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Covering Arrays
⋆ You have installed light switches to 4 rooms

and you want to test that they work.
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Covering Arrays
⋆ You have installed light switches to 4 rooms

and you want to test that they work.

tests bedroom hall bathroom kitchen
1 0 0 0 0
2 0 1 1 1
3 1 0 1 1
4 1 1 0 1
5 1 1 1 0

Applications of Graph Theory to Covering Arrays – p. 2/14



Covering Arrays
⋆ You have installed light switches to 4 rooms

and you want to test that they work.

tests bedroom hall bathroom kitchen
1 0 0 0 0
2 0 1 1 1
3 1 0 1 1
4 1 1 0 1
5 1 1 1 0

Any two columns are qualitatively independent
(every possible pair occurs in some row.)
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Covering Arrays on Graphs
A covering array on a graph G, denoted CA(n,G, k), is:

⋆ an n × r array where r = |V (G)|,

⋆ with entries from Zk (k is the alphabet),

⋆ columns for adjacent vertices are qualitatively
independent (have all possible pairs).
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A covering array on a graph G, denoted CA(n,G, k), is:

⋆ an n × r array where r = |V (G)|,

⋆ with entries from Zk (k is the alphabet),

⋆ columns for adjacent vertices are qualitatively
independent (have all possible pairs).

CAN(G, k) denotes the least n such that a CA(n,G, k) exists.
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Covering Arrays on Graphs
A covering array on a graph G, denoted CA(n,G, k), is:

⋆ an n × r array where r = |V (G)|,

⋆ with entries from Zk (k is the alphabet),

⋆ columns for adjacent vertices are qualitatively
independent (have all possible pairs).

CAN(G, k) denotes the least n such that a CA(n,G, k) exists.
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0 0 0 0 0 0 0

0 1 1 0 1 1 1

1 0 1 1 0 1 1

1 1 0 1 1 0 1

1 1 1 1 1 1 0
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Covering Arrays on Graphs
A covering array on a graph G, denoted CA(n,G, k), is:

⋆ an n × r array where r = |V (G)|,

⋆ with entries from Zk (k is the alphabet),

⋆ columns for adjacent vertices are qualitatively
independent (have all possible pairs).

CAN(G, k) denotes the least n such that a CA(n,G, k) exists.
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Graph Homomorphisms
A homomorphism of graphs G and H is a map

f : V (G) → V (H)

and if vertices u, v ∈ G are adjacent then vertices
f(u), f(v) ∈ H are also adjacent
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Graph Homomorphisms
A homomorphism of graphs G and H is a map

f : V (G) → V (H)

and if vertices u, v ∈ G are adjacent then vertices
f(u), f(v) ∈ H are also adjacent
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A Construction
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A Construction
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A Construction
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Bounds from Complete Graphs
For a graph G, the size of a maximum clique, denoted ω(G),
is the largest integer such that

Kω(G) → G
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Bounds from Complete Graphs
For a graph G, the size of a maximum clique, denoted ω(G),
is the largest integer such that

Kω(G) → G

The chromatic number, denoted χ(G), is the smallest integer
such that

G → Kχ(G).
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Bounds from Complete Graphs
For a graph G, the size of a maximum clique, denoted ω(G),
is the largest integer such that

Kω(G) → G

The chromatic number, denoted χ(G), is the smallest integer
such that

G → Kχ(G).

There is a lower bound from maximum clique size

CAN(Kω(G), k) ≤ CAN(G, k) ≤ CAN(Kχ(G), k),

and an upper a bound from the chromatic number.
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Partitions
1 2 3 4

1 0 0 0 0
2 0 1 1 1
3 0 2 2 2
4 1 0 1 2
5 1 1 2 0
6 1 2 0 1
7 2 0 2 1
8 2 1 0 2
9 2 2 1 0
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Partitions
1 2 3 4

1 0 0 0 0
2 0 1 1 1
3 0 2 2 2
4 1 0 1 2
5 1 1 2 0
6 1 2 0 1
7 2 0 2 1
8 2 1 0 2
9 2 2 1 0

