

Theorem (Meagher and Moura - 2004) Let $k, c \ge 1$ and n = kc. Let \mathcal{F} be an intersecting uniform k-partition system on an n-set. Then,

1.
$$|\mathcal{F}| \leq \frac{1}{(k-1)!} {\binom{ck-c}{c}} {\binom{ck-2c}{c}} \cdots {\binom{c}{c}}$$
.

2. If \mathcal{F} meets this bound, then \mathcal{F} is a trivially intersecting uniform partition system.

Partially Intersecting Partitions

• Partitions $P = \{P_1, \dots, P_k\}$ and $Q = \{Q_1, \dots, Q_k\}$ are t-partially intersecting if there exist an i and a j so that

$$|P_i \cap Q_j| \ge t$$
.

Partially Intersecting Partitions

• Partitions $P = \{P_1, \dots, P_k\}$ and $Q = \{Q_1, \dots, Q_k\}$ are t-partially intersecting if there exist an i and a j so that

$$|P_i \cap Q_j| \ge t$$
.

 A trivially partially t-intersecting partition system is a partition system with all partitions that have a class that contains a given t-set.

Partially Intersecting Partitions

• Partitions $P = \{P_1, \dots, P_k\}$ and $Q = \{Q_1, \dots, Q_k\}$ are t-partially intersecting if there exist an i and a j so that

$$|P_i \cap Q_j| \ge t$$
.

 A trivially partially t-intersecting partition system is a partition system with all partitions that have a class that contains a given t-set.

Conjecture (Czabarka - 2000) For some values of n the largest partially 2-intersecting k-partition system on an n-set is a trivially intersecting partition system.

Uniform Partitions

 A trivially partially t-intersecting uniform partition system is a uniform partition system with all partitions that have a class that contains a given t-set.

Uniform Partitions

 A trivially partially t-intersecting uniform partition system is a uniform partition system with all partitions that have a class that contains a given t-set.

If n=ck, a trivially partially t-intersecting uniform k-partition system on an n-set has size

$${ck-t \choose c-t} \frac{1}{(k-1)!} {ck-c \choose c} {ck-2c \choose c} \cdots {c \choose c}.$$

EKR for Partitions - version 2

Conjecture (Meagher and Moura - 2005) Let n=ck and \mathcal{F} be a partially t-intersecting uniform partition system. Then,

1.
$$|\mathcal{F}| \leq {ck-t \choose c-t} \frac{1}{(k-1)!} {ck-c \choose c} {ck-2c \choose c} \cdots {c \choose c}$$
.

2. \mathcal{F} meets this bound only if it is a trivially partially t-intersecting uniform k-partition system.

EKR for Partitions - version 2

Conjecture (Meagher and Moura - 2005) Let n=ck and \mathcal{F} be a partially t-intersecting uniform partition system. Then,

1.
$$|\mathcal{F}| \leq {ck-t \choose c-t} \frac{1}{(k-1)!} {ck-c \choose c} {ck-2c \choose c} \cdots {c \choose c}$$
.

2. \mathcal{F} meets this bound only if it is a trivially partially t-intersecting uniform k-partition system.

We have partial results for several values of n, k and t.

 How can we use Sperner's Theorem and the Erdős-Ko-Rado Theorem for partitions to get bounds for covering arrays with higher alphabets?

- How can we use Sperner's Theorem and the Erdős-Ko-Rado Theorem for partitions to get bounds for covering arrays with higher alphabets?
- Give a complete Erdős-Ko-Rado Theorem for t-intersecting partitions.

- How can we use Sperner's Theorem and the Erdős-Ko-Rado Theorem for partitions to get bounds for covering arrays with higher alphabets?
- Give a complete Erdős-Ko-Rado Theorem for t-intersecting partitions.
- Prove an Erdős-Ko-Rado type result for partially t-intersecting partitions.

- How can we use Sperner's Theorem and the Erdős-Ko-Rado Theorem for partitions to get bounds for covering arrays with higher alphabets?
- Give a complete Erdős-Ko-Rado Theorem for t-intersecting partitions.
- Prove an Erdős-Ko-Rado type result for partially t-intersecting partitions.
- Develop a theory of extremal partition systems

Adding a Graph Structure

Added light switches to 4 rooms and you want to test the system quickly.

