POLYNOMIAL REPRESENTATIVES OF SCHUBERT CLASSES IN $QH^*(G/B)$

Augustin-Liviu Mare

Abstract. We show how the quantum Chevalley formula for G/B, as stated by Peterson and proved rigorously by Fulton and Woodward, combined with ideas of Fomin, S. Gelfand and Postnikov, leads to a formula which describes polynomial representatives of the Schubert cohomology classes in the canonical presentation of $QH^*(G/B)$ in terms of generators and relations. We generalize in this way results of [FGP].

§1 Introduction

A theorem of Borel [B] describes the cohomology ring of the generalized complex flag manifold G/B as the “co-invariant algebra” of the Weyl group of G, which is essentially a quotient of a certain polynomial ring. The Schubert cohomology classes (i.e. Poincaré duals of Schubert varieties) are a basis of $H^*(G/B)$. In order to determine the structure constants of the cup-multiplication on $H^*(G/B)$ with respect to this basis, we need to describe the Schubert cohomology classes in Borel’s presentation. According to Bernstein, I. M. Gelfand and S. I. Gelfand [BGG], we obtain polynomial representatives of Schubert classes in Borel’s ring by starting with a representative of the top cohomology and then applying successively divided difference operators associated to the simple roots of G. More details concerning the Bernstein-Gelfand-Gelfand construction can be found in section 2 of our paper.

When dealing with the (small) quantum cohomology ring $QH^*(G/B)$ we face a similar situation. There exists a canonical presentation of that ring, again as a quotient of a polynomial algebra, where the variables are the same as in the classical case, plus the “quantum variables” q_1, \ldots, q_l. As about the ideal of relations, it is generated by the “quantum deformations” of the relations from Borel’s presentation of $H^*(G/B)$ (for more details, see section 3). The Schubert classes are a basis of $QH^*(G/B)$ as a $\mathbb{R}[q_1, \ldots, q_l]$-module. A natural aim (see the next paragraph) is to describe them in the previous

1The coefficient ring for cohomology will always be \mathbb{R}.
presentation of $QH^\ast(G/B)$. Our main result gives a method for obtaining such polynomial representatives. It can be described briefly as follows: we start with an arbitrary polynomial representing the Schubert class σ_w in Borel’s description (e.g. by using the B-G-G construction); this is transformed into a polynomial representing σ_w in the canonical description of $QH^\ast(G/B)$ after successive applications of divided difference operators, multiplications by q_j’s and integer numbers and additions. The precise formula is stated in Theorem 3.6 (also see Lemma 3.4 and relation (5) in order to understand the notations).

For $G = SL(n, \mathbb{C})$, the same result was proved by Fomin, S. Gelfand and Postnikov [FGP].

The main ingredient of our proof is a result of D. Peterson [P] (we call it the “quantum Chevalley formula”, since Chevalley obtained a similar result for the cup-multiplication on $H^\ast(G/B)$) which describes the quantum multiplication by degree 2 Schubert classes.

Finally, a few words should be said about the importance of our result. The standard presentation of $QH^\ast(G/B)$ mentioned above is explicitly determined by Kim [K] (see also [M]). Our description could be relevant for finding the structure constants of the quantum multiplication with respect to the basis consisting of Schubert classes, which would lead immediately to the Gromov-Witten invariants of G/B. The efficiency of this strategy depends very much on the input: we dispose of the choice of polynomial representatives of Schubert classes in Borel’s ring and this has to be made judiciously (see again [FGP], as well as Billey and Haiman [BH] and Fomin and Kirillov [FK]).

§2 THE BERNSTEIN-GELFAND-GELFAND CONSTRUCTION

The main object of study of this paper is the generalized complex flag manifold G/B, where G is a connected, simply connected, semisimple, complex Lie group and $B \subset G$ a Borel subgroup. Let \mathfrak{t} be the Lie algebra of a maximal torus of a compact real form of G and $\Phi \subset \mathfrak{t}^\ast$ the corresponding set of roots. The negative of the Killing form restricted to \mathfrak{t} gives an inner product $\langle \ , \rangle$. To any root α corresponds the coroot

$$\alpha^\vee := \frac{2\alpha}{\langle \alpha, \alpha \rangle}$$

which is an element of \mathfrak{t}, by using the identification of \mathfrak{t} and \mathfrak{t}^\ast induced by $\langle \ , \rangle$. If $\{\alpha_1, \ldots , \alpha_l\}$ is a system of simple roots then $\{\alpha_1^\vee, \ldots , \alpha_l^\vee\}$ is a system of simple coroots. Consider $\{\lambda_1, \ldots , \lambda_l\} \subset \mathfrak{t}^\ast$ the corresponding system of fundamental weights, which are defined by $\lambda_i(\alpha_j^\vee) = \delta_{ij}$. To any positive root α we assign the reflection s_α of $(\mathfrak{t}, \langle \ , \rangle)$ about the hyperplane $\ker \alpha$. The Weyl group W is generated by all reflections s_α, $\alpha \in \Phi^+$: it is actually generated by a smaller set, namely by the simple reflections $s_1 = s_{\alpha_1}, \ldots , s_l = s_{\alpha_l}$. To any $w \in W$ corresponds a length, $l(w)$, which is the smallest number of factors in a decomposition of w as a product of simple reflections.

