- 1. If v is a pendant vertex in a graph G, then $r_v(G) = 0$ or 1. Can we characterize when each case occurs?
- 2. For which graphs is $r_v(G) = 2$ for all $v \in V(G)$?
- 3. Can we characterize which vertices in a graph have $r_v(G) = 2$?

Let G be a graph with a cut-vertex v. Then $r_v(G) = 2$ (or v is rank strong) if and only if one of the following (or potentially both) occur:

- (a) $r_v(H) = 2$ for H a subgraph of G with the property that H v is a component of G v.
- (b) There exist two subgraphs H_1 and H_2 of G with the property that $H_1 v$ and $H_2 v$ are distinct components of G v and $r_v(H_1) = 1$ and $r_v(H_2) = 1$.

The proof of this is from the equation

$$mr(G) = \sum mr(H_i - v) + \min\{2, \sum r_v(H_i)\},$$
 (0.1)

where the sum is taken over all components $H_i - v$ of G - v (so H_i is a subgraph of G that contains v and has the property that $H_i - v$ is a component of G - v).

This is only a partial answer, since we know there are graphs with rank strong vertices that are not cut vertices.

- 4. (a) For which graphs is Z(G) = M(G)?
 - (b) For which graphs is $Z^+(G) = M^+(G)$?
- 5. (a) How far apart can M and Z be?

M and Z can be made arbitrarily far apart. Consider the following example:

This is known as the 5-sun, we will denote it by H_5 . Then it is not hard to see that $M(H_5) = 2$ and $Z(H_5) = 3$ (for this use two pendant vertices from adjacent vertices and the opposite vertex on the 5-cycle).

Concatonate k copies of the 5-sun as shown below:



This is called a vertex sum. The vertex sum of two graphs G and H with $v \in V(G)$ and $v \in V(H)$ (denoted $G \oplus_v H$) is the graph formed by identifying the vertices v in G and H.

The vertex sum of k copies of the 5-sun is called kH_5 . Then $M(kH_5) = k + 1$ and $Z(kH_5) = 2k + 1$.

The fact that $M(kH_5) = k + 1$ follows from the three facts below:

- i. If v is a pendant vertex then $r_v(G) = 0$ or 1.
- ii. If v is a pendant vertex of both G and H then $mr(G \oplus_v H) = mr(G) + mr(H)$. This follows from Equation ??.
- iii. If v is a pendant vertex of both G and H then

$$M(G \oplus_{v} H) = |V(G \oplus_{v} H)| - mr(G \oplus_{v} H)$$

= $(|V(G)| + |V(H)| - 1) - (mr(G) + mr(H))$
= $M(G) + M(H) - 1$.

Thus
$$M(kH_5) = 2k - (k-1) = k+1$$

- (b) Can we find a construction that increases Z but not M or where Z grows faster than M?
- (c) What about M^+ and Z^+ ?
- 6. Can we characterize the vertices in a graph whose deletion increases \mathbb{Z} ?

- 7. Is there a nice proof that $Z^+(G) \geq \delta$ where δ is the minimum degree of the vertices in the graph?
- 8. If H is a subgraph of G then we don't always have that $Z(H) \leq Z(G)$ or $Z^+(H) \leq Z^+(G)$. Can we characterize subgraphs, H, such that $Z(H) \leq Z(G)$ or $Z^+(H) \leq Z^+(G)$? What about $H = K_n$ or $H = C_n$?
- 9. If G is a strongly regular graph, can we say anything good about Z(G)?
- 10. If G is a circulant/Cayley graph can we say anything good about Z(G)?