
The chromatic number
of Kneser graphs

Chapter 38

In 1955 the number theorist Martin Kneser posed a seemingly innocuous
problem that became one of the great challenges in graph theory until a bril-
liant and totally unexpected solution, using the “Borsuk–Ulam theorem”
from topology, was found by László Lovász twenty-three years later.

It happens often in mathematics that once a proof for a long-standing prob-
lem is found, a shorter one quickly follows, and so it was in this case.
Within weeks Imre Bárány showed how to combine the Borsuk–Ulam
theorem with another known result to elegantly settle Kneser’s conjecture.
Then in 2002 Joshua Greene, an undergraduate student, simplified Bárány’s
argument even further, and it is his version of the proof that we present here.

But let us start at the beginning. Consider the following graph K(n, k),
now called Kneser graph, for integers n ≥ k ≥ 1. The vertex-set V (n, k)
is the family of k-subsets of {1, . . . , n}, thus |V (n, k)| =

(
n
k

)
. Two such

k-sets A and B are adjacent if they are disjoint, A ∩B = ∅.

{1, 2}

{3, 5}

{2, 4}{1, 4}

{2, 3} {1, 5}

{2, 5}{1, 3}

{3, 4}{4, 5}

The Kneser graph K(5, 2) is the famous
Petersen graph.If n < 2k, then any two k-sets intersect, resulting in the uninteresting case

where K(n, k) has no edges. So we assume from now on that n ≥ 2k.

Kneser graphs provide an interesting link between graph theory and finite
sets. Consider, e.g., the independence number α(K(n, k)), that is, we ask
how large a family of pairwise intersecting k-sets can be. The answer
is given by the Erdős–Ko–Rado theorem of Chapter 27: α(K(n, k)) =(
n−1
k−1

)
.

This implies that

χ(K(n, k)) ≥ |V |
α

=
(nk)
(n−1
k−1)

= n
k

.
We can similarly study other interesting parameters of this graph family,
and Kneser picked out the most challenging one: the chromatic number
χ(K(n, k)). We recall from previous chapters that a (vertex) coloring of
a graph G is a mapping c : V → {1, . . . ,m} such that adjacent vertices
are colored differently. The chromatic number χ(G) is then the minimum
number of colors that is sufficient for a coloring of V . In other words, we
want to present the vertex set V as a disjoint union of as few color classes
as possible, V = V1 ∪̇ · · · ∪̇ Vχ(G), such that each set Vi is edgeless.

For the graphs K(n, k) this asks for a partition V (n, k) = V1 ∪̇ · · · ∪̇ Vχ,
where every Vi is an intersecting family of k-sets. Since we assume that
n ≥ 2k, we write from now on n = 2k + d, k ≥ 1, d ≥ 0.
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The 3-coloring of the Petersen graph.

Here is a simple coloring of K(n, k) that uses d + 2 colors: For i = 1,
2, . . . , d+1, let Vi consist of all k-sets that have i as smallest element. The
remaining k-sets are contained in the set {d+2, d+3, . . . , 2k+ d}, which
has only 2k − 1 elements. Hence they all intersect, and we can use color
d+ 2 for all of them.

M. Aigner, G.M. Ziegler, Proofs from THE BOOK, 
DOI 10.1007/978-3-642-00856-6_38, © Springer-Verlag Berlin Heidelberg 2013 



252 The chromatic number of Kneser graphs

So we have χ(K(2k+ d, k)) ≤ d+2, and Kneser’s challenge was to show
that this is the right number.

For d = 0, K(2k, k) consists of disjoint
edges, one for every pair of complemen-
tary k-sets. Hence χ(K(2k, k)) = 2, in
accordance with the conjecture.

Kneser’s conjecture: We have

χ(K(2k + d, k)) = d+ 2.

Probably anybody’s first crack at the proof would be to try induction on
k and d. Indeed, the starting cases k = 1 and d = 0, 1 are easy, but the
induction step from k to k+1 (or d to d+1) does not seem to work. So let
us instead reformulate the conjecture as an existence problem:

If the family of k-sets of {1, 2, . . . , 2k+d} is partitioned into d+1 classes,
V (n, k) = V1 ∪̇ · · · ∪̇ Vd+1, then for some i, Vi contains a pair A,B of
disjoint k-sets.

