MORE HADAMARDABLE GRAPHS

MOHAMMAD ADM ${ }^{1,2}$, SHAUN FALLAT ${ }^{1}$, KAREN MEAGHER ${ }^{1}$, SHAHLA NASSERASR ${ }^{1,3}$, MAHSA 1, AND BIDY ${ }^{1}$

Abstract. We aim to give new Hadamard diagonalizable graphs.

1. Introduction

An $n \times n$ matrix is a Hadamard matrix if its entries are all equal to either 1 or -1 , and

$$
H^{t} H=n I_{n}
$$

There are many open questions regarding Hadamard matrices.

$$
H_{2}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

and $H_{2^{k}}=H_{2} \otimes H_{2^{k-1}}$. Thus there is a Hadamard matrix for every power of 2. In general, if H_{1} and H_{2} are both Hadamard matrices then $H_{1} \otimes H_{2}$ is also a Hadamard matrix.

The famou Hadamard conjecture is that a Hadamard matrix of order $4 k$ exists for every positive integer k.

We say that a graph is Hadamardable if there exists a Hadamard matrix H such that the Laplacian matrix for the graph is diagonalized by H. This implies that the columns of the Hadamard matrix are eigenvectors for the graph.

2. A generalized construction

There are a few known constructions for Hadamardable matrices.
The complete graph K_{n} is Hadamardable, provided that a Hadamard matrix of order n exists.

Hadamardable implies the graph is regular and all its Laplacian eigenvalues are even integers.

Theorem 2.1. If X and Y are both Hadamardable graphs of order n and m respectively then
(1) X^{c} is Hadamardable;
(2) $X \cup X$ is Hadamardable (this is the disjoint union);
(3) $X \vee X$ is Hadamardable;
(4) $X \square Y$ is Hadamardable, provided that $n=m$.

[^0]The direct product of graphs X and Y is the graph with vertex set $X \times Y$ and two vertices $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are adjacent if x_{1} and x_{2} are adjacent in X, and y_{1} and y_{2} are adjacent in Y. This product is denoted by $X \times Y$ and

$$
A(X \times Y)=A(X) \otimes A(Y)
$$

Lemma 2.2. If $v_{1}, v_{2}, \ldots, v_{n}$ is a set of eigenvectors for A, and $w_{1}, w_{2}, \ldots, w_{m}$ is a set of eigenvectors for B then $v_{i} \otimes w_{j}$ is a set of eigenvectors for $A \otimes B$.

This easily implies the following.
Lemma 2.3. If X and Y are both Hadamardable graphs then $X \times Y$ is also Hadamardable.

Proof. Let H_{X} is the Hadamard matrix that diagonalizes X, and H_{Y} is the Hadamard matrix that diagonalizes Y. Then $h_{X}(i) \otimes h_{Y}(j)$ are eigenvectors for $X \times Y$. The matrix with $h_{X}(i) \times h_{Y}(j)$ as its columns is a Hadamard matrix that diagonalizes $X \times Y$.

For two X and Y on the same vertex set, that have no edges in common, define $X+Y$ to be the graph on the same vertex set as X and Y and with edge set the union of the edges in X and the edges in Y.

Lemma 2.4. Let X and Y be graphs on the same vertex set that have no edges in common. If X and Y are Hadamardable with the same Hadamard matrix then $X+Y$ is also Hadamardable.

Proof. Since $A(X+Y)=A(X)+A(Y)$, if H is a Hadamard matrix that diagonalizes both X and Y, then H also diagonalizes $X+Y$.

The constructions in 2.1 are generalizations of this result.
For example,

$$
A(X \cup X)=I_{2} \times A(X)
$$

I_{2} can be considered to be the Laplacian matrix for the graph with two vertices, each with a loop but no other adjacencies. This is Hadamard diagonalizable with the matrix

$$
\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) .
$$

Let X be a graph on n vertices, then

$$
A(X \vee X)=\left(I_{2} \times A(X)\right)+\left(\left(J_{2}-I_{2}\right) \otimes J_{n}\right)
$$

The matrix $J_{2}-I_{2}$ is Hadamardable diagonalizable with the same matrix at I_{2} (so H_{2} diagaonalizes both matrices). Further, assume that H is a Hadamard matrix that diagonalizes X, then H also diagonalizes J_{n}. So both $I_{2} \times A(X)$ and $\left(J_{2}-\right.$ $\left.I_{2}\right) \otimes J_{n}$ can be diagonalized by $H_{2} \otimes H$.

