Association Schemes and Set-Partition Systems

Karen Meagher

joint work with Chris Godsil

karen.meagher@uregina.ca

University of Regina

* k-subsets of an n-set and relations are defined by the size of intersection (Johnson Scheme).

- * k-subsets of an n-set and relations are defined by the size of intersection (Johnson Scheme).
- \star Perfect matchings on a 2n-set and relations are defined by the union of two matchings.

- * k-subsets of an n-set and relations are defined by the size of intersection (Johnson Scheme).
- \star Perfect matchings on a 2n-set and relations are defined by the union of two matchings.

- * k-subsets of an n-set and relations are defined by the size of intersection (Johnson Scheme).
- \star Perfect matchings on a 2n-set and relations are defined by the union of two matchings.

 \star A set partition of an n-set is a set of disjoint subsets of the n-set whose union is the n-set.

- \star A set partition of an n-set is a set of disjoint subsets of the n-set whose union is the n-set.
- \star A partition P is called a k-partition if it contains k non-empty cells.

- \star A set partition of an n-set is a set of disjoint subsets of the n-set whose union is the n-set.
- \star A partition P is called a k-partition if it contains k non-empty cells.
- \star If k|n a k-partition with cells of size $\ell=n/k$ is a uniform k-partition of an n-set.

- \star A set partition of an n-set is a set of disjoint subsets of the n-set whose union is the n-set.
- \star A partition P is called a k-partition if it contains k non-empty cells.
- \star If k|n a k-partition with cells of size $\ell=n/k$ is a uniform k-partition of an n-set.

An example of a uniform 3-partition of a 12-set is

$$P = 1234 | 5678 | 9101112.$$

For k-partitions P,Q define the meet table of P and Q to be the $k \times k$ array with the i,j entry $|P_i \cap Q_j|$.

For k-partitions P,Q define the meet table of P and Q to be the $k \times k$ array with the i,j entry $|P_i \cap Q_j|$. For P=123|456|789 and Q=147|256|389,

	Q_1	Q_2	Q_3
P_1	1	1	1
P_2	1	2	0
P_3	1	0	2

For k-partitions P,Q define the meet table of P and Q to be the $k \times k$ array with the i,j entry $|P_i \cap Q_j|$. For P=123|456|789 and Q=147|258|369,

	Q_1	Q_2	Q_3
P_1	1	1	1
P_2	1	1	1
P_3	1	1	1

For k-partitions P,Q define the meet table of P and Q to be the $k \times k$ array with the i,j entry $|P_i \cap Q_j|$. For P=123|456|789 and Q=147|258|369,

	Q_1	Q_2	Q_3
P_1	1	1	1
P_2	1	1	1
P_3	1	1	1

Two tables are **isomorphic** if some permutation of the rows and columns of one table produces the other.

* Let $\{T_1, T_2, \dots, T_t\}$ be the set of all non-isomorphic meet tables between uniform k-partitions of a $k\ell$ -set.

- * Let $\{T_1, T_2, \dots, T_t\}$ be the set of all non-isomorphic meet tables between uniform k-partitions of a $k\ell$ -set.
- \star For each table define a matrix A_i whose rows and columns are indexed by the partitions.

- * Let $\{T_1, T_2, \dots, T_t\}$ be the set of all non-isomorphic meet tables between uniform k-partitions of a $k\ell$ -set.
- \star For each table define a matrix A_i whose rows and columns are indexed by the partitions.
- * The (P,Q) entry of A_i is 1 if the meet table for P and Q is isomorphic to T_i and 0 otherwise.

- * Let $\{T_1, T_2, \dots, T_t\}$ be the set of all non-isomorphic meet tables between uniform k-partitions of a $k\ell$ -set.
- \star For each table define a matrix A_i whose rows and columns are indexed by the partitions.
- * The (P,Q) entry of A_i is 1 if the meet table for P and Q is isomorphic to T_i and 0 otherwise.

Is $A^{k,\ell} = \{A_i : i = 1, ..., t\}$ an association scheme?

Generalization for Sets

For uniform 2-partitions, $A^{2,\ell}$:

$$P = 123|456$$
 and $Q = 124|356$,

$$M_{P,Q}=egin{array}{c|ccc} Q_1 & Q_2 \ \hline P_1 & {f 2} & {f 1} \ P_2 & {f 1} & {f 2} \end{array}$$

Generalization for Sets

For uniform 2-partitions, $A^{2,\ell}$:

$$P = 123|456$$
 and $Q = 124|356$,

$$M_{P,Q} = egin{array}{c|cccc} Q_1 & Q_2 & & & & & & & & & \\ \hline P_1 & \mathbf{2} & \mathbf{1} & & & & & & & & & \\ P_2 & \mathbf{1} & \mathbf{2} & & & & & & & & & & & & \\ \end{array}$$

 $\mathcal{A}^{2,\ell}$ is an assoication scheme.

