Computing $q(K_{m,n})$

Let G be a bipartite graph with parts (X,Y) such that $0 < |X| = m \le n = |Y|$. Define $\mathcal{B}(G)$ to be the set of all real $m \times n$ matrices B whose rows and columns are indexed by X and Y, respectively and for which $B_{x,y} \ne 0$ if and only if $x \sim y$. We have the following:

Theorem 1. For any non-empty bipartite graph G, if there is a $B \in \mathcal{B}(G)$ whose set of rows and set of columns are orthonormal, then q(G) = 2.

Proof. Assume that there is such a $B \in \mathcal{B}(G)$. Then since the row and the column spaces of B have the same dimension, we must have m = n. Also, the following matrix is in $\mathcal{S}(G)$:

$$A = \left(\begin{array}{cc} 0 & B \\ B^{\top} & 0 \end{array} \right).$$

But we have

$$A^2 = \left(\begin{array}{cc} I_{n,n} & 0\\ 0 & I_{n,n} \end{array}\right) = I.$$

This implies that A has exactly 2 distinct eigenvalues. Therefore q(G) = 2.

We also observe the following:

Proposition 2. For any bipartite graph G with parts (X,Y), if q(G)=2 then |X|=|Y|.

Proof. There is a matrix

$$A = \begin{pmatrix} D_1 & B \\ & & \\ B^\top & D_2 \end{pmatrix} \in \mathcal{S}(G),$$

which has two distinct eigenvalues and in which D_1 ad D_2 are diagonal. By shifting and scaling, we can assume that the eigenvalues of A are -1, 1. Therefore $A^2 = I$. But then we should have

$$A^{2} = \begin{pmatrix} D_{1}^{2} + BB^{\top} & D_{1}B + BD_{2} \\ B^{\top}D_{1} + D_{2}B^{\top} & B^{\top}B + D_{2}^{2} \end{pmatrix} = I.$$

This implies that BB^{\top} and $B^{\top}B$ are diagonal. Therefore the rows and columns of B must be orthogonal (and so linearly independent). Thus B must be a square matrix and so |X| = |Y|.

Lemma 3. For any $n \ge 1$, there is a real orthogonal $n \times n$ matrix all of whose entries are non-zero.

Proof. The lemma is easy for n=1,2. Assume, therefore, that n>2. Then it is not difficult to see that the matrix $B=I-\frac{2}{n}J$ is a real orthogonal matrix all of whose entries are non-zero.

Using Theorem 1 and Lemma 3, it is easy to see the following:

Corollary 4. For any $1 \le m \le n$ we have

$$q(K_{m,n}) = \begin{cases} 2 : m = n \\ 3 : m < n \end{cases}$$

Proof. If m = n, it is enough to normalize the real orthogonal matrix in Lemma 3 and use it in Theorem 1. If m < n, then according to Proposition 2, we have $q(G) \ge 3$. On the other hand, the adjacency matrix of $K_{m,n}$ has 3 distinct eigenvalues, which completes the proof.

Corollary 5. Let the non-empty graph G be any union of complete and complete bipartite graphs as follows:

$$G = \left(\bigcup_{i=1}^r K_{m_i}\right) \bigcup \left(\bigcup_{j=1}^s K_{n_j, n_j}\right).$$

Then q(G) = 2.

Proof. According to Lemma 3, there are real symmetric orthonormal matrices B_1, \ldots, B_r and C_1, \ldots, C_s where B_i is $m_i \times m_i$ and C_j is $n_j \times n_j$, all of whose entries are non-zero. Then

and it is easy to see that

$$A^2 = I;$$

therefore q(G) = 2.