Lovász’ brilliant insight was that at the (topological) heart of the problem
lies a famous theorem about the d-dimensional unit sphere Sd in Rd+1,
Sd = {x ∈ Rd+1 : |x| = 1}.

The Borsuk–Ulam theorem.
For every continuous map f : Sd → Rd from d-sphere to d-space,
there are antipodal points x∗,−x∗ that are mapped to the same
point f(x∗) = f(−x∗).

This result is one of the cornerstones of topology; it first appears in Bor-
suk’s famous 1933 paper. We sketch a proof in the appendix; for the full
proof we refer to Section 2.2 in Matoušek’s wonderful book “Using the
Borsuk–Ulam theorem”, whose very title demonstrates the power and range
of the result. Indeed, there are many equivalent formulations, which under-
line the central position of the theorem. We will employ a version that
can be traced back to a book by Lyusternik–Shnirel’man from 1930, which
even predates Borsuk.

Theorem. If the d-sphere Sd is covered by d+ 1 sets,

Sd = U1 ∪ · · · ∪ Ud ∪ Ud+1,

such that each of the first d sets U1, . . . , Ud is either open or closed, then
one of the d+ 1 sets contains a pair of antipodal points x∗,−x∗.

The case when all d+1 sets are closed is due to Lyusternik and Shnirel’man.
The case when all d+1 sets are open is equally common, and also called the
Lyusternik–Shnirel’man theorem. Greene’s insight was that the theorem is
also true if each of the d+ 1 sets is either open or closed. As you will see,
we don’t even need that: No such assumption is needed for Ud+1. For the
proof of Kneser’s conjecture, we only need the case when U1, . . . , Ud are
open.
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� Proof of the Lyusternik–Shnirel’man theorem using Borsuk–Ulam.
Let a covering Sd = U1 ∪ · · · ∪ Ud ∪ Ud+1 be given as specified, and
assume that there are no antipodal points in any of the sets Ui. We define a
map f : Sd → Rd by

f(x) :=
(
δ(x, U1), δ(x, U2), . . . , δ(x, Ud)

)
.

Here δ(x, Ui) denotes the distance of x from Ui. Since this is a continuous
function in x, the map f is continuous. Thus the Borsuk–Ulam theorem
tells us that there are antipodal points x∗,−x∗ with f(x∗) = f(−x∗).
Since Ud+1 does not contain antipodes, we get that at least one of x∗ and
−x∗ must be contained in one of the sets Ui, say in Uk (k ≤ d). After
exchanging x∗ with −x∗ if necessary, we may assume that x∗ ∈ Uk. In
particular this yields δ(x∗, Uk) = 0, and from f(x∗) = f(−x∗) we get that
δ(−x∗, Uk) = 0 as well.

If Uk is closed, then δ(−x∗, Uk) = 0 implies that−x∗ ∈ Uk, and we arrive
at the contradiction that Uk contains a pair of antipodal points.

If Uk is open, then δ(−x∗, Uk) = 0 implies that−x∗ lies in Uk, the closure
of Uk. The set Uk, in turn, is contained in Sd\(−Uk), since this is a closed The closure of Uk is the smallest closed

set that contains Uk (that is, the intersec-
tion of all closed sets containing Uk).

subset of Sd that contains Uk. But this means that −x∗ lies in Sd\(−Uk),
so it cannot lie in −Uk, and x∗ cannot lie in Uk, a contradiction. �

As the second ingredient for his proof, Imre Bárány used another existence
result about the sphere Sd.

Gale’s Theorem. There is an arrangement of 2k + d points on Sd such
that every open hemisphere contains at least k of these points.

David Gale discovered his theorem in 1956 in the context of polytopes with
many faces. He presented a complicated induction proof, but today, with
hindsight, we can quite easily exhibit such a set and verify its properties.

Armed with these results it is just a short step to settle Kneser’s problem,
but as Greene showed we can do even better: We don’t even need Gale’s
result. It suffices to take any arrangement of 2k + d points on Sd+1 in
general position, meaning that no d + 2 of the points lie on a hyperplane
through the center of the sphere. Clearly, for d ≥ 0 this can be done.

� Proof of the Kneser conjecture. For our ground set let us take 2k + d
points in general position on the sphere Sd+1. Suppose the set V (n, k)
of all k-subsets of this set is partitioned into d + 1 classes, V (n, k) =
V1 ∪̇ · · · ∪̇ Vd+1. We have to find a pair of disjoint k-sets A and B that
belong to the same class Vi.