Generalization for Matchings

For perfect matchings, $A^{k,2}$:

$$P = 12|34|56$$
 and $Q = 13|25|46$.

$$M_{P,Q} = egin{array}{c|cccc} Q_1 & Q_2 & Q_3 \ \hline P_1 & 1 & 1 & 0 \ P_2 & 1 & 0 & 1 \ P_3 & 0 & 1 & 1 \ \hline \end{array}$$

Generalization for Matchings

For perfect matchings, $A^{k,2}$:

$$P = 12|34|56$$
 and $Q = 13|25|46$.

$$M_{P,Q} = egin{array}{c|cccc} Q_1 & Q_2 & Q_3 \ \hline P_1 & 1 & 1 & 0 \ P_2 & 1 & 0 & 1 \ P_3 & 0 & 1 & 1 \ \hline \end{array}$$

 $\mathcal{A}^{k,2}$ is an assoication scheme.

3×3 Partitions

(Mathon and Rosa, 1985) $A^{3,3}$ is an association scheme on the uniform 3-partitions of a 9-set.

3×3 Partitions

(Mathon and Rosa, 1985) $\mathcal{A}^{3,3}$ is an association scheme on the uniform 3-partitions of a 9-set.

Table of eigenvalues:

The commutant of a set of matrices is the collection of all the matrices that commute with every matrix in the set.

The commutant of a set of matrices is the collection of all the matrices that commute with every matrix in the set.

The commutant of a set of permutation matrices is a homogenous coherent algebra.

The commutant of a set of matrices is the collection of all the matrices that commute with every matrix in the set.

The commutant of a set of permutation matrices is a homogenous coherent algebra.

A commutative homogenous coherent algebra is the Bose-Mesner algebra of an association scheme.

Let G be a subgroup S_n .

Let G be a subgroup S_n .

Each $\sigma \in S_n$ can be written as a permutation matrix by its action on the cosets S_n/G

Let G be a subgroup S_n .

Each $\sigma \in S_n$ can be written as a permutation matrix by its action on the cosets S_n/G

$$[M_{\sigma}]_{\pi G, \rho G} = \left\{ egin{array}{ll} 1 & \mbox{if } \sigma \pi G =
ho G, \\ 0 & \mbox{otherwise.} \end{array}
ight.$$

Let G be a subgroup S_n .

Each $\sigma \in S_n$ can be written as a permutation matrix by its action on the cosets S_n/G

$$[M_{\sigma}]_{\pi G, \rho G} = \begin{cases} 1 & \text{if } \sigma \pi G = \rho G, \\ 0 & \text{otherwise.} \end{cases}$$

This is the representation on S_n induced by the trivial representation on G,

$$\operatorname{ind}_{S_n}(1_G).$$

* The subgroup of $S_{k\ell}$ that stabilizes a uniform k-partition is called the wreath product $S_{\ell} \wr S_k$.

* The subgroup of $S_{k\ell}$ that stabilizes a uniform k-partition is called the wreath product $S_{\ell} \wr S_k$.

* The subgroup of $S_{k\ell}$ that stabilizes a uniform k-partition is called the wreath product $S_{\ell} \wr S_k$.

$$|S_{\ell} \wr S_k| = \ell!^k k!$$

* The subgroup of $S_{k\ell}$ that stabilizes a uniform k-partition is called the wreath product $S_{\ell} \wr S_k$.

$$|S_{\ell} \wr S_k| = \ell!^k k!$$

* Each uniform k-partition of a $k\ell$ -set corresponds to a coset in $S_{k\ell}/(S_{\ell} \wr S_k)$.

Let M_{σ} be the permutation representation of $\sigma \in S_{k\ell}$ defined by its action on $S_{k\ell}/(S_k \wr S_{\ell})$.

Let M_{σ} be the permutation representation of $\sigma \in S_{k\ell}$ defined by its action on $S_{k\ell}/(S_k \wr S_{\ell})$.

For all $A_i \in \mathcal{A}^{k,\ell}$

$$A_i M_{\sigma} = M_{\sigma} A_i$$
.

Commutant

Let M_{σ} be the permutation representation of $\sigma \in S_{k\ell}$ defined by its action on $S_{k\ell}/(S_k \wr S_{\ell})$.

For all $A_i \in \mathcal{A}^{k,\ell}$

$$A_i M_{\sigma} = M_{\sigma} A_i$$
.

The algebra generated by $\mathcal{A}^{k,\ell}$ is the commutant of the matrices in the representation

$$\operatorname{ind}_{S_n}(1_{S_k \wr S_\ell}).$$

Multiplicity Free

A representation is **multiplicity free** if no irreducible representation occurs more than once in its decomposition.

Multiplicity Free

A representation is **multiplicity free** if no irreducible representation occurs more than once in its decomposition.

A permutation representation is multiplicity-free if and only if the corresponding commutant is commutative.

Multiplicity Free

A representation is **multiplicity free** if no irreducible representation occurs more than once in its decomposition.

A permutation representation is multiplicity-free if and only if the corresponding commutant is commutative.

 $\mathcal{A}^{k,\ell}$ is an association scheme if and only if $\operatorname{ind}_{S_n}(1_{S_k \wr S_\ell})$ is multiplicity-free.

