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Abstract

1 Introduction

In this paper, we prove a higher order Sperner theorem.These theorems are stated after
some notation and background results are introduced.

For i, j positive integers with i ≤ j, let [i, j] denote the set {i, i + 1, . . . , j}. For k, n
positive integers, set

(
[n]
k

)
= {A ⊆ [1, n] : |A| = k}. A system A of subsets of [1, n] is said

to be k-set system if A ⊆
(
[n]
k

)
.

Two subsets A, B are incomparable if A 6⊆ B and B 6⊆ A. A set system on an n-set A
is said to be a Sperner set system, if any two distinct sets in A are incomparable.

Sperner’s Theorem is concerned with the maximal cardinality of Sperner set systems
as well as with the structure of such maximal systems.

Theorem (Sperner’s Theorem [10]). A Sperner set system A of subsets of [1, n]
consists of at most

(
n
bn/2c

)
sets. Moreover, a Sperner set system meets this bound if and

only if A =
(

[n]
bn/2c

)
or A =

(
[n]
dn/2e

)
.

One application of Sperner’s theorem is to give the exactly size of strength-2 binary
covering arrays [?, klietman, katona]

A covering array, denoted CA(n, r, k), is an r×n array with entries from Zk with the
property that for any two rows of the array that each of k2 pairs from Zk × Zk occurs in
some column. These are also known as strength-2 covering arrays. If k = 2 a CA(n, r, k) is
a binary covering array. The rows of a r×n binary covering array are length-n 01-vectors
and as such correspond to a subset of an n-set. The cover property for binary covering
arrays can be characterized in terms of these sets.
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Definition 1 (Qualitatively Independent Subsets). Two subsets A and B of an
n-set are qualitatively independent subsets if

A ∩B 6= ∅, A ∩B 6= ∅, A ∩B 6= ∅, A ∩B 6= ∅.

A strength-2 binary covering array corresponds to a set system in which any two sets
are qualitatively independent. A set system A in which any two A, B ∈ A have the
property that A ∩ B 6= ∅ is called an intersecting set system. An intersecting Sperner
k-set system with 2k ≤ n is a qualitatively independent set system.

This leads to the following result, found independently by Katona and by Kleitman
and Spencer.

Theorem 2 ([?, ?]). If A = {A1, A2, . . . , Ak} is a qualitatively independent set system of
an n-set, then

|A| ≤
(

n− 1

bn/2c − 1

)
.

Further, this bound is attained by the system of all bn/2c-sets which contain a common
element.

This theorem gives the exact size of the optimal binary covering array with r rows can
be found for all r.

Theorem 3 ([?]). Let r be a positive integer, then

CAN(r, 2) = min

{
n :

(
n− 1

bn/2c − 1

)
≥ r

}
.

Both the proof of Theorem ?? given by Katona and by Kleitman and Spencer used
the well-known ErdőS-Ko-Rado Theorem.

Theorem (Erdős-Ko-Rado Theorem [?]). Let k and n be positive integers with 2k <
n. Then for any intersecting k-set system on an n-set A,

|A| ≤
(

n− 1

k − 1

)
.

Moreover, equality holds if and only if A is the collection of all k-sets containing some
fixed element.

A strength-t binary covering array, denoted t-CA(n, r, k), is an r×n array with entries
from Zk with the property that for any set of t rows in the array, each of kt t-tuples from
Zk ×Zk occurs in some column. The rows of a binary (that is, k = 2) strength-t covering
array correspond to a set system. Again, we can characterise the covering property in
terms of the set system.
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Definition 4 (t-Qualitatively Independent Set System). A set system A is a t-
qualitatively independent set system if for any collection of t distinct sets {A1, A2, . . . , At}
with Ai ∈ A or Ai ∈ A for i = 1, . . . , t and Ai 6= Aj for i, j ∈ [1, . . . , t]

A1 ∩ A2 ∩ ... ∩ At 6= ∅

We wish to find a higher strength version of Sperner’s theorem with the goal of ex-
tending Katona’s and Kleitman and Spencer’s exact bound on strength-2 binary covering
arrays to higher strength binary covering arrays.

