Minimum Number of Distinct Eigenvalues of Cycles

In this document we prove that for any even cycle C,, ¢(C,,) is equal to the diameter, i.e. n/2 and for
any odd cycle Cy,, ¢(Cy,) is equal to the diameter plus one, i.e. |n/2]| + 1.

Assume, first, that n > 4 is even and consider the sequence of nx n matrices {I = B, B B2 1
in which, for any & > 1, we define

k—1 k—1 .
BMV+BMY 0 1<j<n
k - - )
Bij =q Bl VBT =1
B =BTV 1 j=n.
It is easy to see that
[0 1 0 0 0 -1
1 010 0 O
0 1 01 0 O
BW = ; € S(Cp)
0 0 0 0 1 0
0o o000 - 1
| -1 00 0 --- 1 0 |

Let A= B®. We prove the following
Lemma 1. For any k > 0, we have Ak = B,

Proof. We prove the lemma by induction on k. The base case is trivial. Assume the lemma holds for k.
For any ¢, 7, with 1 < j < n, we have

(AR = (AFA); = (BWA),

= (B™); 1A+ +(BW); o141+ (BW) A+ (BW)Y), i Ajra i+ +(BW); A
= (B®)i ;-1 4+ (BM), 41 = (BEH), ;.
Also, if j = 1, we have

(AR, = (AR A); 1 = (B A);y

= (B™); 1411 4+ (BW™); 0451 + (B®); 3431 + -+ (B®) o 1A, 11+ (B™); Apa
= (B(k))i 2 — (B(k))i n = (B(kﬂ))z 15

and similarly
(AkJrl)i n — (B(k))z n—1 — (B(k))l 1= (B(k+1))i ns

which completes the proof. O

For any n x n matrix X, we define A;(X) to be the j-th “super-diagonal” of X, j =1,...,n. More
precisely,
AG(X) = (X1, Xojr1,- s Xnojrin)

Using Lemma 1 and induction on k, it is not hard to show that for any k, and 1 < j < n,
A(AR) = ((A")15, (A1, (AF)1);

i.e. all the elements on the super-diagonals are equal (to the entry on the first row). For any k define
supp(A*) to be the set of indices j € {1,...,n} for which (4%);; # 0. Let n = 2m.



Lemma 2. Assume k < m — 1.

(a) If k is even, then
supp(A¥) = {1,3,... k+1}U{n—-1,n—3,...,n —k}.

(b) If k is odd, then
supp(A¥) = {2,4,... k+1}U{n,n—2,...,n—k+1}.

Furthermore, (A¥); ; = —(A¥)1 ,—j+2, mod n, for any j < k + 1.

Proof. The proof is by induction on k. The lemma is clearly true for k = 0,1. Assume the lemma holds
for k, and let k + 1 be even. By Lemma 1, the first row of A**! is as follows:

(AN, (A e, (A ) e, o (AT e, (AR g, o, (AT 1)
=[(A")12 = (A%)10, (A% + (A1, ..,
(A 1+ (A" 1kr2, (A% pgr + (A% 1 kys, oo,
(A k1 + (A k1, (AN ek + (AN ka2, -,
(Ak)l,n—Q + (Ak)l,na cee (Ak)l,n—l - (Ak)1,1]~
Therefore, using part (b) of the lemma and the induction hypothesis, it suffices to show that
(A1 g1 + (A1 kg3 = (A 1n—i-1 — (A" 1k

To see this, note that since k < m — 1, we have k +3 < n — k + 1 and so (A¥); 13 = 0 and we have
n—k—1>k+1and so (Ak)lyn,k,l = 0. Now by induction hypothesis (Ak:)l’kJrl = —(Ak)lm,kﬂ which
completes the proof of part (a).

Proof of part (b) is similar. O

The following is an easy consequence of Lemma 2.

Corollary 3. (a) If m is even, then
supp(A™) = supp(A™ ) ={1,3,...,m -1} U{n—1,n—3,...,m+2}.
(b) If m is odd, then
supp(A™) = supp(A™ %) = {2,4,...,m — 1} U{n,n —2,...,m + 3}.

Furthermore, (A™)1 ; = —(A™)1,n—j+2, mod n, for any j < m — 1.

Now we are ready to prove the main result.
Theorem 4. For any even n > 4, we have

q(Cr) = n/2 = diam(C,).

Proof. Assume m is even; the other case is similar. First note that, according to Lemma 3, there is a
real constant a,,,_o such that

supp(A™ + a2 A™ ) ={1,3,... o m -3} U{n—1,n—3,...,m} = supp(4™?).
Now using Lemma 2, one can find real constants a,,_4, ..., as, ag such that
Supp(A™ + a2 A™ % g AT 4 Fan A% Fap]) = 0.

In other words, A satisfies in the polynomial p(t) = t"™ + @y, _2t™ 2 + -+ + ast® + ag. This means that
the minimal polynomial of A is of degree at most m. Therefore, A has at most m distinct eigenvalues.
We have, thus, proved that ¢(C,,) < m.

On the other hand, since the diameter of C,, is m, no matrix in S(G) can satisfy in a polynomial of
degree < m. Thus ¢(C,) > m, which completes the proof. O



Theorem 4 is not true for odd cycles. According to Shaun’s conclusion, we have
diam(C,,) < ¢(Cy) < diam(C,,) + 1. (1)
We prove the following

Theorem 5. For any odd n > 3, we have
q(Cy) = [n/2] +1 = diam(C,,) + 1.

Proof. Assume m = [n/2]. Suppose A € S(Cy,). It is not hard to see by induction on k that for any
k < m and for any polynomial p(t) of degree k, we have

(p(A))i,i+k = Ai,iJrl Ai+1,i+2 e Ak,k+1, fOI‘ all 7= ]., ey, — k
In particular, if p(¢) is a polynomial of degree m, then we have

(p(A))l,mH =A12 A3 - Ammtl- (2)

On the other hand, if ¢(C,) = m, then p(A4) = 0, for some polynomial p(t) of degree m. According to
(2), then, we must have
A2 Aas - Apmyr =0,

which implies that at least one of the entries A1 2, As3, -+, Am m+1 must be zero. But this contradicts
the fact that A € S(C,,). Thus ¢(C,) > m. Noting (1) then will complete the proof. O



