Applications of Graph Theory to Covering Arrays

Karen Meagher

joint work with Lucia Moura and Brett Stevens

kmeagher@math.uregina.ca

University of Regina

Covering Arrays

* You have installed light switches to 4 rooms and you want to test that they work.

Covering Arrays

* You have installed light switches to 4 rooms and you want to test that they work.

tests	bedroom	hall	bathroom	kitchen
1	0	0	0	0
2	0	1	1	1
3	1	0	1	1
4	1	1	0	1
5	1	1	1	0

Covering Arrays

* You have installed light switches to 4 rooms and you want to test that they work.

tests	bedroom	hall	bathroom	kitchen
1	0	0	0	0
2	0	1	1	1
3	1	0	1	1
4	1	1	0	1
5	1	1	1	0

Any two columns are *qualitatively independent* (every possible pair occurs in some row.)

A covering array on a graph G, denoted CA(n, G, k), is:

- \star an $n \times r$ array where r = |V(G)|,
- \star with entries from \mathbb{Z}_k (k is the alphabet),
- * columns for adjacent vertices are qualitatively independent (have all possible pairs).

A covering array on a graph G, denoted CA(n, G, k), is:

- \star an $n \times r$ array where r = |V(G)|,
- \star with entries from \mathbb{Z}_k (k is the alphabet),
- * columns for adjacent vertices are qualitatively independent (have all possible pairs).

CAN(G,k) denotes the least n such that a CA(n,G,k) exists.

A covering array on a graph G, denoted CA(n, G, k), is:

- \star an $n \times r$ array where r = |V(G)|,
- \star with entries from \mathbb{Z}_k (k is the alphabet),
- * columns for adjacent vertices are qualitatively independent (have all possible pairs).

CAN(G,k) denotes the least n such that a CA(n,G,k) exists.

1	2	3	4	5	6	7
0	0	0	0	0	0	0
0	1	1	0	1	1	1
1	0	1	1	0	1	1
1	1	0	1	1	0	1
1	1	1	1	1	1	0

A covering array on a graph G, denoted CA(n, G, k), is:

- \star an $n \times r$ array where r = |V(G)|,
- \star with entries from \mathbb{Z}_k (k is the alphabet),
- * columns for adjacent vertices are qualitatively independent (have all possible pairs).

CAN(G,k) denotes the least n such that a CA(n,G,k) exists.

1	2	3	4	5	6	7
0	0	0	0	0	0	0
0	1	1	0	1	1	1
1	0	1	1	0	1	1
1	1	0	1	1	0	1
1	1	1	1	1	1	0

Graph Homomorphisms

A homomorphism of graphs G and H is a map

$$f:V(G)\to V(H)$$

and if vertices $u, v \in G$ are adjacent then vertices $f(u), f(v) \in H$ are also adjacent

Graph Homomorphisms

A homomorphism of graphs G and H is a map

$$f:V(G)\to V(H)$$

and if vertices $u, v \in G$ are adjacent then vertices $f(u), f(v) \in H$ are also adjacent

A Construction

A Construction

red	red blue green yellow					
0	0	0	0			
0	1	1	1			
1	0	1	1			
1	1	0	1			
1	1	1	0			

A Construction

1	2	3	4	5	6	7
0	0	0	0	0	0	0
0	1	1	0	1	1	1
1	0	1	1	0	1	1
1	1	0	1	1	0	1
1	1	1	1	1	1	0

red	red blue green yellow					
0	0	0	0			
0	1	1	1			
1	0	1	1			
1	1	0	1			
1	1	1	0			

Bounds from Complete Graphs

For a graph G, the size of a maximum clique, denoted $\omega(G)$, is the largest integer such that

$$K_{\omega(G)} \to G$$

Bounds from Complete Graphs

For a graph G, the size of a maximum clique, denoted $\omega(G)$, is the largest integer such that

$$K_{\omega(G)} \to G$$

The **chromatic number**, denoted $\chi(G)$, is the smallest integer such that

$$G \to K_{\chi(G)}$$
.

