CMS Annual General Meeting June 11, 2003

Karen Meagher

kmeagher@site.uottawa.ca

University of Ottawa

A covering array CA(n, k, g) is an $k \times n$ array with:

- \star k rows of length n (n is the size)
- \star entries from \mathbb{Z}_q (g is the alphabet)
- \star between any two rows all pairs from \mathbb{Z}_g occur

A covering array CA(n, k, g) is an $k \times n$ array with:

- \star k rows of length n (n is the size)
- \star entries from \mathbb{Z}_q (g is the alphabet)
- \star between any two rows all pairs from \mathbb{Z}_g occur

A covering array CA(n, k, g) is an $k \times n$ array with:

- \star k rows of length n (n is the size)
- \star entries from \mathbb{Z}_q (g is the alphabet)
- \star between any two rows all pairs from \mathbb{Z}_g occur

A covering array CA(n, k, g) is an $k \times n$ array with:

- \star k rows of length n (n is the size)
- \star entries from \mathbb{Z}_q (g is the alphabet)
- \star between any two rows all pairs from \mathbb{Z}_g occur

A covering array CA(n, k, g) is an $k \times n$ array with:

- \star k rows of length n (n is the size)
- \star entries from \mathbb{Z}_q (g is the alphabet)
- \star between any two rows all pairs from \mathbb{Z}_g occur

A covering array CA(n, k, g) is an $k \times n$ array with:

- \star k rows of length n (n is the size)
- \star entries from \mathbb{Z}_q (g is the alphabet)
- \star between any two rows all pairs from \mathbb{Z}_g occur

Drinks	Snacks	Attire	Guests	Time	
Beer	Veggies	Casual	Everybody	Whenever	
Beer	Olives	Costume	Math Friends	7:30	
Beer	Tofu	Formal	Girls Only	10:00	
Wine	Veggies	Costume	Girls Only	7:30	
Wine	Olives	Casual	Math Friends	10:00	
Wine	Tofu	Formal	Math Friends	Whenever	
Wine	Tofu	Costume	Everybody	10:00	
Gin	Veggies	Formal	Math Friends	10:00	
Gin	Tofu	Casual	Girls Only	7:30	
Gin	Olives	Costume	Girls Only	Whenever	
Gin	Olives	Formal	Everybody	7:30	

Drinks	Snacks	Attire	Guests	Time	
Beer	Veggies	Casual	Everybody	Whenever	
Beer	Olives	Costume	Math Friends	7:30	
Beer	Tofu	Formal	Girls Only	10:00	
Wine	Veggies	Costume	Girls Only	7:30	
Wine	Olives	Casual	Math Friends	10:00	
Wine	Tofu	Formal	Math Friends	Whenever	
Wine	Tofu	Costume	Everybody	10:00	
Gin	Veggies	Formal	Math Friends	10:00	
Gin	Tofu	Casual	Girls Only	7:30	
Gin	Olives	Costume	Girls Only	Whenever	
Gin	Olives	Formal	Everybody	7:30	

Drinks	Snacks	Attire	Guests	Time	
Beer	Veggies	Casual	Everybody	Whenever	
Beer	Olives	Formal	Math Friends	7:30	
Beer	Tofu	Costume	Girls Only	10:00	
Wine	Veggies	Casual	Math Friends	10:00	
Wine	Olives	Formal	Girls Only	Whenever	
Wine	Tofu	Costume	Everybody	7:30	
Gin	Veggies	Casual	Girls Only	7:30	
Gin	Olives	Formal	Everybody	10:00	
Gin	Tofu	Costume	Math Friends	Whenever	

Drinks	Snacks	Attire	Guests	Time	
Beer	Veggies	Casual	Everybody	Whenever	
Beer	Olives	Formal	Math Friends	7:30	
Beer	Tofu	Costume	Girls Only	10:00	
Wine	Veggies	Casual	Math Friends	10:00	
Wine	Olives	Formal	Girls Only	Whenever	
Wine	Tofu	Costume	Everybody	7:30	
Gin	Veggies	Casual	Girls Only	7:30	
Gin	Olives	Formal	Everybody	10:00	
Gin	Tofu	Costume	Math Friends	Whenever	