1 → {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}

2 → {{1, 4, 7}, {2, 5, 8}, {3, 6, 9}}

3 → {{1, 6, 8}, {2, 4, 9}, {3, 5, 7}}

4 → {{1, 5, 9}, {2, 6, 7}, {3, 4, 8}}
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Partitions
1 2 3 4

1 0 0 0 0
2 0 1 1 1
3 0 2 2 2
4 1 0 1 2
5 1 1 2 0
6 1 2 0 1
7 2 0 2 1
8 2 1 0 2
9 2 2 1 0

1 → {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}

2 → {{1, 4, 7}, {2, 5, 8}, {3, 6, 9}}

3 → {{1, 6, 8}, {2, 4, 9}, {3, 5, 7}}

4 → {{1, 5, 9}, {2, 6, 7}, {3, 4, 8}}

The columns of a covering array with a k-alphabet and n

rows determine k-partitions of an n-set.
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Qualitative Independence
Let A,B be k-partitions of an n-set,

A = {A1, A2, . . . , Ak} and B = {B1, B2, . . . , Bk}.
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Qualitative Independence
Let A,B be k-partitions of an n-set,

A = {A1, A2, . . . , Ak} and B = {B1, B2, . . . , Bk}.

A and B are qualitatively independent if

Ai ∩ Bj 6= ∅ for all i and j.
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Qualitative Independence
Let A,B be k-partitions of an n-set,

A = {A1, A2, . . . , Ak} and B = {B1, B2, . . . , Bk}.

A and B are qualitatively independent if

Ai ∩ Bj 6= ∅ for all i and j.

Two partitions formed from the columns in a
covering array are qualitatively independent.
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Qualitative Independence Graph
The graph QI(n, k) has
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Qualitative Independence Graph
The graph QI(n, k) has

⋆ vertex set the set of all k-partitions of an
n-set,
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Qualitative Independence Graph
The graph QI(n, k) has

⋆ vertex set the set of all k-partitions of an
n-set,

⋆ and vertices are connected iff the partitions
are qualitatively independent.
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Qualitative Independence Graph
The graph QI(n, k) has

⋆ vertex set the set of all k-partitions of an
n-set,

⋆ and vertices are connected iff the partitions
are qualitatively independent.

The graph QI(4, 2):
1 2 | 3 4 

1 3 | 2 4 1 4 | 2 3 
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Qualitative Independence Graph
The graph QI(n, k) has

⋆ vertex set the set of all k-partitions of an
n-set,

⋆ and vertices are connected iff the partitions
are qualitatively independent.

The graph QI(5, 2):

134 | 25 145 | 23

125 | 34

135 | 24

124 | 35
15 | 234

12 | 345

13 | 245

123 | 45

14 | 235

124 | 35

135 | 24
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Why is QI(n, k) Interesting?
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Why is QI(n, k) Interesting?
Theorem (M. and Stevens, 2002) An r-clique in
QI(n, k) is equivalent to a covering array with
r columns and n rows.
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Why is QI(n, k) Interesting?
Theorem (M. and Stevens, 2002) An r-clique in
QI(n, k) is equivalent to a covering array with
r columns and n rows.

Theorem (M. and Stevens, 2002) A covering array on
a graph G with n rows and alphabet k exists iff
there is a homomorphism to QI(n, k).
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Why is QI(n, k) Interesting?
Theorem (M. and Stevens, 2002) An r-clique in
QI(n, k) is equivalent to a covering array with
r columns and n rows.

Theorem (M. and Stevens, 2002) A covering array on
a graph G with n rows and alphabet k exists iff
there is a homomorphism to QI(n, k).