Adding a Graph Structure

Added light switches to 4 rooms and you want to test the system quickly.

You plan on using a covering array, but you know that there can be no problems between the wiring in the bedroom and the kitchen.

Adding a Graph Structure

Added light switches to 4 rooms and you want to test the system quickly.

You plan on using a covering array, but you know that there can be no problems between the wiring in the bedroom and the kitchen.

room \ test:	1	2	3	4
bedroom	0	0	1	1
hall	0	1	0	1
bathroom	0	1	1	0
kitchen	0	0	1	1

- an $r \times n$ array where r = |V(G)|,
- with entries from \mathbb{Z}_k (k is the alphabet),
- rows for adjacent vertices are qualitatively independent.
- CAN(G,k) is the fewest number of columns such that a covering array on the graph with a k-alphabet exists.

- an $r \times n$ array where r = |V(G)|,
- with entries from \mathbb{Z}_k (k is the alphabet),
- rows for adjacent vertices are qualitatively independent.
- CAN(G,k) is the fewest number of columns such that a covering array on the graph with a k-alphabet exists.

1	0	0	1	1	1
2	0	1	0	1	1
3	0	1	1	0	1
4	0	0	1	1	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0

- an $r \times n$ array where r = |V(G)|,
- with entries from \mathbb{Z}_k (k is the alphabet),
- rows for adjacent vertices are qualitatively independent.
- CAN(G,k) is the fewest number of columns such that a covering array on the graph with a k-alphabet exists.

1	0	0	1	1	1
2	0	1	0	1	1
3	0	1	1	0	1
4	0	0	1	1	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0

- an $r \times n$ array where r = |V(G)|,
- with entries from \mathbb{Z}_k (k is the alphabet),
- rows for adjacent vertices are qualitatively independent.
- CAN(G,k) is the fewest number of columns such that a covering array on the graph with a k-alphabet exists.

1	0	0	1	1	1
2	0	1	0	1	1
3	0	1	1	0	1
4	0	0	1	1	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0

Covering Arrays on Graphs

A covering array on a graph G, denoted CA(n, G, k), is:

- an $r \times n$ array where r = |V(G)|,
- with entries from \mathbb{Z}_k (k is the alphabet),
- rows for adjacent vertices are qualitatively independent.
- CAN(G,k) is the fewest number of columns such that a covering array on the graph with a k-alphabet exists.

1	0	0	1	1	1
2	0	1	0	1	1
3	0	1	1	0	1
4	0	0	1	1	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0

Covering Arrays on Graphs

A covering array on a graph G, denoted CA(n, G, k), is:

- an $r \times n$ array where r = |V(G)|,
- with entries from \mathbb{Z}_k (k is the alphabet),
- rows for adjacent vertices are qualitatively independent.
- CAN(G,k) is the fewest number of columns such that a covering array on the graph with a k-alphabet exists.

1	0	0	1	1	1
2	0	1	0	1	1
3	0	1	1	0	1
4	0	0	1	1	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0

Covering Arrays on Graphs

A covering array on a graph G, denoted CA(n, G, k), is:

- an $r \times n$ array where r = |V(G)|,
- with entries from \mathbb{Z}_k (k is the alphabet),
- rows for adjacent vertices are qualitatively independent.
- CAN(G,k) is the fewest number of columns such that a covering array on the graph with a k-alphabet exists.

1	0	0	1	1	1
2	0	1	0	1	1
3	0	1	1	0	1
4	0	0	1	1	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0

Background

A complete graph, denoted K_r , is the graph with r vertices and distinct vertices are adjacent.

Background

A complete graph, denoted K_r , is the graph with r vertices and distinct vertices are adjacent.

• Standard covering arrays correspond to covering arrays on complete graphs, a $CA(n,K_r,k)$ is a CA(n,r,k).

Background

A complete graph, denoted K_r , is the graph with r vertices and distinct vertices are adjacent.

- Standard covering arrays correspond to covering arrays on complete graphs, a $CA(n,K_r,k)$ is a CA(n,r,k).
- Bshouty and Serroussi (1988) proved that finding CAN(G,2) for any graph is NP-hard.