It is trivial to give a higher order version the Erdős-Ko-Rado Theorem. We say that
a set system A is strength-t intersecting if for any A1, A2, . . . , At ∈ A, ∩t

i=1Ai 6= ∅. If
we remove the uniform conditiono n the set systems, these are also known as r-wise t-
intersecting systems Clearly, for t ≥ 2 a strength-t intersecting set system is intersecting
and Erdős-Ko-Rado Theorem holds for strength-t intersecting set systems.

Extending Sperner’s Theorem is more difficult. We will focus on a strength-3 version
of this theorem.

Definition 5 (Strength-3 Sperner Set System). A set system A is a strength-3
Sperner set system if for any three distinct sets A, B, C ∈ A the following hold:

A 6⊆ B ∪ C B 6⊆ A ∪ C C 6⊆ A ∪B

B ∩ C 6⊆ A A ∩ C 6⊆ B A ∩B 6⊆ C

Clearly, any strength-3 Sperner set system is also a Sperner set system.
The property B ∩ C 6⊆ A implies that for B, C ∈ A, B ∩ C 6= ∅. So any strength-3

Sperner set system is also an intersecting set system.
Further, the property A 6⊆ B ∪C implies A ∩B ∩C 6= ∅ and B ∩C 6⊆ A implies that

A ∩B ∩ C 6= ∅.
If A is a strength-3 Sperner set system then A is also a strength-3 set system.

Lemma 6. If A is a strength-3 Sperner set system, then the set systems

A∩ = {A ∩B : A, B ∈ A, A 6= B}

and
A∪ = {A ∪B : A, B ∈ A, A 6= B}

are Sperner set systems.

Proof. Let A, B, C, D ∈ A and {A, B} 6= {C, D}. We can assume without loss of general-
ity that A 6= C and A 6= D. If A∪B ⊆ C ∪D then A ⊂ C ∪D and A is not a strength-3
Sperner set system. Similarly, if A ∩B ⊆ C ∩D, then A ∩B ⊆ C.

Lemma 7. If A is a 3-qualitatively independent set system, then

{A, A : A ∈ A}

is a strength-3 Sperner set system.
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Theorem 8. If A is a strength-3 Sperner set system on an n-set then(
|A|
2

)
≤
(

n

bn
2
c

)
Proof. The sets A ∩ B are unique. If A ∩ B = C ∩ D then A ∩ B ⊆ C. Lemma 6 and
Sperner’s theorem.

∗ is this right? ∗
All logarithms are base 2.

Theorem 9. [?] limk→∞
CAN(3,r,k)

log r
=
(

k
2

)
.

∗ check this!! ∗
From the bound in Theorem 8 limk→∞

n
logr
≤ n

(n+1) log 2− 1
2

log n
. As n goes to infinity this

limit goes to 1, as predicted from the previous theorem.

Conjecture. The largest strength-3 Sperner set system is an n
2
-set system.

Conjecture. Let A be a largest strength-3 Sperner set system, then A has the property
that for all distinct A, B ∈ A, |A ∩B| = n/4.

Theorem 10. If A is a strength-3 Sperner set system on an n-set then(
|A|
2

)
≤
(

n

bn
2
c − 2

)
Proof. Lemma 6 and Sperner’s theorem. Also that |A ∩B| ≤ bn

2
c − 2.

There have been extensions of Sperner’s Theorem to systems of families of sets [2]
and to systems of subsets of a set X with a 2-partition X = X1 ∪ X2 such that no
two subsets A, B in the system satisfy both A ∩ Xi = B ∩ Xi and A ∩ Xi ⊆ B ∩ Xi

where i ∈ {1, 2} [3, 4, 5]. Our notion of a Sperner partition system is quite different; our
result extends Sperner’s Theorem from sets to set-partitions. A related extension of the
Erdős-Ko-Rado Theorem to set partitions is found in [8].

Bollobás [1] gives a generalization of the LYM Inequality to two families of sets. For
positive integers n, m let A = {Ai, Bi : i = 1, . . . ,m} be a set system of subsets from [1, n]
with the property that Ai ∩ Bi 6= ∅ and Ai 6⊆ Aj ∪ Bj for i 6= j. Then

∑m
i=1

(
n−|Bi|
|Ai|

)
≤

1. This result implies both Sperner’s Theorem and the LYM Inequality but does not
generalize to three families of sets.
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