Two known cases:

Sets

$$\operatorname{ind}_{S_{2\ell}}(1_{S_{\ell}\wr S_2}) = \sum_{i=0}^{\lfloor \ell/2 \rfloor} \chi_{[2\ell-2i,2i]}.$$

Two known cases:

Sets

$$\operatorname{ind}_{S_{2\ell}}(1_{S_{\ell}\wr S_2}) = \sum_{i=0}^{\lfloor \ell/2 \rfloor} \chi_{[2\ell-2i,2i]}.$$

Perfect matchings

$$\operatorname{ind}_{S_{2k}}(1_{S_2 \wr S_k}) = \sum_{\lambda \vdash k} \chi_{2\lambda}$$

Where
$$2\lambda = (2\lambda_1, 2\lambda_2, \dots, 2\lambda_m)$$
 for $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_m)$.

General Partitions

Theorem (Godsil and M. 2006) $\operatorname{ind}_{S_{\ell k}}(1_{S_{\ell} \wr S_k})$ is multiplicity-free if and only if (ℓ, k) is one of the following pairs:

- (a) $(\ell, k) = (2, k)$; (b) $(\ell, k) = (\ell, 2)$; (c) (ℓ, k) is one of (3, 3), (3, 4), (4, 3) or (5, 3);

General Partitions

Theorem (Godsil and M. 2006) $\operatorname{ind}_{S_{\ell k}}(1_{S_{\ell} \wr S_k})$ is multiplicity-free if and only if (ℓ, k) is one of the following pairs:

- (a) $(\ell, k) = (2, k)$; (b) $(\ell, k) = (\ell, 2)$; (c) (ℓ, k) is one of (3, 3), (3, 4), (4, 3) or (5, 3);

 $\mathcal{A}^{k,\ell}$ is a homogeneous coherent configuration for all values of k, ℓ .

The Erdős-Ko-Rado Theorem

The Erdős-Ko-Rado Theorem

A trivial intersecting k-set system is the collection of all k-sets containing a fixed point:

```
123 124 125 126 134
```

A trivial intersecting 3-set system on a 6-set.

The Erdős-Ko-Rado Theorem

A trivial intersecting k-set system is the collection of all k-sets containing a fixed point:

123 124 125 126 134

135 136 145 146 156

A trivial intersecting 3-set system on a 6-set.

Theorem (Erdős-Ko-Rado 1961)

For n > 2k

the maximal intersecting k-set system is a trivial intersecting system.

2-Partially Intersecting

Partitions

$$P = \{P_1, P_2, \dots, P_k\}$$
 $Q = \{Q_1, Q_2, \dots, Q_k\}$

are **2-partially intersecting** if there exist an i and a j so that

$$|P_i \cap Q_i| \ge 2.$$

2-Partially Intersecting

Partitions

$$P = \{P_1, P_2, \dots, P_k\}$$
 $Q = \{Q_1, Q_2, \dots, Q_k\}$

are 2-partially intersecting if there exist an i and a j so that

$$|P_i \cap Q_i| \geq 2.$$

How big can a 2-partially intersecting uniform k-partition system be?

A Trivial System

A trivial 2-partially intersecting uniform k-partition system is the set of all uniform k-partitions with a cell with a fixed pair.

A trivial 2-partially intersecting uniform 3-partition system.

A Trivial System

A trivial 2-partially intersecting uniform k-partition system is the set of all uniform k-partitions with a cell with a fixed pair.

A trivial 2-partially intersecting uniform 3-partition system.

Conjecture:

A maximum 2-partially intersecting uniform partition system is a trivial 2-partially intersecting system.

Towards a Proof

True for matchings (M. and Moura 2004) Proof is a counting argument using "kernel method".

Towards a Proof

- True for matchings (M. and Moura 2004) Proof is a counting argument using "kernel method".
- * True for 3-partitions of a 9-set (Godsil and Newman, 2005) Proof uses the structure of the association scheme and the eigenvalues.

Conjectures:

* The trivial intersecting systems are *maximum* independent sets of a graph in the configuration.

- * The trivial intersecting systems are maximum independent sets of a graph in the configuration.
- * All maximum independent sets are in a specific irreducible module of the representation $\operatorname{ind}_{S_{k\ell}}(1_{S_{\ell} \wr S_k})$.

- * The trivial intersecting systems are maximum independent sets of a graph in the configuration.
- * All maximum independent sets are in a specific irreducible module of the representation $\operatorname{ind}_{S_{k\ell}}(1_{S_\ell \wr S_k})$.
- * There is a basis of this irreducible module with trivially intersecting systems.

- * The trivial intersecting systems are maximum independent sets of a graph in the configuration.
- * All maximum independent sets are in a specific irreducible module of the representation $\operatorname{ind}_{S_{k\ell}}(1_{S_{\ell}\wr S_k})$.
- * There is a basis of this irreducible module with trivially intersecting systems.
- * The only linear combinations of this basis that produce maximum independent sets give trivially intersecting systems