Bounds from Complete Graphs

For a graph G, the size of a maximum clique, denoted $\omega(G)$, is the largest integer such that

$$K_{\omega(G)} \to G$$

The **chromatic number**, denoted $\chi(G)$, is the smallest integer such that

$$G \to K_{\chi(G)}$$
.

There is a lower bound from maximum clique size

$$CAN(K_{\omega(G)}, k) \leq CAN(G, k) \leq CAN(K_{\chi(G)}, k),$$

and an upper a bound from the chromatic number.

Partitions

	1	2	3	4
1	0	0	0	0
2	0	1	1	1
1 2 3 4	0	2	2	
4	1	0	1	2 2 0
5	1	1	1 2	0
6 7	1	2	0	1
7	2	0	2	1
8	1 1 2 2 2	1	0	2
9	2	2	1	0

Partitions

	1	2	3	4
1	0	0	0	0
2	0	1	1	1
1 2 3 4	0	2	2	
4	1	0	1	2
5 6 7	1	1	1 2	0
6	1	2	0	1
7	1 2 2	0	2	1
8	2	1	0	2
9	2	2	1	0

$$1 \to \{\{1, 2, 3\}, \{4, 5, 6\}, \{7, 8, 9\}\}\}$$

$$2 \to \{\{1, 4, 7\}, \{2, 5, 8\}, \{3, 6, 9\}\}\}$$

$$3 \to \{\{1, 6, 8\}, \{2, 4, 9\}, \{3, 5, 7\}\}\}$$

$$4 \to \{\{1, 5, 9\}, \{2, 6, 7\}, \{3, 4, 8\}\}$$

Partitions

	1	2	3	4
1	0	0	0	0
2	0	1	1	1
2 3 4	0	2	2	2
4	1	0	1	2
5 6 7	1	1	2	0
6	1	2	0	1
7	2	0	2	1
8	1 2 2 2	1	0	2
9	2	2	1	0

$$1 \to \{\{1, 2, 3\}, \{4, 5, 6\}, \{7, 8, 9\}\}\}$$

$$2 \to \{\{1, 4, 7\}, \{2, 5, 8\}, \{3, 6, 9\}\}\}$$

$$3 \to \{\{1, 6, 8\}, \{2, 4, 9\}, \{3, 5, 7\}\}\}$$

$$4 \to \{\{1, 5, 9\}, \{2, 6, 7\}, \{3, 4, 8\}\}\}$$

The columns of a covering array with a k-alphabet and n rows determine k-partitions of an n-set.

Qualitative Independence

Let A, B be k-partitions of an n-set,

$$A = \{A_1, A_2, \dots, A_k\}$$
 and $B = \{B_1, B_2, \dots, B_k\}$.

Qualitative Independence

Let A, B be k-partitions of an n-set,

$$A = \{A_1, A_2, \dots, A_k\}$$
 and $B = \{B_1, B_2, \dots, B_k\}$.

A and B are qualitatively independent if

$$A_i \cap B_j \neq \emptyset$$
 for all i and j .

Qualitative Independence

Let A, B be k-partitions of an n-set,

$$A = \{A_1, A_2, \dots, A_k\}$$
 and $B = \{B_1, B_2, \dots, B_k\}$.

A and B are qualitatively independent if

$$A_i \cap B_j \neq \emptyset$$
 for all i and j .

Two partitions formed from the columns in a covering array are qualitatively independent.

The graph QI(n,k) has

The graph QI(n,k) has

 \star vertex set the set of all k-partitions of an n-set,

The graph QI(n,k) has

- \star vertex set the set of all k-partitions of an n-set,
- * and vertices are connected iff the partitions are qualitatively independent.

The graph QI(n,k) has

- \star vertex set the set of all k-partitions of an n-set,
- * and vertices are connected iff the partitions are qualitatively independent.

The graph QI(4,2):

The graph QI(n,k) has

- \star vertex set the set of all k-partitions of an n-set,
- * and vertices are connected iff the partitions are qualitatively independent.

The graph QI(5,2):

Theorem (M. and Stevens, 2002) An r-clique in QI(n,k) is equivalent to a covering array with r columns and n rows.

Theorem (M. and Stevens, 2002) An r-clique in QI(n,k) is equivalent to a covering array with r columns and n rows.

