
Minimum Number of Distinct Eigenvalues of Cycles

In this document we prove that for any even cycle Cn, q(Cn) is equal to the diameter, i.e. n/2 and for
any odd cycle Cn, q(Cn) is equal to the diameter plus one, i.e. bn/2c+ 1.

Assume, first, that n ≥ 4 is even and consider the sequence of n×n matrices {I = B(0), B(1), B(2), . . .},
in which, for any k ≥ 1, we define

B
(k)
i,j =



B
(k−1)
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(k−1)
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B
(k−1)
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(k−1)
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B
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It is easy to see that

B(1) =



0 1 0 0 · · · 0 −1
1 0 1 0 · · · 0 0
0 1 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1
−1 0 0 0 · · · 1 0


∈ S(Cn).

Let A = B(1). We prove the following

Lemma 1. For any k ≥ 0, we have Ak = B(k).

Proof. We prove the lemma by induction on k. The base case is trivial. Assume the lemma holds for k.
For any i, j, with 1 < j < n, we have

(Ak+1)i,j = (AkA)i,j = (B(k)A)i,j

= (B(k))i,1A1,j+· · ·+(B(k))i,j−1Aj−1,j+(B(k))i,jAj,j+(B(k))i,j+1Aj+1,j+· · ·+(B(k))i,nAn,j

= (B(k))i,j−1 + (B(k))i,j+1 = (B(k+1))i,j .

Also, if j = 1, we have

(Ak+1)i,1 = (AkA)i,1 = (B(k)A)i,1

= (B(k))i,1A1,1 + (B(k))i,2A2,1 + (B(k))i,3A3,1 + · · ·+ (B(k))i,n−1An−1,1 + (B(k))i,nAn,1

= (B(k))i,2 − (B(k))i,n = (B(k+1))i,1;

and similarly
(Ak+1)i,n = (B(k))i,n−1 − (B(k))i,1 = (B(k+1))i,n,

which completes the proof.

For any n× n matrix X, we define ∆j(X) to be the j-th “super-diagonal” of X, j = 1, . . . , n. More
precisely,

∆j(X) = (X1,j , X2,j+1, . . . , Xn−j+1,n).

Using Lemma 1 and induction on k, it is not hard to show that for any k, and 1 ≤ j ≤ n,

∆j(A
k) = ((Ak)1,j , (A

k)1,j , . . . , (A
k)1,j);

i.e. all the elements on the super-diagonals are equal (to the entry on the first row). For any k define
supp(Ak) to be the set of indices j ∈ {1, . . . , n} for which (Ak)1,j 6= 0. Let n = 2m.
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Lemma 2. Assume k ≤ m− 1.

(a) If k is even, then
supp(Ak) = {1, 3, . . . , k + 1} ∪ {n− 1, n− 3, . . . , n− k}.

(b) If k is odd, then
supp(Ak) = {2, 4, . . . , k + 1} ∪ {n, n− 2, . . . , n− k + 1}.

Furthermore, (Ak)1,j = −(Ak)1,n−j+2, mod n, for any j ≤ k + 1.

Proof. The proof is by induction on k. The lemma is clearly true for k = 0, 1. Assume the lemma holds
for k, and let k + 1 be even. By Lemma 1, the first row of Ak+1 is as follows:

[(Ak+1)1,1 , . . . , (Ak+1)1,k+1 , (Ak+1)1,k+2 , . . . , (A
k+1)1,n−k , (Ak+1)1,n−k+1 , . . . , (Ak+1)1,n]

= [(Ak)1,2 − (Ak)1,n , (Ak)1,1 + (Ak)1,3 , . . . ,

(Ak)1,k + (Ak)1,k+2 , (Ak)1,k+1 + (Ak)1,k+3 , . . . ,

(Ak)1,n−k−1 + (Ak)1,n−k+1 , (Ak)1,n−k + (Ak)1,n−k+2 , . . . ,

(Ak)1,n−2 + (Ak)1,n , . . . , (Ak)1,n−1 − (Ak)1,1 ].

Therefore, using part (b) of the lemma and the induction hypothesis, it suffices to show that

(Ak)1,k+1 + (Ak)1,k+3 = −(Ak)1,n−k−1 − (Ak)1,n−k+1.

To see this, note that since k < m − 1, we have k + 3 < n − k + 1 and so (Ak)1,k+3 = 0 and we have
n−k−1 > k+1 and so (Ak)1,n−k−1 = 0. Now by induction hypothesis (Ak)1,k+1 = −(Ak)1,n−k+1 which
completes the proof of part (a).

Proof of part (b) is similar.

The following is an easy consequence of Lemma 2.

Corollary 3. (a) If m is even, then

supp(Am) = supp(Am−2) = {1, 3, . . . ,m− 1} ∪ {n− 1, n− 3, . . . ,m + 2}.

(b) If m is odd, then

supp(Am) = supp(Am−2) = {2, 4, . . . ,m− 1} ∪ {n, n− 2, . . . ,m + 3}.

Furthermore, (Am)1,j = −(Am)1,n−j+2, mod n, for any j ≤ m− 1.

Now we are ready to prove the main result.

Theorem 4. For any even n ≥ 4, we have

q(Cn) = n/2 = diam(Cn).

Proof. Assume m is even; the other case is similar. First note that, according to Lemma 3, there is a
real constant am−2 such that

supp(Am + am−2A
m−2) = {1, 3, . . . ,m− 3} ∪ {n− 1, n− 3, . . . ,m} = supp(Am−4).

Now using Lemma 2, one can find real constants am−4, . . . , a2, a0 such that

supp(Am + am−2A
m−2 + am−4A

m−4 + · · ·+ a2A
2 + a0I) = ∅.

In other words, A satisfies in the polynomial p(t) = tm + am−2t
m−2 + · · · + a2t

2 + a0. This means that
the minimal polynomial of A is of degree at most m. Therefore, A has at most m distinct eigenvalues.
We have, thus, proved that q(Cn) ≤ m.

On the other hand, since the diameter of Cn is m, no matrix in S(G) can satisfy in a polynomial of
degree < m. Thus q(Cn) ≥ m, which completes the proof.
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Theorem 4 is not true for odd cycles. According to Shaun’s conclusion, we have

diam(Cn) ≤ q(Cn) ≤ diam(Cn) + 1. (1)

We prove the following

Theorem 5. For any odd n ≥ 3, we have

q(Cn) = dn/2e+ 1 = diam(Cn) + 1.

Proof. Assume m = dn/2e. Suppose A ∈ S(Cn). It is not hard to see by induction on k that for any
k ≤ m and for any polynomial p(t) of degree k, we have

(p(A))i,i+k = Ai,i+1 Ai+1,i+2 · · · Ak,k+1, for all i = 1, . . . , n− k.

In particular, if p(t) is a polynomial of degree m, then we have

(p(A))1,m+1 = A1,2 A2,3 · · · Am,m+1. (2)

On the other hand, if q(Cn) = m, then p(A) = 0, for some polynomial p(t) of degree m. According to
(2), then, we must have

A1,2 A2,3 · · · Am,m+1 = 0,

which implies that at least one of the entries A1,2, A2,3, · · · , Am,m+1 must be zero. But this contradicts
the fact that A ∈ S(Cn). Thus q(Cn) > m. Noting (1) then will complete the proof.
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