Drinks	Snacks	Attire	Guests	Time
Beer	Veggies	Casual	Everybody	Whenever
Beer	Olives	Formal	Math Friends	7:30
Beer	Tofu	Costume	Girls Only	10:00
Wine	Veggies	Casual	Math Friends	10:00
Wine	Olives	Formal	Girls Only	Whenever
Wine	Tofu	Costume	Everybody	7:30
Gin	Veggies	Casual	Girls Only	7:30
Gin	Olives	Formal	Everybody	10:00
Gin	Tofu	Costume	Math Friends	Whenever

	Snacks	Attire	Guests	Time
	/			111110
Beer V	/eggies	Casual	Everybody	Whenever
Beer	Olives	Formal	Math Friends	7:30
Beer	Tofu	Costume	Girls Only	10:00
Wine V	/eggies	Casual	Math Friends	10:00
Wine	Olives	Formal	Girls Only	Whenever
Wine	Tofu	Costume	Everybody	7:30
Gin V	/eggies	Casual	Girls Only	7:30
Gin	Olives	Formal	Everybody	10:00
Gin	Tofu	Costume	Math Friends	Whenever

Drinks	Snacks	Attire	Guests	Time	
Beer	Veggies	Casual	Everybody	Whenever	
Beer	Olives	Formal	Math Friends	7:30	
Beer	Tofu	Costume	Girls Only	10:00	
Wine	Veggies	Casual	Math Friends	10:00	
Wine	Olives	Formal	Girls Only	Whenever	
Wine	Tofu	Costume	Everybody	7:30	
Gin	Veggies	Casual	Girls Only	7:30	
Gin	Olives	Formal	Everybody	10:00	
Gin	Tofu	Costume	Math Friends	Whenever	

Drinks	Snacks	Attire	Attire Guests Time	
Beer	Veggies	Casual	Everybody	Whenever
Beer	Olives	Formal	Math Friends	7:30
Beer	Tofu	Costume	Girls Only	10:00
Wine	Veggies	Casual	Math Friends	10:00
Wine	Olives	Formal	Girls Only	Whenever
Wine	Tofu	Costume	Everybody	7:30
Gin	Veggies	Casual	Girls Only	7:30
Gin	Olives	Formal	Everybody	10:00
Gin	Tofu	Costume	Math Friends	Whenever

Drinks	Snacks	Attire	Guests	Time	
Beer	Veggies	Casual	Everybody	Whenever	
Beer	Olives	Formal	Math Friends	7:30	
Beer	Tofu	Costume	Girls Only	10:00	
Wine	Veggies	Casual	Math Friends	10:00	
Wine	Olives	Formal	Girls Only	Whenever	
Wine	Tofu	Costume	Everybody	7:30	
Gin	Veggies	Casual	Girls Only	7:30	
Gin	Olives	Formal	Everybody	10:00	
Gin	Tofu	Costume	Math Friends	Whenever	

Drinks	Snacks	Attire	Guests	Time	
Beer	Veggies	Casual	Everybody	Whenever	
Beer	Olives	Formal	Math Friends	7:30	
Beer	Tofu	Costume	Girls Only	10:00	
Wine	Veggies	Casual	Math Friends	10:00	
Wine	Olives	Formal	Girls Only	Whenever	
Wine	Tofu	Costume	Everybody	7:30	
Gin	Veggies	Casual	Girls Only	7:30	
Gin	Olives	Formal	Everybody	10:00	
Gin	Tofu	Costume	Math Friends	Whenever	

- $\star k = |V(G)|$ rows of length n (n is the size)
- \star entries from \mathbb{Z}_g (g is the alphabet)
- \star rows for adjacent vertices have all pairs from \mathbb{Z}_g