There are two different ways to describe $H^\ast(G/B)$: On the one hand, we can take $B^- \subset G$ the Borel subgroup opposite to B and assign to each $w \in W$ the Schubert variety
\(C_w = B^\neg -w \), which has real codimension 2\(l(w) \); its Poincaré dual \(\sigma_w \) is an element of \(H^{2l(w)}(G/B) \); the set \(\sigma_w, w \in W \) is a basis of \(H^*(G/B) \). On the other hand, let us consider the symmetric algebra \(S(t^*) \), which consists of polynomial functions on \(t \). A theorem of Borel says that the ring homomorphism \(S(t^*) \rightarrow H^*(G/B) \) induced by \(\lambda_i \mapsto \sigma_{s_i}, 1 \leq i \leq l \), is surjective; moreover it induces the ring isomorphism

\[H^*(G/B) \simeq \mathbb{R}[^\lambda]/I_W, \]

where \(I_W \) is the ideal of \(S(t^*) = \mathbb{R}[\lambda_1, \ldots, \lambda_l] = \mathbb{R}[\lambda] \) generated by the \(W \)-invariant polynomials of strictly positive degree.

One is looking for a Giambelli type formula, which connects these two descriptions by assigning to each Schubert cycle \(\sigma_w \) a polynomial representative in the quotient ring \(\mathbb{R}[\lambda]/I_W \). We are going to sketch the construction of such polynomials, as performed by Bernstein, I. M. Gelfand and S. I. Gelfand in [BGG]. It relies on the following facts:

- \(H^*(G/B) \) and \(\mathbb{R}[\lambda]/I_W \) are generated as rings by \(\sigma_{s_i}, \) respectively \(\lambda_i, 1 \leq i \leq l \),
- we have a formula of Chevalley which gives the matrix of the cup multiplication by \(\sigma_{s_i} \) on \(H^*(G/B) \) with respect to the basis \(\{ \sigma_w : w \in W \} \),
- there is another, “very similar”, formula, which involves the divided difference operators \(\Delta_w, w \in W \) (see below) on the polynomial ring \(\mathbb{R}[\lambda] \).

The following result was proved by Chevalley [Ch] (see also Fulton and Woodward [FW]).

Lemma 2.1. (Chevalley’s formula). For any \(1 \leq i \leq l \) and any \(w \in W \) we have

\[\sigma_{s_i} \sigma_w = \sum_{\alpha \in \Phi^+, l(ws_\alpha) = l(w)+1} \lambda_i(\alpha^\vee)\sigma_{ws_\alpha}. \]

To each positive root \(\alpha \) we assign the divided difference operator \(\Delta_\alpha \) on the ring \(\mathbb{R}[\lambda] \) (the latter being just the symmetric ring \(S(t^*) \), it admits a natural action of the Weyl group \(W \)):

\[\Delta_\alpha(f) = \frac{f - s_\alpha f}{\alpha} \]

If \(w \) is an arbitrary element of \(W \), take \(w = s_{i_1} \ldots s_{i_k} \) a reduced expression and then set

\[\Delta_w = \Delta_{\alpha_{i_1}} \circ \cdots \circ \Delta_{\alpha_{i_k}}. \]

One can show (see for instance [Hi]) that the definition does not depend on the choice of the reduced expression. The operators obtained in this way have the following property:

\[\Delta_w \circ \Delta_{w'} = \begin{cases} \Delta_{ww'}, & \text{if } l(ww') = l(w) + l(w') \\ 0, & \text{otherwise} \end{cases} \]

The importance of those operators for our present context is revealed by the similarity of the following formula with Lemma 2.1:
Lemma 2.2. (Hiller [Hi]) If λ^*_i denotes the operator of multiplication by λ_i on $\mathbb{R}[\lambda]$, then for any $w \in W$ we have
\[
\Delta_w \lambda^*_i - w \lambda^*_i w^{-1} \Delta_w = \sum_{\beta \in \Phi^+, l(ws_\beta) = l(w) - 1} \lambda_i(\beta^\vee) \Delta_{ws_\beta}.
\]

