1. Derangements
(a) Give a recursive formula for the number of derangements in $\operatorname{Sym}(n)$.
(b) Show that the number of derangements in $\operatorname{Sym}(n)$ is close to $\frac{n!}{e}$.
(c) Try calculating the eigenvalues of Γ_{G} for some small groups G. (Any regular group, a Frobenius group, $\operatorname{Sym}(4)$ for some values of q, or all values).
(d) If G is a 2 -transitive group, let $\chi(g)=f i x(g)-\mathbf{1}$. Show that the χ-module is spanned by the balanced characteristic vectors of the canonical intersecting sets $S_{i, j}$.
(e) Find the eigenvalues of the derangement graph of $\operatorname{PGL}(2, q)$.
(f) All the dihedral groups have the property the only the canonical intersecting set are maximum intersecting set. Prove this by looking at the group action.
2. Cayley graphs
(a) Show a Cayley graph $\operatorname{Cay}(G, C)$ is connected if and only if C generates the group.
(b) When is $\operatorname{Cay}(G, C)$ the join of smaller graphs?
3. Clique-coclique bound
(a) Apply the clique-coclique bound for Hamming graph? Can you find all cocliques in this graph using the clique-coclique bound.
(b) Apply the clique-coclique to the Kneser graphs. When does this bound hold with equality?
(c) Read Wang and Zhang's paper proving uniqueness of the maximum cocliques in $\Gamma_{\mathrm{Sym}(n)}$ using the clique-coclique bound.