- $\star k = |V(G)|$ rows of length n (n is the size)
- \star entries from \mathbb{Z}_q (g is the alphabet)
- \star rows for adjacent vertices have all pairs from \mathbb{Z}_g

1	0	0	1	1	1
2	0	1	0	1	1
3	0	1	1	0	1
4	0	0	1	1	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0

- $\star k = |V(G)|$ rows of length n (n is the size)
- \star entries from \mathbb{Z}_q (g is the alphabet)
- \star rows for adjacent vertices have all pairs from \mathbb{Z}_g

1	0	0	1	1	1
2	0	1	0	1	1
3	0	1	1	0	1
4	0	0	1	1	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0

- $\star k = |V(G)|$ rows of length n (n is the size)
- \star entries from \mathbb{Z}_q (g is the alphabet)
- \star rows for adjacent vertices have all pairs from \mathbb{Z}_g

1	0	0	1	1	1
2	0	1	0	1	1
3	0	1	1	0	1
4	0	0	1	1	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0

- $\star k = |V(G)|$ rows of length n (n is the size)
- \star entries from \mathbb{Z}_g (g is the alphabet)
- \star rows for adjacent vertices have all pairs from \mathbb{Z}_g

1	0	0	1	1	1
2	0	1	0	1	1
3	0	1	1	0	1
4	0	0	1	1	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0

- $\star k = |V(G)|$ rows of length n (n is the size)
- \star entries from \mathbb{Z}_g (g is the alphabet)
- \star rows for adjacent vertices have all pairs from \mathbb{Z}_g

1	0	0	1	1	1
2	0	1	0	1	1
3	0	1	1	0	1
4	0	0	1	1	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0

- $\star k = |V(G)|$ rows of length n (n is the size)
- \star entries from \mathbb{Z}_g (g is the alphabet)
- \star rows for adjacent vertices have all pairs from \mathbb{Z}_g

1	0	0	1	1	1
2	0	1	0	1	1
3	0	1	1	0	1
4	0	0	1	1	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0

Motivation and Direction

Normal covering arrays correspond to covering arrays on complete graphs

$$CAN(K_k, g) = CAN(k, g).$$

Motivation and Direction

 Normal covering arrays correspond to covering arrays on complete graphs

$$CAN(K_k, g) = CAN(k, g).$$

* There is a bound from max clique size

$$CAN(\omega(G), g) \leq CAN(G, g).$$

Motivation and Direction

Normal covering arrays correspond to covering arrays on complete graphs

$$CAN(K_k, g) = CAN(k, g).$$

* There is a bound from max clique size

$$CAN(\omega(G), g) \leq CAN(G, g).$$

* There is a bound from the chromatic number

$$CAN(G,g) \leq CAN(\chi(G),g).$$

Define graph G(n,g) by

- \star Vertices are all sequences which could go into a row of a covering array of size n on \mathbb{Z}_g .
- \star Vertices are connected iff the sequences have all pairs from \mathbb{Z}_g .

Define graph G(n,g) by

- \star Vertices are all sequences which could go into a row of a covering array of size n on \mathbb{Z}_g .
- \star Vertices are connected iff the sequences have all pairs from \mathbb{Z}_q .

0	0	1	1
0	1	0	1
0	1	1	0
1	1	0	0
1	0	1	0
1	0	0	1

Define graph G(n,g) by

- \star Vertices are all sequences which could go into a row of a covering array of size n on \mathbb{Z}_g .
- \star Vertices are connected iff the sequences have all pairs from \mathbb{Z}_q .

Define graph G(n,g) by

- \star Vertices are all sequences which could go into a row of a covering array of size n on \mathbb{Z}_g .
- \star Vertices are connected iff the sequences have all pairs from \mathbb{Z}_q .

The graph G(4,2).