Let w_0 be the longest element of W. The polynomial
\[
c_{w_0} := \frac{1}{|W|} \prod_{\alpha \in \Phi^+} \alpha
\]
is homogeneous, of degree $l(w_0)$ and has the property that $\Delta_{w_0} c_{w_0} = 1$. But $l(w_0)$ is at the same time the complex dimension of G/B, and it can be easily shown that the class of c_{w_0} in $\mathbb{R}[\lambda]/I_W$ generates the top cohomology of G/B. To any $w \in W$ we assign $c_w := \Delta_{w_0}^{-1} c_{w_0}$ which is a homogeneous polynomial of degree $l(w)$ satisfying
\[
\Delta_v c_w = \begin{cases} c_{vw^{-1}}, & \text{if } l(vw^{-1}) = l(w) - l(v) \\ 0, & \text{otherwise} \end{cases}
\]
for any $v \in W$ (see (2)). In particular, if $l(v) = l(w)$, then $\Delta_v(c_w) = \delta_{vw}$. Since Δ_w leaves I_W invariant, it induces an operator on $\mathbb{R}[\lambda]/I_W$ which also satisfies $\Delta_v([c_w]) = \delta_{vw}$, provided that $l(v) = l(w)$. Because $\dim \mathbb{R}[\lambda]/I_W = |W|$, it follows that the classes $[c_w]$, $w \in W$, are a basis of $\mathbb{R}[\lambda]/I_W$. We can easily determine any of the coefficients a_v from
\[
\lambda_i[c_w] = \sum_{l(v) = l(w) + 1} a_v[c_v],
\]
by applying Δ_v on both sides and using Lemma 2.2. It follows that
\[
\lambda_i[c_w] = \sum_{\alpha \in \Phi^+, l(ws_\alpha) = l(w) + 1} \lambda_i(\alpha^\vee)[c_{ws_\alpha}].
\]
From $\Delta_{s_i}(\lambda_j) = \delta_{ij}$, $1 \leq i, j \leq l$, we deduce that $c_{s_i} = \lambda_i$. We just have to compare (3) with Lemma 2.1 to conclude:

Theorem 2.3. (Bernstein, I. M. Gelfand and S. I. Gelfand [BGG]) Let $[c_{w_0}]$ be the image of σ_{w_0} by the identification $H^*(G/B) = \mathbb{R}[\lambda]/I_W$ indicated above. Then the map $\sigma_w \mapsto [c_w] := \Delta_{w_0}^{-1} [c_{w_0}]$ is a ring isomorphism.

The polynomial $c_w = \Delta_{w_0}^{-1} c_{w_0}$ being a representative of the Schubert cycle σ_w in $\mathbb{R}[\lambda]/I_W$, is a solution of the classical (i.e. non-quantum) Giambelli problem for G/B. 4
§3 Quantization map

Additively, the quantum cohomology $QH^*(G/B)$ of G/B is just $H^*(G/B) \otimes \mathbb{R}[q_1, \ldots, q_l]$, where l is the rank of G and q_1, \ldots, q_l are some variables. The multiplication \circ is uniquely determined by $\mathbb{R}[q]$-linearity and the general formula

$$\sigma_u \circ \sigma_v = \sum_{d=(d_1, \ldots, d_l) \geq 0} q^d \sum_{w \in W} \langle \sigma_u | \sigma_v | \sigma_{w_0w} \rangle d \sigma_w,$$

$u, v \in W$, where q^d denotes $q_1^{d_1} \ldots q_l^{d_l}$. The coefficient $\langle \sigma_u | \sigma_v | \sigma_{w_0w} \rangle d$ is the Gromov-Witten invariant, which counts the number of holomorphic curves $\varphi : \mathbb{C}P^1 \to G/B$ such that $\varphi_*([\mathbb{C}P^1]) = d$ in $H_2(G/B)$ and $\varphi(0)$, $\varphi(1)$ and $\varphi(\infty)$ are in general translates of the Schubert varieties dual to σ_u, σ_v, respectively σ_{w_0w}. It turns out that this number can be nonzero and finite only if $l(u) + l(v) = l(w) + 2 \sum_{i=1}^l d_i$; if it is infinity, we set $\langle \sigma_u | \sigma_v | \sigma_{w_0w} \rangle d = 0$. The ring $(QH^*(G/B), \circ)$ is commutative and associative (for more details about quantum cohomology we refer the reader to Fulton and Pandharipande [FP]).

One can show that the quantum cohomology ring of G/B is generated by $H^2(G/B) \otimes \mathbb{R}[q_1, \ldots, q_l]$, i.e. by $q_1, \ldots, q_l, \lambda_1, \ldots, \lambda_l$. To determine the ideal of relations, we only have to take any of the fundamental W-invariant polynomials u_i, $1 \leq i \leq l$ — as generators of the ideal I_W of relations in $H^*(G/B)$ — and find its “quantum deformation” R_i. The latter is a polynomial in $\mathbb{R}[q, \lambda]$, uniquely determined by:

(a) the relation $R_i(q_1, \ldots, q_l, \sigma_{s_1} \circ, \ldots, \sigma_{s_l} \circ) = 0$ holds in $QH^*(G/B)$,

(b) the component of R_i free of q is u_i.

