Koper Summer School - Problem Set Day 3

- 1. Derangements
 - (a) Give a recursive formula for the number of derangements in Sym(n).
 - (b) Show that the number of derangements in Sym(n) is close to $\frac{n!}{e}$.
 - (c) Try calculating the eigenvalues of Γ_G for some small groups G. (Any regular group, a Frobenius group, Sym(4) for some values of q, or all values).
 - (d) If G is a 2-transitive group, let $\chi(g) = fix(g) 1$. Show that the χ -module is spanned by the balanced characteristic vectors of the canonical intersecting sets $S_{i,j}$.
 - (e) Find the eigenvalues of the derangement graph of PGL(2, q).
 - (f) All the dihedral groups have the property the only the canonical intersecting set are maximum intersecting set. Prove this by looking at the group action.
- 2. Cayley graphs
 - (a) Show a Cayley graph Cay(G, C) is connected if and only if C generates the group.
 - (b) When is Cay(G, C) the join of smaller graphs?
- 3. Clique-coclique bound
 - (a) Apply the clique-coclique bound for Hamming graph? Can you find all cocliques in this graph using the clique-coclique bound.
 - (b) Apply the clique-coclique to the Kneser graphs. When does this bound hold with equality?
 - (c) Read Wang and Zhang's paper proving uniqueness of the maximum cocliques in $\Gamma_{\text{Sym}(n)}$ using the clique-coclique bound.