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1 Bound for Max Clique in the Partition Graph

For positive integers n, k, ` with n = k`, a uniform k-partition of an n-set
is a partition of an n-set into k classes each of size `. If k does not divide
n, it is not possible to have uniform k-partitions of an n-set. In this case,
almost-uniform partitions are considered. For positive integers n, k, ` with
n = k` + r where 0 ≤ r < k, an almost-uniform k-partition of an n-set is a
partition of an n-set into k classes, each of size ` or `+ 1.

Partitions P = {P1, P2, ..., Pk} and Q = {Q1, Q2, ..., Qk} are called quali-
tatively independent if for all i, j ∈ {1, ..., k}

Pi ∩Qj 6= ∅.

If P and Q are qualitatively independent k-partitions of an n-set then the
characteristic vectors of P and Q could be two rows in a covering array with
parameters CA(n, b, k).

1.1 Definition (Partition Graph). Let n, k, ` be positive integers such that
n = k` + r where 0 ≤ r < k ≤ `. The partition graph P (n, k) is the
graph whose vertex set is the set of all almost-uniform k-partitions of an
n-set. Vertices are adjacent if and only if the corresponding partitions are
qualitatively independent.

The almost-uniform qualitative independence graphs are vertex transi-
tive. The number of vertices in this graph is

|V (AUQI(n, k))| = AU(n, k) =
1

r!(k − r)!

(
n

`

)(
n− `

`

)
· · ·
(

n− (k − r − 1)`
`

)
(

r(` + 1)
` + 1

)(
(r − 1)(` + 1)

` + 1

)
· · ·
(

` + 1
` + 1

)
.
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A clique of size ω in P (n, k) is a covering array with parameters CA(n, ω, k).

2 Ratio Bound

2.1 Theorem. If X is an arc-transitive graph then

ω(X) ≤ 1− 1

τ
(2.1)

where τ is the least eigenvalue.

Can use the bound

ω(X) ≤ 1− 1

τ ′

where τ ′ is any negative eigenvalue of X.
The graph P (k2 + i, k) with 0 ≤ i ≤ k are arc-transitive.

3 P (k2, k)

Two partitions P and Q in the vertex set of P (k2, k) are adjacent if and only
if every cell of P intersects every cell of Q in exactly one place.

3.1 Lemma. The graph P (k2, k) is arc-transitive.

So the ratio bound for cliques holds. Next we find some eigenvalues of
this graph by using an equitable partition.

Let S1,2 be the set of all partitions with 1, 2 in the same cell. Then
{S1,2, V (P (k2, k))\S1,2} is an equitable partition of the vertices in P (k2, k). It
is equitable because it is the orbit partition of the group Sym(2)×Sym(k2−2).

The quotient graph is (
0 d
a d− a

)
where a = (k!)k−1/k = d/k and d = (k!)k−1.

The eigenvalues are d and −d/k. Putting these into the ratio bound we
have that

ω(P (k2, k)) ≤ 1− d

−d/k
= k + 1.
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4 P (k2 + k, k)

If two partitions P and Q are adjacent in P (k2 + k, k) then each cell of P
has intersection of size 2 with exactly one cell of Q and intersection of size 1
with all other cells of Q.

4.1 Lemma. The graph P (k2 + k, k) is arc-transitive.

This means that the ratio bound for cliques hold for P (k2 + k, k),

ω(P (k2 + k, k)) ≤ 1− d

τ

where d is the degree of P (k2 + k, k) and τ is the least eigenvalue of P (k2 +
k, k). Further for any eigenvalue λ with τ ≤ λ < 0 it is true that

ω(P (k2 + k, k)) ≤ 1− d

τ
≤ 1− d

λ
.

This means that any negative eigenvalue will give a bound on the size of the
maximum clique.

Let S1,2 be the set of all partitions with 1, 2 in the same cell. Then
{S1,2, V (P (k2 +k, k))\S1,2} is an equitable partition of the vertices in P (k2 +
k, k). It is equitable because it is the orbit partition of the group Sym(2)×
Sym(k2 + k − 2).

The quotient graph is (
a d− a

d−a
k+1

d− d−a
k+1

)
where a = ( (k+1)!

2
)k−1(k − 1)! and d = ( (k+1)!

2
)k.

The eigenvalues are d and (k+2)a−d
k+1

.

4.2 Theorem. For k ≥ 4, the maximum clique in P (k2 + k, k) is no bigger
than k + 2.

Proof. By the ratio bound for cliques we have that

ω(P (k2 + k, k)) ≤ 1− d
(k+2)a−d

k+1

= 1 +
(k + 1)(k + 1)!

(k + 1)!− 2k − 4
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For k ≥ 4 ⌊
(k + 1)(k + 1)!

(k + 1)!− 2k − 4

⌋
= k + 1.