If I^q_W denotes the ideal of $\mathbb{R}[q, \lambda]$ generated by R_1, \ldots, R_l, then we have the ring isomorphism

$$QH^*(G/B) \simeq \mathbb{R}[q, \lambda]/I^q_W.$$

The challenge is now to solve the “quantum Giambelli problem”: via the isomorphism (4), find a polynomial representative in $\mathbb{R}[q, \lambda]/I^q_W$ for each Schubert class σ_w, $w \in W$. We can actually use Theorem 2.3 in order to rephrase the problem as follows: Describe (the image of $[c_w]$ via) the map

$$\mathbb{R}[q, \lambda]/(I_W \otimes \mathbb{R}[q]) = \mathbb{R}[\lambda]/I_W \otimes \mathbb{R}[q] \xrightarrow{\oplus} H^*(G/B) \otimes \mathbb{R}[q] = QH^*(G/B) \xrightarrow{\cong} \mathbb{R}[q, \lambda]/I^q_W.$$

Note that the latter is an isomorphism of $\mathbb{R}[q]$-modules, but not of algebras; following [FGP], we call it the quantization map. So the main goal of our paper is to give a presentation of the quantization map. For $G = SL(n, \mathbb{C})$, the problem has been solved by Fomin, Gelfand and Postnikov [FGP]. We are going to extend their result to an arbitrary semisimple Lie group G.

5
As in the non-quantum case, we will essentially rely on the Chevalley formula, this time in its quantum version: the formula was obtained by D. Peterson in [P] (for more details, see section 10 of Fulton and Woodward [FW]). If α^\vee is a positive coroot, we consider its height

$$|\alpha^\vee| = m_1 + \ldots + m_l,$$

where the positive integers m_1, \ldots, m_l are given by $\alpha^\vee = m_1\alpha_1^\vee + \ldots + m_l\alpha_l^\vee$. We also put

$$q^{\alpha^\vee} = q_1^{m_1} \ldots q_l^{m_l}.$$

Theorem 3.1. (Quantum Chevalley Formula; Peterson [P], Fulton and Woodward [FW])

In $(QH^*(G/B), \circ)$ one has

$$\sigma_{s_i} \circ \sigma_w = \sigma_{s_i} \sigma_w + \sum_{l(ws_\alpha) = l(w) - 2|\alpha^\vee| + 1} \lambda_i(\alpha^\vee)q^{\alpha^\vee} \sigma_{ws_\alpha}.$$

The following inequality can be found in Peterson’s notes [P], as well as in Brenti, Fomin and Postnikov [BFP]. For the sake of completeness, we will give our own proof of it.

Lemma 3.2. For any positive root α we have $l(s_\alpha) \leq 2|\alpha^\vee| - 1$.

Proof. We prove the lemma by induction on $l(s_\alpha)$. If $l(s_\alpha) = 1$, then α, as well as α^\vee, is simple, so $|\alpha^\vee| = 1$. Let now α be a positive, non-simple root. There exists a simple root β such that $\alpha(\beta^\vee) > 0$ (otherwise we would be led to $\alpha(\alpha^\vee) \leq 0$). Consequently, $\beta(\alpha^\vee)$ is a strictly positive number, too, hence

$$s_\alpha(\beta) = \beta - \beta(\alpha^\vee)\alpha$$

must be a negative root. Also

$$s_\beta s_\alpha(\beta) = (\alpha(\beta^\vee)\beta(\alpha^\vee) - 1)\beta - \beta(\alpha^\vee)\alpha$$

is a negative root. By Lemma 3.3, chapter 1 of [Hi], we have $l(s_\beta s_\alpha s_\beta) = l(s_\alpha) - 2$. Because

$$s_\beta(\alpha^\vee) = s_\beta(\alpha^\vee) = \alpha^\vee - \beta(\alpha^\vee)\beta^\vee,$$

we have $|s_\beta(\alpha^\vee)| = |\alpha^\vee| - \beta(\alpha^\vee)$. By the induction hypothesis we conclude:

$$l(s_\alpha) = l(s_\beta s_\alpha s_\beta) + 2 \leq 2|s_\beta(\alpha^\vee)| - 1 + 2 = 2|\alpha^\vee| - 1 + 2(1 - \beta(\alpha^\vee)) \leq 2|\alpha^\vee| - 1.$$
Denote by $\tilde{\Phi}^+$ the set of all positive roots α with the property $l(s_\alpha) = 2|\alpha^\vee| - 1$. The following operators

\begin{equation}
\Lambda_i = \lambda_i + \sum_{\alpha \in \Phi^+} \lambda_i(\alpha^\vee)q^{\alpha^\vee} s_\alpha
\end{equation}

on $\mathbb{R}[q, \lambda]$, $1 \leq i \leq l$ have been considered by Peterson in [P]. His key observation is that we have

\begin{equation}
\Lambda_i[c_w] = \lambda_i[c_w] + \sum_{l(ws_\alpha) = l(w)-2|\alpha^\vee|+1} \lambda_i(\alpha^\vee)q^{\alpha^\vee}[c_ws_\alpha],
\end{equation}

the right hand side being, by the quantum Chevalley formula, just $\lambda_i \circ [c_w]$. In order to justify (6), we only have to say that if $w \in W$ and α is a positive root with $l(ws_\alpha) = l(w) - 2|\alpha^\vee| + 1$, then, by Lemma 3.2, α must be in $\tilde{\Phi}^+$.

From the associativity of the quantum product \circ it follows that any two Λ_i and Λ_j commute as operators on $(\mathbb{R}[\lambda]/I_W) \otimes \mathbb{R}[q]$. In fact the following stronger result (also stated by Peterson in [P]) holds:

Lemma 3.3. The operators $\Lambda_1, \ldots, \Lambda_l$ on $\mathbb{R}[q, \lambda]$ commute.