Graph Homomorphisms

A homomorphism, $f: G \rightarrow H$ is

- an edge preserving map between the vertices two graphs
- if vertices $u, v \in G$ are adjacent then vertices $f(u), f(v) \in H$ are also adjacent

Graph Homomorphisms

A homomorphism, $f:G\to H$ is

- an edge preserving map between the vertices two graphs
- if vertices $u, v \in G$ are adjacent then vertices $f(u), f(v) \in H$ are also adjacent

For a graph G, the size of a maximum clique, denoted $\omega(G)$, is the largest integer such that

$$K_{\omega(G)} \to G$$

For a graph G, the size of a maximum clique, denoted $\omega(G)$, is the largest integer such that

$$K_{\omega(G)} \to G$$

The chromatic number, denoted $\chi(G)$, is the smallest integer such that

$$G \to K_{\chi}(G)$$
.

For a graph G, the size of a maximum clique, denoted $\omega(G)$, is the largest integer such that

$$K_{\omega(G)} \to G$$

The chromatic number, denoted $\chi(G)$, is the smallest integer such that

$$G \to K_{\chi}(G)$$
.

There is a lower bound from maximum clique size

$$CAN(\omega(G), k) \leq CAN(G, k)$$

For a graph G, the size of a maximum clique, denoted $\omega(G)$, is the largest integer such that

$$K_{\omega(G)} \to G$$

The chromatic number, denoted $\chi(G)$, is the smallest integer such that

$$G \to K_{\chi}(G)$$
.

There is a lower bound from maximum clique size

$$CAN(\omega(G), k) \leq CAN(G, k) \leq CAN(\chi(G), k),$$

and an upper a bound from the chromatic number.

red	0	0	1	1	1
blue	0	1	0	1	1
green	0	1	1	0	1
yellow	0	1	1	1	0

1	0	0	1	1	1
2	0	1	0	1	1
3	0	1	1	0	1
4	0	0	1	1	1
5	0	1	1	0	1
6	0	1	0	1	1
7	0	1	1	1	0

red	0	0	1	1	1
blue	0	1	0	1	1
green	0	1	1	0	1
yellow	0	1	1	1	0

Qualitative Independence Graph

Define the qualitative independence graph QI(n,k) as follows:

- the vertex set is the set of all k-partitions of an n-set with every class of size at least k,
- and vertices are connected if and only if the partitions are qualitatively independent.

Qualitative Independence Graph

Define the qualitative independence graph QI(n,k) as follows:

- the vertex set is the set of all k-partitions of an n-set with every class of size at least k,
- and vertices are connected if and only if the partitions are qualitatively independent.

The graph QI(4,2):

Qualitative Independence Graph

Define the qualitative independence graph QI(n,k) as follows:

- the vertex set is the set of all k-partitions of an n-set with every class of size at least k,
- and vertices are connected if and only if the partitions are qualitatively independent.

The graph QI(4,2):

By construction, $CAN(QI(n,k),k) \leq n$.

The Graph QI(5,2)

Interesting facts about this graph

•
$$V(QI(5,2)) = 10$$

•
$$\omega(QI(5,2)) = 4$$

•
$$\chi(QI(5,2)) = 5$$

The Graph QI(5,2)

Interesting facts about this graph

•
$$V(QI(5,2)) = 10$$

•
$$\omega(QI(5,2)) = 4$$

•
$$\chi(QI(5,2)) = 5$$

$$CAN(QI(5,2),2) = 5$$

The Graph QI(5,2)

Interesting facts about this graph

•
$$V(QI(5,2)) = 10$$

•
$$\omega(QI(5,2)) = 4$$

•
$$\chi(QI(5,2)) = 5$$

$$CAN(QI(5,2),2) = 5 < 6 = CAN(5,2).$$

Why is QI(n,k) Interesting?

Theorem (Meagher and Stevens - 2002) An r-clique in QI(n,k) corresponds to a covering array with r rows, n-columns on a k alphabet.

Why is QI(n,k) Interesting?