4.3 Corollary. For n ≤ k2 + k

ω(P (n, k)) ≤ k + 2

5 P (k2 + i, k) with 0 ≤ i ≤ k

This is were some numbers are needed. I would like to know for which i is
the bound on the clique size of P (k2 + i, k) is k + 1 and for which values of
i the bound is k + 2.

The degree of P (k2 + i, k) is

d = (
k + i

2
)i

(
k

i

)
i!(k!)k−1

(this shoudlbe checked)
The vertices of P (k2 + i, k) are partitions of {1, 2, ..., k2 + i} with cells of

size k or k+1. There are 5 orbits from the action of Sym(2)×Sym(k2 + i−2)
on the vertices.

a all partitions with 1 and 2 together in a cell of size k.

b all partitions with 1 and 2 together in a cell of size k + 1.

c all partitions with 1 and 2 in seperate cells and both cells have size k

d all partitions with 1 and 2 in seperate cells and both cells have size k + 1

e all partitions with 1 and 2 in seperate cells and one cell has size k and the
other cell has size k + 1.
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6 TheQuotient Graph

The adjacency matrix for the quotient graph is:

0 0 (k−i)(k−i−1)
k(k−1)

i(i−1)
k(k−1)

2 i(k−i)
k(k−1)

0 2 1
k(k+1)

(k−i)(k−i−1)
k(k+1)

(i+2)(i−1)
k(k+1)

2 (k−i)(i+1)
k(k+1)

k−i
k2

i
k2

(k−i)(k−i−1)
k2

i(i−1)
k2 2 i(k−i)

k2

k−i
(k+1)2

i+2
(k+1)2

(k−i)(k−i−1)

(k+1)2
i2+i−1
(k+1)2

2 (k−i)(i+1)

(k+1)2

k−i
k(k+1)

i+1
k(k+1)

(k−i)(k−i−1)
k(k+1)

i2−1
k(k+1)

(k−i)(2 i+1)
k(k+1)


The eigenvalues of this quotient matrix are 0, 1, − −k+i

(k+1)k

and

−1/2

(
k4 − 2 k2 − i2k − ik + k + i+ i2

k2 (−1 + k2) (k + 1)
±

√
x

k2 (−1 + k2) (k + 1)

)
with

x = 9 k2 + i2 + k8 + 4 k7 − 6 ik − 12 k4 − 10 ik2 + 2 i3k2 + 24 ik3 − 17 i2k2 + 14 ik4 + 2 i3

+ 4 i3k − 8 i3k3 + 14 i2k4 + 2 i2k5 − 8 ik6 − 14 ik5 − 6 k5 + i4 + 4 k6 + i4k2 − 2 i4k

6.1 Theorem. The following bounds hold

ω(P (k2 + k/2− 1, k)) ≤ k + 1

ω(P (k2 + k/2, k)) ≤ k + 2

ω(P (k2 + k − 2, k)) ≤ k + 2

ω(P (k2 + k − 3, k)) ≤ k + 3

Proof. Let i = k/2 − 1 then the least eigenvalue from the above quotient
graph is

τ = −1/8
4 k3 − k2 − 5 k + 2 +

√
16 k6 + 8 k5 + 89 k4 + 138 k3 − 235 k2 − 148 k + 132

(k2 − 1) (k + 1) k
.
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Then

τ < −1/8
4 k3 − k2 − 5 k + 2 +

√
16 k6 + 8 k5 − 23 k4 − 22 k3 + 5 k2 − 12 k + 4

(k2 − 1) (k + 1) k

= −1/8
4 k3 − k2 − 5 k + 2 + 4 k3 + k2 − 3 k − 2)

(k2 − 1) (k + 1) k

= − 1

k + 1

if k > 1. By Inequality 2.1 we have that

ω(P (k2 + k/2− 1, k)) ≤ 1− 1

τ
< 1− 1

τ ′
= k + 2.

for i = k/2

−1/8
4 k3 − k2 − 9 k + 6 +

√
16 k6 + 8 k5 − 7 k4 + 18 k3 − 59 k2 − 76 k + 100

(k2 − 1) (k + 1) k

try something like:

τ < −1/8
4 k3 − k2 − 9 k + 6 +

√
16 k6 − 56 k5 − 87 k4 + 478 k3 − 131 k2 − 1020 k + 900

(k2 − 1) (k + 1) k

= −1/8
4 k3 − k2 − 9 k + 6 + 4 k3 − 7 k2 − 17 k + 30

(k2 − 1) (k + 1) k

if i = k − 2 the least evalue is:

−1/2
k4 − k3 + 2 k2 − 4 k + 2 +

√
4− 64 k + 80 k2 − 12 k3 − 40 k4 + 28 k5 + 5 k6 − 2 k7 + k8

(k2 − 1) k2 (k + 1)

for i := k − 1;

−1/2
k2 +

√
k4 + 16 k + 16

(k + 1)2 k

which give a bound of k+3 in Inequality 2.1. (Use the fact that k4+16k+16 <
k4.)
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