Proof. Put $w = s_\alpha$ in Lemma 2.2 and obtain:

\[\Delta_{s_\alpha} \lambda_i^* = (\lambda_i^* - \lambda_i(\alpha^\vee)\alpha^\vee) \Delta_{s_\alpha} + \sum_{\gamma \in \Phi^+, l(s_\alpha s_\gamma) = l(s_\alpha) - 1} \lambda_i(\gamma^\vee) \Delta_{s_\alpha s_\gamma}. \]

It follows

\[\Lambda_j \Lambda_i = (\lambda_j \lambda_i)^* + \sum_{\alpha \in \tilde{\Phi}^+} \lambda_i(\alpha^\vee)q^{\alpha^\vee} \lambda_j^* \Delta_{s_\alpha} + \sum_{\alpha \in \tilde{\Phi}^+} \lambda_j(\alpha^\vee)q^{\alpha^\vee} \lambda_i^* \Delta_{s_\alpha} - \sum_{\alpha \in \tilde{\Phi}^+} \lambda_j(\alpha^\vee) \lambda_i(\alpha^\vee)q^{\alpha^\vee} \alpha^\vee \Delta_{s_\alpha} + \sum_{\alpha, \gamma \in \Phi^+, l(s_\alpha s_\gamma) = l(s_\alpha) - 1} \lambda_j(\alpha^\vee) \lambda_i(\gamma^\vee)q^{\alpha^\vee} \Delta_{s_\alpha s_\gamma} + \sum_{\alpha, \beta \in \Phi^+, l(s_\alpha s_\beta) = l(s_\alpha) + l(s_\beta)} \lambda_j(\alpha^\vee) \lambda_i(\beta^\vee)q^{\alpha^\vee + \beta^\vee} \Delta_{s_\alpha s_\beta}. \]

Denote by Σ_{ij} the sum of the last two sums: the rest is obviously invariant by interchanging $i \leftrightarrow j$. 7
Let us return to the Bernstein-Gelfand-Gelfand construction described in the first section: Fix $c_{w_0} \in \mathbb{R}[\lambda]$ such that $[c_{w_0}] = \sigma_{w_0}$ and then set $c_w = \Delta_{w^{-1}w_0}c_{w_0}, w \in W$; their classes modulo I_W are a basis of $\mathbb{R}[\lambda]/I_W$. As we said earlier, from the associativity of the quantum product we deduce that $\Lambda_j\Lambda_i[c_w]$ is symmetric in i and j, for any $w \in W$. In particular, $\Sigma_{ij}[c_{w_0}]$ is symmetric in i and j. Because $l(w_0v) = l(w_0) - l(v)$ for any $v \in W$, we have

$$
\Sigma_{ij}[c_{w_0}] = \sum_{\alpha \in \tilde{\Phi}^+, l(s_\alpha s_\gamma) = l(s_\alpha) - 1} \lambda_j(\alpha^\vee)\lambda_i(\gamma^\vee)q^{\alpha^\vee}[c_{w_0}s_\alpha s_\gamma] + \sum_{\alpha, \beta \in \tilde{\Phi}^+, l(s_\alpha s_\beta) = l(s_\alpha) + l(s_\beta)} \lambda_j(\alpha^\vee)\lambda_i(\beta^\vee)q^{\alpha^\vee + \beta^\vee}[c_{w_0}s_\beta s_\alpha].
$$

The latter reproduces exactly the expression of Σ_{ij} itself: $\{[c_w] : w \in W\}$ (actually $\{[c_{w_0}w^{-1}] : w \in W\}$) are linearly independent, exactly like the operators $\{\Delta_w : w \in W\}$. So Σ_{ij} is symmetric in i and j and the lemma is proved.

The next result is a generalization of Lemma 5.3 of [FGP].

Lemma 3.4. The map $\psi : \mathbb{R}[q, \lambda] \to \mathbb{R}[q, \lambda]$ given by

$$
f \mapsto f(\Lambda_1, \ldots, \Lambda_l)(1)
$$

is an $\mathbb{R}[q]$-linear isomorphism. If $f \in \mathbb{R}[q, \lambda]$ has degree d with respect to $\lambda_1, \ldots, \lambda_l$, then we can express $\psi^{-1}(f)$ as follows

$$
\psi^{-1}(f) = \frac{I - (I - \psi)^d}{\psi}(f)
$$

$$
= \binom{d}{1}f - \binom{d}{2}\psi(f) + \ldots + (-1)^{d-2}\binom{d}{d-1}\psi^{d-2}(f) + (-1)^{d-1}\psi^{d-1}(f),
$$

where $\binom{d}{1}, \ldots, \binom{d}{d-1}$ are the binomial coefficients.