Theorem (Meagher and Stevens - 2002) An r-clique in QI(n,k) corresponds to a covering array with r rows, n-columns on a k alphabet.

Theorem (Meagher and Stevens - 2002) A covering array on a graph G with n columns and alphabet k exists if and only if there is a graph homomorphism

$$G \to QI(n,k)$$
.

Facts for QI(n,2)

Theorem (Kleitman and Spencer, Katona - 1973)

$$\omega(QI(n,2)) = \binom{n-1}{\lfloor \frac{n}{2} \rfloor - 1}$$

Facts for QI(n,2)

Theorem (Kleitman and Spencer, Katona - 1973)

$$\omega(QI(n,2)) = \binom{n-1}{\lfloor \frac{n}{2} \rfloor - 1}$$

Theorem (Meagher and Stevens - 2002)

$$\chi(QI(n,2)) = \left\lceil \frac{1}{2} \binom{n}{\left\lceil \frac{n}{2} \right\rceil} \right\rceil$$

Facts for QI(n,2)

Theorem (Kleitman and Spencer, Katona - 1973)

$$\omega(QI(n,2)) = \binom{n-1}{\lfloor \frac{n}{2} \rfloor - 1}$$

Theorem (Meagher and Stevens - 2002)

$$\chi(QI(n,2)) = \left\lceil \frac{1}{2} \binom{n}{\left\lceil \frac{n}{2} \right\rceil} \right\rceil$$

Theorem (Meagher and Stevens - 2002) If $CAN(G,2) \leq n$, then there exists a uniform binary covering array on G with n columns. (Each row has $\lceil \frac{n}{2} \rceil$ 0's and $\lfloor \frac{n}{2} \rfloor$ 1's.)

• Vertices are uniform k-partitions of a k^2 -set.

- Vertices are uniform k-partitions of a k^2 -set.
- It is a vertex-transitive graph.

- Vertices are uniform k-partitions of a k^2 -set.
- It is a vertex-transitive graph.
- It is an arc-transitive graph.

- Vertices are uniform k-partitions of a k^2 -set.
- It is a vertex-transitive graph.
- It is an arc-transitive graph.

An independent set in a graph is a set of vertices in which no two are adjacent.

- Vertices are uniform k-partitions of a k^2 -set.
- It is a vertex-transitive graph.
- It is an arc-transitive graph.
 - An independent set in a graph is a set of vertices in which no two are adjacent.
- The set of all partitions with 1 and 2 in the same class is an independent set.

- Vertices are uniform k-partitions of a k^2 -set.
- It is a vertex-transitive graph.
- It is an arc-transitive graph.

An independent set in a graph is a set of vertices in which no two are adjacent.

 The set of all partitions with 1 and 2 in the same class is an independent set.

- Vertices are uniform k-partitions of a k^2 -set.
- It is a vertex-transitive graph.
- It is an arc-transitive graph.

An independent set in a graph is a set of vertices in which no two are adjacent.

 The set of all partitions with 1 and 2 in the same class is an independent set.

This is a partially 2-intersecting k-partition system on a k^2 -set.

Results from Independent Set

Chromatic number is bounded,

$$\chi(QI(k^2,k)) \le \binom{k+1}{2}.$$

Results from Independent Set

Chromatic number is bounded,

$$\chi(QI(k^2,k)) \le {k+1 \choose 2}.$$

• Assign a unique colour to each distinct pair $a, b \in \{1, 2, \dots k + 1\}$.

Results from Independent Set

Chromatic number is bounded,

$$\chi(QI(k^2,k)) \le \binom{k+1}{2}.$$

- Assign a unique colour to each distinct pair $a, b \in \{1, 2, \dots k + 1\}$.
- For a vertex v in $QI(k^2,k)$, if a and b are in the same class of the partition corresponding to v, assign v the colour given to the pair a and b.

Results from Independent Set

Chromatic number is bounded,

$$\chi(QI(k^2,k)) \le \binom{k+1}{2}.$$

- Assign a unique colour to each distinct pair $a, b \in \{1, 2, \dots k + 1\}$.
- For a vertex v in $QI(k^2, k)$, if a and b are in the same class of the partition corresponding to v, assign v the colour given to the pair a and b.