For i = 1, . . . , d+ 1 we set

Oi = {x ∈ Sd+1 : the open hemisphere Hx

with pole x contains a k-set from Vi} .

Clearly, each Oi is an open set. Together, the open sets Oi and the closed

x

Hx

An open hemisphere in S2

set C = Sd+1 \ (O1 ∪ · · · ∪ Od+1) cover Sd+1. Invoking Lyusternik–
Shnirel’man we know that one of these sets contains antipodal points x∗
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and −x∗. This set cannot be C! Indeed, if x∗,−x∗ are in C, then by
the definition of the Oi’s, the hemispheres Hx∗ and H−x∗ would contain
fewer than k points. This means that at least d + 2 points would be on
the equator Hx∗ ∩ H−x∗ with respect to the north pole x∗, that is, on a
hyperplane through the origin. But this cannot be since the points are in
general position. Hence some Oi contains a pair x∗,−x∗, so there exist
k-sets A and B both in class Vi, with A ⊆ Hx∗ and B ⊆ H−x∗ .

Hx∗

B −→

A −→

H−x∗

−x∗

x∗

But since we are talking about open hemispheres, Hx∗ and H−x∗ are dis-
joint, hence A and B are disjoint, and this is the whole proof. �

The reader may wonder whether sophisticated results such as the theorem
of Borsuk–Ulam are really necessary to prove a statement about finite sets.
Indeed, a beautiful combinatorial argument has recently been found by Jiří
Matoušek — but on closer inspection it has a distinct, albeit discrete, topo-
logical flavor.

Appendix:
A proof sketch for the Borsuk–Ulam theorem

For any generic map (also known as general position map) from a compact
d-dimensional space to a d-dimensional space, any point in the image has
only a finite number of pre-images. For a generic map from a (d + 1)-
dimensional space to a d-dimensional space, we expect every point in the
image to have a 1-dimensional pre-image, that is, a collection of curves.
Both in the case of smooth maps, and in the setting of piecewise-linear
maps, one quite easily proves one can deform any map to a nearby generic
map.

For the Borsuk–Ulam theorem, the idea is to show that every generic map
Sd → Rd identifies an odd (in particular, finite and nonzero) number of
antipodal pairs. If f did not identify any antipodal pair, then it would be
arbitrarily close to a generic map f̃ without any such identification.

Now consider the projection π : Sd → Rd that just deletes the last coor-
dinate; this map identifies the “north pole” ed+1 of the d-sphere with the
“south pole” −ed+1. For any given map f : Sd → Rd we construct a con-
tinuous deformation from π to f , that is, we interpolate between these two
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maps (linearly, for example), to obtain a continuous map

F : Sd × [0, 1] −→ Rd,

with F (x, 0) = π(x) and F (x, 1) = f(x) for all x ∈ Sd. (Such a map is
known as a homotopy.)

Rd

f

π

F

Sd

Sd

Sd × [0, 1]

t = 0

t = 1

Now we perturbF carefully into a generic map F̃ : Sd×[0, 1]→ Rd, which
again we may assume to be smooth, or piecewise-linear on a fine triangu-
lation of Sd × [0, 1]. If this perturbation is “small enough” and performed
carefully, then the perturbed version of the projection π̃(x) := F̃ (x, 0)

should still identify the two antipodal points ±ed+1 and no others. If F̃ is
sufficiently generic, then the points in Sd × [0, 1] given by

M :=
{
(x, t) ∈ Sd × [0, 1] : F̃ (−x, t) = F̃ (x, t)

}
according to the implicit function theorem (smooth or piecewise-linear ver-
sion) form a collection of paths and of closed curves. Clearly this collection
is symmetric, that is, (−x, t) ∈M if and only if (x, t) ∈M .

The paths in M can have endpoints only at the boundary of Sd × [0, 1],
that is, at t = 0 and at t = 1. The only ends at t = 0, however, are at
(±ed+1, 0), and the two paths that start at these two points are symmetric
copies of each other, so they are disjoint, and they can end only at t = 1.
This proves that there are solutions for F̃ (−x, t) = F̃ (x, t) at t = 1, and
hence for f(−x) = f(x). �

Rd

f

π

F

(ed+1, 0)

(−ed+1, 0)
(Sd, 0)

(Sd, 1)

t = 0

t = 1
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