Proof. The degrees of elements of $\mathbb{R}[q, \lambda]$ we are going to refer to here are taken only with respect to $\lambda_1, \ldots, \lambda_l$. First, ψ is injective, because if $g \in \mathbb{R}[q, \lambda]$ has the property that $g(\Lambda_1, \ldots, \Lambda_l)(1) = 0$, then obviously g must be 0. In order to prove both surjectivity and the formula for ψ^{-1}, we notice that the operator $I - \psi$ lowers the degree of a polynomial by at least one, so if f is a polynomial of degree d, then $(I - \psi)^d(f) = 0$. ■

The next result is a direct consequence of the quantum Chevalley formula.
Proposition 3.5. For any of the generators R_1, \ldots, R_l of the ideal I_W^q, $\psi(R_i)$ is\(^2\) an $R[q]$-linear combination of elements of I_W, the free term with respect to q_1, \ldots, q_l being u_i. Hence $\psi(I_W^q) = I_W \otimes R[q]$ and ψ gives rise to a bijection

$$\psi : R[q, \lambda]/I_W^q \to R[q, \lambda]/(I_W \otimes R[q]).$$

Proof. We just have to use the fact that

$$\lambda_{i_1} \circ \ldots \circ \lambda_{i_k} = \Lambda_{i_1} \ldots \Lambda_{i_k}(1) \bmod I_W \otimes R[q]$$

so that

$$\psi(R_i) \bmod I_W \otimes R[q] = R_i(q_1, \ldots, q_l, \Lambda_1, \ldots, \Lambda_l)(1) \bmod I_W \otimes R[q]$$

$$= R_i(q_1, \ldots, q_l, \lambda_1 \circ \ldots, \lambda_l)$$

$$= 0.$$

\[\square\]

Our polynomial representatives of Schubert classes in $QH^*(G/B)$ are described by the following theorem, which is the central result of the paper. The proof is governed by the same ideas that have been used in the non-quantum case (see section 2).

Theorem 3.6. The quantization map $R[q, \lambda]/(I_W \otimes R[q]) \to R[q, \lambda]/I_W^q$ is just ψ^{-1}. More precisely, if $w \in W$ has length $l(w) = l$, then the class of c_w in $R[q, \lambda]/(I_W \otimes R[q])$ is mapped to the class of

$$I - (I - \psi)^l(c_w) = \binom{l}{1} c_w - \binom{l}{2} \psi(c_w) + \ldots + (-1)^{l-2} \binom{l}{l-1} \psi^{l-2}(c_w) + (-1)^{l-1} \psi^{l-1}(c_w)$$

in $R[q, \lambda]/I_W^q$, where ψ has been defined in Lemma 3.4.

Proof. For any polynomial $f \in R[q, \lambda]$, we denote by $[f]$, $[f]_q$ its classes modulo $I_W \otimes R[q]$, respectively modulo I_W^q. By the definition of ψ, the polynomial $\hat{c}_w := \psi^{-1}(c_w)$ is determined by

$$\hat{c}_w(\Lambda_1, \ldots, \Lambda_l)(1) = c_w.$$

We take into account (6), where $\Lambda_i[c_w]$ is the same as

$$[\Lambda_i(c_w)] = [\Lambda_i(\hat{c}_w(\Lambda_1, \ldots, \Lambda_l)(1))] = \psi(\Lambda_i \hat{c}_w)_q.$$

\(^2\)In view of Theorem 5.5 of [FGP], we could actually expect to have $\psi(R_i) = u_i$.

9
Because $[c_v] = \psi([\hat{c}_v]_q)$ for any $v \in W$ and the map ψ is bijective, it follows that in $\mathbb{R}[q, \lambda]/I^q_W$ we have

$$
\lambda_i[\hat{c}_w]_q = \sum_{l(ws_\alpha) = l(w) + 1} \lambda_i(\alpha^\vee)[\hat{c}_{ws_\alpha}]_q + \sum_{l(ws_\alpha) = l(w) - 2|\alpha^\vee| + 1} \lambda_i(\alpha^\vee)q^{\alpha^\vee}[\hat{c}_{ws_\alpha}]_q.
$$

As $\mathbb{R}[q]$-algebras, both $QH^*(G/B)$ and $\mathbb{R}[q, \lambda]/I^q_W$ are generated by their degree 2 elements; this is why their structure is uniquely determined by the bases $\{\sigma_w : w \in W\}$, respectively $\{[\hat{c}_w] : w \in W\}$ and the matrices of multiplication by σ_{s_i}, respectively λ_i, $1 \leq i \leq l$. Since $\hat{c}_{s_i} = \lambda_i$, $1 \leq i \leq l$, it follows from Theorem 3.1 and relation (8) that the map

$$QH^*(G/B) \to \mathbb{R}[q, \lambda]/I^q_W \text{ given by } \sigma_w \mapsto \hat{c}_w, w \in W$$

is an isomorphism of algebras and the proof is finished. ■

Example. We will illustrate our main result by giving concrete solutions to the quantum Giambelli problem for G/B, where G is simple of type B_2. This is the first interesting case, different from A_n and for which $\tilde{\Phi}^+ \neq \Phi^+$. We will use the following presentation of the root system: if x_1, x_2 are an orthogonal coordinate system of the plane and e_1, e_2 the unit direction vectors of the coordinate axes, then