Conjecture (Meagher 2005)
$$\chi(QI(k^2,k)) = {k+1 \choose 2}$$
.

Maximum Independent sets

We have two equivalent questions:

• Is this set the largest independent set in $QI(k^2, k)$?

(Is
$$\alpha(G) = \binom{k^2-2}{k-2} \frac{1}{(k-1)!} \binom{k^2-k}{k} \binom{k^2-2k}{k} \cdots \binom{k}{k}$$
?)

Maximum Independent sets

We have two equivalent questions:

• Is this set the largest independent set in $QI(k^2,k)$?

(Is $\alpha(G)=\binom{k^2-2}{k-2}\frac{1}{(k-1)!}\binom{k^2-k}{k}\binom{k^2-2k}{k}\cdots\binom{k}{k}$?)

• Is the largest partially 2-intersecting
$$k$$
-partition system on a k^2 -set?

Maximum Independent sets

We have two equivalent questions:

- Is this set the largest independent set in $QI(k^2,k)$?

 (Is $\alpha(G)=\binom{k^2-2}{k-2}\frac{1}{(k-1)!}\binom{k^2-k}{k}\binom{k^2-2k}{k}\cdots\binom{k}{k}$?)
- Is the largest partially 2-intersecting k-partition system on a k^2 -set?

To solve this, we use algebraic graph theory!

Eigenvalues of Graphs

The adjacency matrix of a graph G on n vertices (labeled $1, 2, \ldots, n$) is an

- n × n, 01-matrix denoted A(G)
- 1 in the i, j position if vertices i and j are adjacent
- 0 if vertices i and j are not adjacent.

Eigenvalues of Graphs

The adjacency matrix of a graph G on n vertices (labeled $1, 2, \ldots, n$) is an

- $n \times n$, 01-matrix denoted A(G)
- 1 in the i, j position if vertices i and j are adjacent
- 0 if vertices i and j are not adjacent.

The eigenvalues of G are the eigenvalues of A(G).

Why Eigenvalues of Graphs?

If every vertex in a graph has degree d, then d is the largest eigenvalue. The corresponding eigenvector is the all ones vector.

Why Eigenvalues of Graphs?

If every vertex in a graph has degree d, then d is the largest eigenvalue. The corresponding eigenvector is the all ones vector.

Ratio Bound Let G be a vertex transitive graph on n vertices with largest eigenvalue d and least eigenvalue τ . Then

$$\alpha(G) \le \frac{n}{1 - \frac{d}{\tau}}.$$

Equitable Partitions

Equitable partition for a graph G:

- partition π of V(G) with cells C_1, C_2, \ldots, C_r ,
- the number of vertices in C_j adjacent to some $v \in C_i$ is a constant b_{ij} , independent of v.

Equitable Partitions

Equitable partition for a graph G:

- partition π of V(G) with cells C_1, C_2, \ldots, C_r ,
- the number of vertices in C_j adjacent to some $v \in C_i$ is a constant b_{ij} , independent of v.

Quotient graph of G over π , G/π is the directed graph with

- r cells C_i as its vertices
- b_{ij} arcs between the i^{th} and j^{th} cells.

Equitable Partitions

Equitable partition for a graph G:

- partition π of V(G) with cells C_1, C_2, \ldots, C_r ,
- the number of vertices in C_j adjacent to some $v \in C_i$ is a constant b_{ij} , independent of v.

Quotient graph of G over π , G/π is the directed graph with

- r cells C_i as its vertices
- b_{ij} arcs between the i^{th} and j^{th} cells.

The eigenvalues of G/π are a subset of the eigenvalues of G.

• Let \mathcal{F} be the set of all uniform k-partitions of k^2 with 1 and 2 in the same class

- Let \mathcal{F} be the set of all uniform k-partitions of k^2 with 1 and 2 in the same class
- The partition $\pi = \{\mathcal{F}, V(QI(k^2, k)) \backslash \mathcal{F}\}$ is an equitable partition.

- Let \mathcal{F} be the set of all uniform k-partitions of k^2 with 1 and 2 in the same class
- The partition $\pi = \{\mathcal{F}, V(QI(k^2, k)) \backslash \mathcal{F}\}$ is an equitable partition.