If H is a Hadamard matrix of order n, the both J_{n} and I_{n} are diagonalizable with H, as is the matrix $J_{n}-I_{n}$. If X is a Hadamardable graph with Hadamard matrix H, then the matrix

$$
\left(I_{n} \otimes X\right)+\left(\left(J_{n}-I_{n}\right) \otimes\left(J_{n}-I_{n}\right)\right)
$$

is also Hadamardable with matrix $H \otimes H$. This is the graph formed by taking the join of X with itself $|X|$ times and between each pair of copies of X a perfect matching is removed.

If X is a Hadamardable graph with Hadamard matrix H, then the matrix

$$
\left(I_{2} \otimes X\right)+\left(\left(J_{2}-I_{2}\right) \otimes\left(J_{n}-I_{n}\right)\right)
$$

is also Hadamardable. This is the adjacencies matrix for the join of X with X and perfect matching is removed between copied of X.

3. Orthogonal Arrays graphs

The block graph for an orthogonal array for an orthogonal array denoted by $O A(m, n)$ has a vertex for each column of the array and the vertices are adjacent if the two columns have the same entry in the same position. This graph is denoted by $X_{O A(m, n)}$.

The orthogonal array graph is strongly regular, for an $O A(m, n)$ the parameters of the orthogonal array graph are given in the theorem below (directly copied from my book).

Theorem 3.1. If $O A(m, n)$ is an orthogonal array where $m<n+1$, then its block graph $X_{O A(m, n)}$ is strongly regular, with parameters

$$
\left(n^{2}, \quad m(n-1) ; \quad(m-1)(m-2)+n-2, \quad m(m-1)\right),
$$

and modified matrix of eigenvalues

$$
\left(\begin{array}{c|cc}
1 & m(n-1) & (n-1)(n+1-m) \\
m(n-1) & n-m & m-n-1 \\
(n-1)(n+1-m) & -m & m-1
\end{array}\right)
$$

The Lacplacian eigenvalues are $0, n(m-1), m n$. So we will consider orthogonal arrays with n even.

MacNeish's construction (?, Section 6.4.2) can be used to build a $O A\left(m, n^{2}\right)$ from an $O A(m, n)$. If the columns of the $O A(m, n)$ are denoted by c_{i}, then the columns of the $O A\left(m, n^{2}\right)$ are given by $c_{i}+k c_{j}$ for $k \in\{0, \ldots, n-1\}$.

For example, the following $O A(3,2)$

$$
O A_{1}=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

can be used to construct this $O A(3,4)$

$$
O A_{2}=\left[\begin{array}{llll}
0011 & 0011 & 2233 & 2233 \\
0101 & 2323 & 0101 & 2323 \\
0110 & 2332 & 2332 & 0110
\end{array}\right]
$$

Consider an $O A(m, n)$, denoted by $O A$, further, denote the columns of $O A$ by $c_{i}, c_{2}, \ldots, c_{n^{2}}$. For each row in the orthogonal array, define an $n^{2} \times n^{2}$ matrix M_{i} with $i \in\{1, \ldots, m\}$. The rows and columns of M_{i} are indexed by the columns in $O A$ and the $\left(c_{i}, c_{j}\right)$-entry of M_{i} is 1 if c_{i} and c_{j} agree in row i, and zero otherwise. Call the matrices M_{i} with $i \in\{1, \ldots, m\}$ the row matrices of $O A(m, n)$. Note that M_{i} and M_{j} are Schur idempotents, so $M_{i} \circ M_{j}=\delta_{i, j} M_{i}$

In an orthogonal array two distinct columns either have 1 row in which they have the same entry (we say the columns intersect) or they do not agree in any
rows. Thus the $\left(c_{i}, c_{j}\right)$-entry of the matrix

$$
\sum_{i=1}^{m} M_{i}
$$

is m if $i=j, 1$ if columns c_{i} and c_{j} intersect and 0 otherwise. The adjacency matrix of the orthogonal array graph $X_{O A(m, n)}$ is

$$
-m I_{n^{2}}+\sum_{i=1}^{m} M_{i}=\sum_{i=1}^{m}\left(M_{i}-I\right)
$$

Lemma 3.2. Let $O A(m, n)$ be an orthogonal array with row matrices M_{i}. If $O A\left(m, n^{2}\right)$ is the orthogonal array formed from McNeish's construction with $O A(m, n)$, then the row matrices of X are $M_{i} \otimes M_{i}$.