Theorem (M. and Stevens, 2002) A covering array on a graph G with n rows and alphabet k exists iff there is a homomorphism to QI(n,k).

Theorem (M. and Stevens, 2002) An r-clique in QI(n,k) is equivalent to a covering array with r columns and n rows.

Theorem (M. and Stevens, 2002) A covering array on a graph G with n rows and alphabet k exists iff there is a homomorphism to QI(n,k).

Theorem (M. and Stevens, 2002) The minimal size of a covering array on a graph G is

$$\min\{n:G\to QI(n,k).\}$$

The uniform qualitative independence graph, $UQI(k\ell,k)$ has

The uniform qualitative independence graph, $UQI(k\ell,k)$ has

 \star vertex set all uniform k-partitions of a $k\ell$ -set

The uniform qualitative independence graph, $UQI(k\ell,k)$ has

- \star vertex set all uniform k-partitions of a $k\ell$ -set
- * and partitions are adjacent iff they are qualitatively independent.

The uniform qualitative independence graph, $UQI(k\ell,k)$ has

- \star vertex set all uniform k-partitions of a $k\ell$ -set
- * and partitions are adjacent iff they are qualitatively independent.

A clique in $UQI(k\ell,k)$ is equivalent to a balanced covering array (each letter occurs the same number of times in each column.)

Example 1: $UQI(k^2, k)$

 \star The graph $UQI(k^2,k)$ is vertex transitive.

- \star The graph $UQI(k^2,k)$ is vertex transitive.
- * The size of the maximum clique is bounded by

number of vertices

size of an independent set

- \star The graph $UQI(k^2,k)$ is vertex transitive.
- * The size of the maximum clique is bounded by

number of vertices size of an independent set

* The collection of all partitions with 1 and 2 in the same part is an independent set.

- \star The graph $UQI(k^2, k)$ is vertex transitive.
- * The size of the maximum clique is bounded by

number of vertices size of an independent set

- * The collection of all partitions with 1 and 2 in the same part is an independent set.
- \star This bounds the size of a clique by k+1.

- \star The graph $UQI(k^2,k)$ is vertex transitive.
- * The size of the maximum clique is bounded by

number of vertices size of an independent set

- * The collection of all partitions with 1 and 2 in the same part is an independent set.
- \star This bounds the size of a clique by k+1.
- * A covering array with k^2 rows on a k-alphabet can have no more than k+1 columns.

It is known that the minimal number of rows in covering array with 8 columns and an alphabet size 3 is 12 or 13.

It is known that the minimal number of rows in covering array with 8 columns and an alphabet size 3 is 12 or 13.

What is $\omega(UQI(12,3))$?

It is known that the minimal number of rows in covering array with 8 columns and an alphabet size 3 is 12 or 13.

What is
$$\omega(UQI(12,3))$$
?

UQI(12,3) in an association scheme so the ratio bound holds

$$\omega(UQI(12,3)) \le 1 - \frac{d}{\tau} = 7$$

where d is the largest eigenvalue and τ is the smallest.

It is known that the minimal number of rows in covering array with 8 columns and an alphabet size 3 is 12 or 13.

What is
$$\omega(UQI(12,3))$$
?

UQI(12,3) in an association scheme so the ratio bound holds

$$\omega(UQI(12,3)) \le 1 - \frac{d}{\tau} = 7$$

where d is the largest eigenvalue and τ is the smallest.

There does not exist a balanced covering array with 12 rows and 8 columns with an alphabet of size three.

Open problems:

 \star Determine the chromatic number of QI(n,k) and UQI(n,k).

- \star Determine the chromatic number of QI(n,k) and UQI(n,k).
- * Find the maximum independent sets in $UQI(k\ell,k)$.

- * Determine the chromatic number of QI(n,k) and UQI(n,k).
- * Find the maximum independent sets in $UQI(k\ell,k)$.
- \star Find all eigenvalues of $UQI(k\ell,k)$.

- * Determine the chromatic number of QI(n, k) and UQI(n, k).
- * Find the maximum independent sets in $UQI(k\ell,k)$.
- \star Find all eigenvalues of $UQI(k\ell,k)$.
- \star Generalize eigenvalue bound for UQI(12,3) to more cases.