The adjacency matrix of the quotient graph $QI(k^2,k)/\pi$ is

$$\begin{pmatrix} 0 & k!^{k-1} \\ \frac{k!^{k-1}}{k} & k!^{k-1} - \frac{k!^{k-1}}{k} \end{pmatrix}$$

- Let \mathcal{F} be the set of all uniform k-partitions of k^2 with 1 and 2 in the same class
- The partition $\pi = \{\mathcal{F}, V(QI(k^2, k)) \backslash \mathcal{F}\}$ is an equitable partition.

The adjacency matrix of the quotient graph $QI(k^2,k)/\pi$ is

$$\begin{pmatrix} 0 & k!^{k-1} \\ \frac{k!^{k-1}}{k} & k!^{k-1} - \frac{k!^{k-1}}{k} \end{pmatrix}$$

For $QI(k^2, k)$ and $QI(k^2, k)/\pi$, the largest eigenvalue is $(k!)^{k-1}$ and the smallest eigenvalue is $\frac{-(k!)^{k-1}}{k}$.

Advanced Facts for $QI(k^2, k)$

Using the eigenvalues with the ratio bound,

$$\alpha(QI(k^2,k)) = \frac{1}{(k-1)!} {k^2-2 \choose k-2} {k^2-k \choose k} \cdots {k \choose k}.$$

Advanced Facts for $QI(k^2, k)$

Using the eigenvalues with the ratio bound,

$$\alpha(QI(k^2,k)) = \frac{1}{(k-1)!} {k^2-2 \choose k-2} {k^2-k \choose k} \cdots {k \choose k}.$$

The set of all partitions with 1 and 2 in the same class is a maximum independent set in $QI(k^2, k)$.

Advanced Facts for $QI(k^2, k)$

Using the eigenvalues with the ratio bound,

$$\alpha(QI(k^2,k)) = \frac{1}{(k-1)!} {k^2-2 \choose k-2} {k^2-k \choose k} \cdots {k \choose k}.$$

The set of all partitions with 1 and 2 in the same class is a maximum independent set in $QI(k^2,k)$.

Theorem (Godsil and Meagher - 2005) Let $n=k^2$ and \mathcal{F} be a partially 2-intersecting uniform k-partition system. Then,

$$|\mathcal{F}| \le {\binom{k^2-2}{k-2}} \frac{1}{(k-1)!} {\binom{k^2-k}{k}} {\binom{k^2-2}{k}} \cdots {\binom{k}{k}}$$

Towards an EKR Theorem

We also want to prove that these are the only maximum independent sets.

Towards an EKR Theorem

We also want to prove that these are the only maximum independent sets.

Theorem (Godsil and Newman - 2003) For k=3 all maximum independent sets in QI(9,3) are trivially partially 2-intersecting uniform partition systems.

Towards an EKR Theorem

We also want to prove that these are the only maximum independent sets.

Theorem (Godsil and Newman - 2003) For k=3 all maximum independent sets in QI(9,3) are trivially partially 2-intersecting uniform partition systems.

Their proof used the following fact:

Theorem (Mathon and Rosa - 1985) The graph QI(9,3) is a single graph in an association scheme.

 Mathon and Rosa's association scheme can be extended.

- Mathon and Rosa's association scheme can be extended.
- This extension corresponds to the commutant of a set of permutation matrices.

- Mathon and Rosa's association scheme can be extended.
- This extension corresponds to the commutant of a set of permutation matrices.
- In general the extension is a coherent configuration not an association scheme.

- Mathon and Rosa's association scheme can be extended.
- This extension corresponds to the commutant of a set of permutation matrices.
- In general the extension is a coherent configuration not an association scheme.
- These permutation matrices are representations of the symmetric group acting on cosets for a wreath product

- Mathon and Rosa's association scheme can be extended.
- This extension corresponds to the commutant of a set of permutation matrices.
- In general the extension is a coherent configuration not an association scheme.
- These permutation matrices are representations of the symmetric group acting on cosets for a wreath product
- We do have an association scheme when this representation is multiplicity-free.