Theorem (M. and Stevens, 2002) The minimal
size of a covering array on a graph G is

min{n : G → QI(n, k).}
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Uniform Subgraph
The uniform qualitative independence graph,
UQI(kℓ, k) has
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Uniform Subgraph
The uniform qualitative independence graph,
UQI(kℓ, k) has

⋆ vertex set all uniform k-partitions of a kℓ-set
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Uniform Subgraph
The uniform qualitative independence graph,
UQI(kℓ, k) has

⋆ vertex set all uniform k-partitions of a kℓ-set

⋆ and partitions are adjacent iff they are
qualitatively independent.
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Uniform Subgraph
The uniform qualitative independence graph,
UQI(kℓ, k) has

⋆ vertex set all uniform k-partitions of a kℓ-set

⋆ and partitions are adjacent iff they are
qualitatively independent.

A clique in UQI(kℓ, k) is equivalent to a
balanced covering array

(each letter occurs the same number of
times in each column.)
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Example 1: UQI(k2, k)
⋆ The graph UQI(k2, k) is vertex transitive.
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⋆ The size of the maximum clique is bounded by

number of vertices

size of an independent set
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Example 1: UQI(k2, k)
⋆ The graph UQI(k2, k) is vertex transitive.

⋆ The size of the maximum clique is bounded by

number of vertices

size of an independent set

⋆ The collection of all partitions with 1 and 2 in the same
part is an independent set.
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Example 1: UQI(k2, k)
⋆ The graph UQI(k2, k) is vertex transitive.

⋆ The size of the maximum clique is bounded by

number of vertices

size of an independent set

⋆ The collection of all partitions with 1 and 2 in the same
part is an independent set.

⋆ This bounds the size of a clique by k + 1.
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Example 1: UQI(k2, k)
⋆ The graph UQI(k2, k) is vertex transitive.

⋆ The size of the maximum clique is bounded by

number of vertices

size of an independent set

⋆ The collection of all partitions with 1 and 2 in the same
part is an independent set.

⋆ This bounds the size of a clique by k + 1.

⋆ A covering array with k2 rows on a k-alphabet can have
no more than k + 1 columns.
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Example 2: UQI(12, 3)
It is known that the minimal number of rows in covering
array with 8 columns and an alphabet size 3 is 12 or 13.
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Example 2: UQI(12, 3)
It is known that the minimal number of rows in covering
array with 8 columns and an alphabet size 3 is 12 or 13.

What is ω(UQI(12, 3))?
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Example 2: UQI(12, 3)
It is known that the minimal number of rows in covering
array with 8 columns and an alphabet size 3 is 12 or 13.

What is ω(UQI(12, 3))?

UQI(12, 3) in an association scheme so the ratio bound holds

ω(UQI(12, 3)) ≤ 1 −
d

τ
= 7

where d is the largest eigenvalue and τ is the smallest.
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Example 2: UQI(12, 3)
It is known that the minimal number of rows in covering
array with 8 columns and an alphabet size 3 is 12 or 13.

What is ω(UQI(12, 3))?

UQI(12, 3) in an association scheme so the ratio bound holds

ω(UQI(12, 3)) ≤ 1 −
d

τ
= 7

where d is the largest eigenvalue and τ is the smallest.

There does not exist a balanced covering array with 12
rows and 8 columns with an alphabet of size three.
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Conclusion
Open problems:
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Conclusion
Open problems:

⋆ Determine the chromatic number of QI(n, k)
and UQI(n, k).
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Conclusion
Open problems:

⋆ Determine the chromatic number of QI(n, k)
and UQI(n, k).

⋆ Find the maximum independent sets in
UQI(kℓ, k).
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Conclusion
Open problems:

⋆ Determine the chromatic number of QI(n, k)
and UQI(n, k).

⋆ Find the maximum independent sets in
UQI(kℓ, k).

⋆ Find all eigenvalues of UQI(kℓ, k).
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Conclusion
Open problems:

⋆ Determine the chromatic number of QI(n, k)
and UQI(n, k).

⋆ Find the maximum independent sets in
UQI(kℓ, k).

⋆ Find all eigenvalues of UQI(kℓ, k).

⋆ Generalize eigenvalue bound for UQI(12, 3)
to more cases.
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