- the simple roots are $\alpha_1 := x_1$ and $\alpha_2 := x_2 - x_1$.
- the positive roots are $\alpha_1, \alpha_2, \alpha_3 := \alpha_1 + \alpha_2 = x_2$ and $\alpha_4 := 2\alpha_1 + \alpha_2 = x_1 + x_2$.
- the positive coroots are $\alpha_1^\vee = 2e_1$, $\alpha_2^\vee = e_2 - e_1$, $\alpha_3^\vee = 2e_2 = \alpha_1^\vee + 2\alpha_2^\vee$ and $\alpha_4^\vee = e_1 + e_2 = \alpha_1^\vee + \alpha_2^\vee$.
- the fundamental weights λ_1, λ_2 are determined by

$$
x_1 = 2\lambda_1 - \lambda_2
$$

$$
x_2 = \lambda_2
$$

- the simple reflections are $s_1 : (x_1, x_2) \mapsto (-x_1, x_2)$ and $s_2 : (x_1, x_2) \mapsto (x_2, x_1)$. The generators of I_W are obviously $x_1^2 + x_2^2$ and $x_1^2x_2^2$.
- following [FK], we can obtain polynomial representatives of Schubert classes in $\mathbb{R}[x_1, x_2]/(x_1^2 + x_2^2, x_1^2x_2^2)$ as indicated in the following table:
\[w \quad c_w \]

\[
w_0 = s_1 s_2 s_1 s_2 \\
s_2 s_1 s_2 \\
s_1 s_2 s_1 \\
s_2 s_1 \\
s_1 s_2 \\
s_2 \\
s_1
\]

\[
(x_1 - x_2)^3 (x_1 + x_2) / 16 \\
-x_2 (x_1 - x_2) (x_1 + x_2) / 4 \\
-(x_1 - x_2)^2 (x_1 + x_2) / 8 \\
(x_1 + x_2)^2 / 4 \\
-(x_1 - x_2) (x_1 + x_2) / 4 \\
x_2 \\
(x_1 + x_2) / 2
\]

Note that we have started the B-G-G algorithm with \(c_{w_0}\) which differs from \(\alpha_1 \alpha_2 \alpha_3 \alpha_4 / 8\) by a multiple of \(x_1^2 + x_2^2\).

Theorem 2.6 will allow us to describe the quantization map without knowing anything about the ideal \(I_W^q\) of quantum relations. But for the sake of completeness we will also obtain the two generators of \(I_W^q\), by using the theorem of Kim as presented in our paper [M].

We have to consider the Hamiltonian system which consists of the standard 4-dimensional symplectic manifold \((\mathbb{R}^4, dr_1 \wedge ds_1 + dr_2 \wedge ds_2)\) with the Hamiltonian function

\[
E(r, s) = \sum_{i,j=1}^{2} (\alpha_i^\vee, \alpha_j^\vee) r_i r_j + \sum_{i=1}^{2} e^{-2s_i} = (2r_1 - r_2)^2 + r_2^2 + e^{-2s_1} + e^{-2s_2}.
\]

The first integrals of motion of the system are \(E\) and — by inspection — the function

\[
F(r, s) = (2r_1 - r_2)^2 r_2^2 + r_2^2 e^{-2s_1} - (2r_1 - r_2) r_2 e^{-2s_2} + 2e^{-2s_1} e^{-2s_2} + \frac{1}{4} (e^{-2s_2})^2.
\]

By the main result of [M], the quantum relations are obtained from \(E\), respectively \(F\), by the formal replacements:

\[
2r_1 - r_2 \mapsto x_1, r_2 \mapsto x_2 \\
e^{-2s_1} \mapsto -\langle \alpha_1^\vee, \alpha_1^\vee \rangle q_1 = -4q_1, e^{-2s_2} \mapsto -\langle \alpha_2^\vee, \alpha_2^\vee \rangle q_2 = -2q_2.
\]

In conclusion, \(I_W^q\) is the ideal of \(\mathbb{R}[q_1, q_2, x_1, x_2]\) generated by

\[
x_1^2 + x_2^2 - 4q_1 - 2q_2 = 0 \quad \text{and} \quad x_1^2 x_2^2 - 4q_1 x_2^2 + 2q_2 x_1 x_2 + 16q_1 q_2 + q_2^2.
\]

Now, we will determine explicitly the image of each Schubert class \(\sigma_w, w \in W\) via the isomorphism

\[
QH^*(G/B) \simeq \mathbb{R}[q_1, q_2, x_1, x_2]/I_W^q.
\]
The place of the operators Λ_1, Λ_2 is taken by X_1, X_2 where

$$X_i = x_i + x_i(\alpha_1^\vee)q_1\Delta_{s_1} + x_i(\alpha_2^\vee)q_2\Delta_{s_2} + x_i(\alpha_4^\vee)q_1q_2\Delta_{s_1}\Delta_{s_2}\Delta_{s_1}, \quad i = 1, 2.$$