The Graph G(5,2)

Graph Homomorphisms

- * an edge preserving map between two graphs
- \star if vertices $u,v\in G$ are connected then vertices $f(u),f(v)\in H$ are also connected

G(n,g) is "big"

If there is a covering array on a graph G size n then there is a homomorphism $G \to G(n, g)$.

G(n,g) is "big"

If there is a covering array on a graph G size n then there is a homomorphism $G \to G(n, g)$.

G(n,g) is "big"

If there is a covering array on a graph G size n then there is a homomorphism $G \to G(n, g)$.

G(n,g) is "big"

If there is a covering array on a graph G size n then there is a homomorphism $G \to G(n, g)$.

G(n,g) is "big"

If there is a covering array on a graph G size n then there is a homomorphism $G \to G(n, g)$.

$$\chi(G) = \min\{n : G \to K_n\}$$

$$\chi(G) = \min\{n : G \to K_n\}$$

$$\chi^*(G) = \min\{v/r : G \to K_{v,r}\}$$

$$\chi(G) = \min\{n : G \to K_n\}$$

$$\chi^*(G) = \min\{v/r : G \to K_{v,r}\}$$

$$\chi_c(G) = \min\{v/r : G \to C(v,r)\}$$

$$\chi(G) = \min\{n ; G \to K_n\}$$

$$\chi^*(G) = \min\{v/r ; G \to K_{v,r}\}$$

$$\chi_c(G) = \min\{v/r ; G \to C(v,r)\}$$

$$CAN(G,g) = \min\{n ; G \to G(n,g)\}$$

Facts about G(n, 2)

A formula for the chromatic number

$$\chi(G(n,2)) = \left\lceil \frac{1}{2} \binom{n}{\lceil \frac{n}{2} \rceil} \right\rceil.$$

Facts about G(n, 2)

A formula for the chromatic number

$$\chi(G(n,2)) = \left\lceil \frac{1}{2} \binom{n}{\lceil \frac{n}{2} \rceil} \right\rceil.$$

For n even the core of G(n,2) is $K_{\lceil \frac{1}{2} \binom{n}{n} \rceil \rceil}$.

Facts about G(n, 2)

A formula for the chromatic number

$$\chi(G(n,2)) = \left| \frac{1}{2} {n \choose \lceil \frac{n}{2} \rceil} \right|.$$

For n even the core of G(n,2) is $K_{\lceil \frac{1}{2} \binom{n}{n} \rceil \rceil}$.

For n odd the core is graph built only from the vertices with exactly $\frac{n-1}{2}$ 1's.

Facts about $G(g^2, g)$

We have an upper bound for the chromatic number when $n=g^2$

$$\chi(G(g^2,g)) \le {g+1 \choose 2}.$$

Facts about $G(g^2, g)$

We have an upper bound for the chromatic number when $n=g^2$

$$\chi(G(g^2,g)) \le \binom{g+1}{2}.$$

There is a homomorphism to the Kneser graph $K_{g^2-1,g-1}$.

Facts about $G(g^2, g)$

We have an upper bound for the chromatic number when $n=g^2$

$$\chi(G(g^2,g)) \le {g+1 \choose 2}.$$

There is a homomorphism to the Kneser graph $K_{g^2-1,g-1}$.

There are many open questions.

★ look at larger alphabet sizes

- ⋆ look at larger alphabet sizes
- * find chromatic number of the larger graphs

- ⋆ look at larger alphabet sizes
- * find chromatic number of the larger graphs
- * find cores of the larger graphs

- * look at larger alphabet sizes
- * find chromatic number of the larger graphs
- * find cores of the larger graphs
- find max independent sets in the larger graphs

- * look at larger alphabet sizes
- * find chromatic number of the larger graphs
- * find cores of the larger graphs
- find max independent sets in the larger graphs
- \star find other interesting facts about G(n,g)

- * look at larger alphabet sizes
- * find chromatic number of the larger graphs
- * find cores of the larger graphs
- * find max independent sets in the larger graphs
- \star find other interesting facts about G(n,g)
- constructions for covering arrays on graph products