Proof. Let c_{i} be the columns of the $O A(m, n)$. Then the columns of $O A\left(m, n^{2}\right)$ are $n c_{i}+c_{j}$. So columns $n c_{i}+c_{j}$ and $n c_{k}+c_{\ell}$ intersect in row r if and only if both c_{i} and c_{k}, and c_{j} and c_{ℓ} intersect in row r. So the $r^{t h}$ row matrix for $O A\left(m, n^{2}\right)$ is $M_{r} \otimes M_{r}$.

Corollary 3.3. Assume that $O A(m, n)$ is an orthogonal array and each row matrix of $O A(m, n)$ is Hadamardable with Hadamard matrix H. If $O A\left(m, n^{2}\right)$ is obtained from $O A(m, n)$ by MacNiesh's construction, then every row matrix for $O A\left(m, n^{2}\right)$ and $X_{O A\left(m, n^{2}\right)}$ are also Hadamardable.

Proof. Let M_{i} be the row matrices for $O A(m, n)$. Each of these matrices are Hadamardable with H.

From the previous lemma the row matrices are $M_{i} \otimes M_{i}$ and the adjacency matrix of $X_{O A\left(m, n^{2}\right)}$ is

$$
\sum_{i=1}^{m}\left(\left(M_{i} \otimes M_{i}\right)-I_{n^{4}}\right) .
$$

This is a sum of matrices that are all Hadamardable by H.
Question 3.1. Can an orthogonal array graph be Hadamardable while its row matrices are not?
3.1. An example. Define

$$
O A_{1}=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

The orthogonal array graph for $O A_{1}$ is the complete graph, so it is Hadamardable. The eigenvectors that diagonalize it are

$$
v_{0}=(1,1,1,1), v_{1}=(1,1,-1,-1), v_{2}=(1,-1,1,-1), v_{3}=(1,-1,-1,1)
$$

Consider the following three matrices:

$$
M_{1}=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) \quad M_{2}=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right) \quad M_{3}=\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

Note that B is formed by permutating the second and third rows and columns of matrix A, and C is formed by permuting the second and fourth rows and columns of
A. (These are the same permutations that change vector v_{1} in to v_{2} and v_{3}.) Thus these matrices all have every v_{i} as an eigenvector. So each of M_{i} is Hadamardable with $H=\left[v_{1}, v_{2}, v_{3}\right]$

Recursively define $O A_{k}$ be the $O A\left(m, 2^{k}\right)$ formed by McNeish's construction on $O A_{k-1}$. From Corollary 3.3 we have the following result.
Lemma 3.4. For all k, the graph $X_{O A_{k}}$ is Hadamardable.
Conjecture 3.1. If $X_{O A(m, n)}$ is Hadamardable and $O A\left(m, n^{2}\right)$ is obtained from $O A(m, n)$ by MacNiesh's construction, then $X_{O A\left(m, n^{2}\right)}$ is also Hadamardable.
3.2. Latin Square Graph. An orthogonal array with 3 rows is equivalent to a Latin square. Each column of such an array has three letters, and each column describes an entry in a Latin square; the first two letters give the row and the column and the three letter is the entry is the given row and column.

A transversal in an $n \times n$ Latin square is a set of n entries in the squares so that no two of the entries are in the same row, or in the same column or have the same value. A complete set of transversals is a partition of the entries of the Latin square into disjoint transversals.

The orthogonal array graph for an orthogonal array with 3 rows is the Latin square graph of the corresponding Latin square.

Conjecture 3.2. If the Latin square graph for a Latin square L is Hadamardable, then L has a complete set of transversals.

4. Further work

Note that Setion 2 shows the variety of matrices that can be diagonalized by a Hadamard matrix. Each of A, B, C can be any 01 matrix that is diagonalized by a given Hadamard matrix.

[^0]: Date: October 21, 2018.
 2010 Mathematics Subject Classification. 05C50, 15A18 .
 Key words and phrases. Hadamard matrices; Laplacians.
 1 Your University.
 ${ }^{3}$ Department of Mathematics and Computer Science, Brandon University, Brandon, MB R7A 6A9, Canada.