More precisely, we have

$$X_1 = x_1 + 2q_1\Delta_{s_1} - q_2\Delta_{s_2} + q_1q_2\Delta_{s_1}\Delta_{s_2}\Delta_{s_1}$$

and

$$X_2 = x_2 + q_2\Delta_{s_2} + q_1q_2\Delta_{s_1}\Delta_{s_2}\Delta_{s_1}.$$

Rather than using the formula for ψ^{-1} given by (7), it seems more convenient to determine $\hat{c}_w := \psi^{-1}(c_w) \in \mathbb{R}[q_1, q_2, x_1, x_2]$ by the definition of ψ, i.e. from the condition

$$\hat{c}_w(X_1, X_2)(1) = c_w(x_1, x_2).$$

We will explain the details just for the case $w = w_0$, which is the most illustrative one. The polynomial we are looking for has the form $\hat{c}_w = c_{w_0} + q_1a_1 + q_2a_2 + b_1q_1^2 + b_2q_2^2 + b_3q_1q_2$, where a_1, a_2 are homogeneous polynomials of degree 2 in x_1, x_2 and b_1, b_2, b_3 are constant. The condition that determines a_1, a_2, b_1, b_2, b_3 is

$$c_{w_0}(X_1, X_2)(1) + q_1a_1(X_1, X_2)(1) + q_2a_2(X_1, X_2)(1) + b_1q_1^2 + b_2q_2^2 + b_3q_1q_2$$

$$= c_{w_0}(x_1, x_2).$$

(9)

The first step is to compute $c_{w_0}(X_1, X_2)(1)$ and determine a_1 and a_2. Using

$$\Delta_{s_1}(f) = \frac{f(x_1, x_2) - f(-x_1, x_2)}{x_1} \quad \text{and} \quad \Delta_{s_2}(f) = \frac{f(x_1, x_2) - f(x_2, x_1)}{x_2 - x_1},$$

$f \in \mathbb{R}[x_1, x_2]$ we obtain

$$c_{w_0}(X_1, X_2)(1) = c_{w_0}(x_1, x_2) + \frac{1}{8}q_1(3x_1^2 - 4x_1x_2 + x_2^2) + \frac{1}{4}q_2(x_1^2 - x_2^2) + q_1^2 + q_1q_2.$$

Since the coefficients of q_1, respectively q_2 in the left hand side of (9) must vanish, we deduce:

$$a_1 = \frac{1}{8}(3x_1^2 - 4x_1x_2 + x_2^2), \quad a_2 = -\frac{1}{4}(x_1^2 - x_2^2).$$

The second step is to compute $a_1(X_1, X_2)(1)$ and $a_2(X_1, X_2)(1)$ and determine b_1, b_2 and b_3. We take into account that

$$X_1 - X_2 = x_1 - x_2 + 2q_1\Delta_{s_1} - 2q_2\Delta_{s_2}$$
and find

\[a_1(X_1, X_2)(1) = -\frac{1}{8}(X_1 - X_2)(3x_1 - x_2) = a_1(x_1, x_2) - \frac{3}{2}q_1 - q_2 \]

\[a_2(X_1, X_2)(1) = -\frac{1}{4}(X_1 - X_2)(x_1 + x_2) = a_2(x_1, x_2) - q_1. \]

Coming back to (9), we deduce

\[b_1 = \frac{1}{2}, \quad b_2 = 0, \quad b_3 = 1, \]

hence

\[\hat{c}_{w_0} = c_{w_0} - \frac{1}{8}q_1(3x_1^2 - 4x_1x_2 + x_2^2) - \frac{1}{4}q_2(x_1^2 - x_2^2) + \frac{1}{2}q_1^2 + q_1q_2. \]

The other \(\hat{c}_w, w \in W, \) can be obtained by similar computations. They are described in the following table:

<table>
<thead>
<tr>
<th>(w)</th>
<th>(\hat{c}_w - c_w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_2s_1s_2)</td>
<td>(q_1x_2)</td>
</tr>
<tr>
<td>(s_1s_2s_1)</td>
<td>(\frac{1}{2}(x_1 - x_2)q_1 + \frac{1}{2}(x_1 + x_2)q_2)</td>
</tr>
<tr>
<td>(s_2s_1)</td>
<td>(-q_1)</td>
</tr>
<tr>
<td>(s_1s_2)</td>
<td>(q_1)</td>
</tr>
<tr>
<td>(s_2)</td>
<td>(0)</td>
</tr>
<tr>
<td>(s_1)</td>
<td>(0)</td>
</tr>
</tbody>
</table>

Acknowledgements. I would like to thank Martin Guest and Takashi Otofuji for the extensive exchange of ideas which led me to Theorem 3.6. I am also grateful to McKenzie Wang and Chris Woodward for suggesting improvements to previous versions of the paper. Finally, I would like to thank the referee for several helpful suggestions.

References

Department of Mathematics and Statistics
McMaster University
1280 Main Street West
Hamilton, Ontario, Canada
L8S 4K1

and

Department of Mathematics
University of Toronto
100 St. George Street
Toronto, Ontario, Canada
M5S 3G3

amare@math.toronto.edu