
DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES

7. Geodesics and the Theorem of Gauss-Bonnet

7.1. Geodesics on a Surface. The goal of this section is to give an answer to the following
question.

Question. What kind of curves on a given surface should be the analogues of straight lines
in the plane?

Let’s understand first what means “straight” line in the plane. If you want to go from
a point in a plane “straight” to another one, your trajectory will be such a line. In other
words, a straight line L has the property that if we fix two points P and Q on it, then the
piece of L between P and Q is the shortest curve in the plane which joins the two points.
Now, if instead of a plane (“flat” surface) you need to go from P to Q in a land with hills
and valleys (arbitrary surface), which path will you take? This is how the notion of geodesic
line arises:

“Definition” 7.1.1. Let S be a surface. A curve α : I → S parametrized by arc length
is called a geodesic if for any two points P = α(s1), Q = α(s2) on the curve which are
sufficiently close to each other, the piece of the trace of α between P and Q is the shortest
of all curves in S which join P and Q.

There are at least two inconvenients concerning this definition: first, why did we say that
P and Q are “sufficiently close to each other”?; second, this definition will certainly not allow
us to do any explicit examples (for instance, find the geodesics on a hyperbolic paraboloid).

Let’s see an example, which will at least help us understand the definition. Which are the
geodesics on the unit sphere S2? They are the great circles, that is, circles with centre at
O (rely on your intuition or wait a bit until you get to the rigorous proof below). Let us
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Figure 1. The shortest path between P and Q on the
sphere is the (small) piece of the great circle between P
and Q. Because this is true for any two points P and Q
on the thickened curve, the latter curve is a geodesic.

look at Figure 1. Definition 7.1.1. gives two geodesic segments on S2 which join A and B:
the thickened and the dotted piece of the great circle. The dotted one is the strangest one,
because we can find two points P ′ and Q′ on it such that the piece of its trace between P ′

and Q′ is not the shortest curve on S2 between P ′ and Q′; that’s only true if P ′ and Q′ are
sufficiently close to each other. Of course, we could go back to Definition 7.1.1 and change

1



2

it, that is, simply remove the words “which are sufficiently close to each other”. Without
getting into details, we just mention that we wouldn’t like the resulting definition, because
it would be too restrictive.

Our next goal is to obtain descriptions of geodesics which can be used in concrete examples.
To this end, we will try to understand how changes the length of a curve if we vary the curve
without changing its endpoints. It is important to note that we will deal with differentiable
curves α defined on closed intervals [a, b] (until now, such intervals were always open). By
definition, we say that α : [a, b] → R

3 is a differentiable curve if there exists two numbers c
and d such that c < a < b < d, and a differentiable curve on (c, d) whose restriction to [a, b]
is α.

Theorem 7.1.2. (i) Let α : [a, b] → R
3 be a differentiable curve parametrized by arc length

and let αλ : [a, b] → R
3 be a family of curves1 with −ǫ < λ < ǫ which depends differentiably

on λ, such that α0 = α (see Figure 2). Then we have

d

dλ
|0ℓ(αλ) = −

∫ b

a

d

dλ
|0αλ(s) · α′′(s)ds

(ii) Assume that all the above curves have the trace contained in the surface S. Then we
have

d

dλ
|0ℓ(αλ) = −

∫ b

a

d

dλ
|0αλ(s) · α′′(s)T ds,

where α′′(s)T denotes the orthogonal projection of α′′(s) on the plane Tα(s)S.

α ( s ) d� �d λ α λ ( s )|o
λα ( s )α ( a ) α ( b )

Figure 2. The family of curves αλ, with −ǫ < λ < ǫ is
a variation of α. The dotted curve is λ 7→ αλ(s) and the
vector with tail at α(s) is the tangent vector to the latter
curve at α0(s).

Proof. We have

d

dλ
|0ℓ(αλ) =

d

dλ
|0

∫ b

a

‖α′

λ(s)‖ds

=

∫ b

a

d

dλ
|0

√

α′

λ(s) · α′

λ(s)ds

=

∫ b

a

1

2
√

α′

0(s) · α′

0(s)
· 2(

d

dλ
|0α′

λ(s)) · α′

0(s))ds

=

∫ b

a

(
d

dλ
|0α′

λ(s)) · α′(s)ds

1Except α0, which is the same as α, the curves αλ are not necessarily parametrized by arc length.
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We also have that
d

dλ
|0α′

λ(s) = (
d

dλ
|0αλ(s))

′

because differentiation w.r.t. s and λ can be interchanged with each other. We use the
integration by parts formula and write further

d

dλ
|0αλ(s) · α′(s)|s=b

s=a −
∫ b

a

d

dλ
|0αλ(s) · α′′(s)ds

which gives the desired result, as both αλ(a) and αλ(b) are constant. This is how we prove
(i). To prove (ii), we decompose

α′′(s) = α′′(s)T + α′′(s)N

where α′′(s)N is perpendicular to Tα(s)S; we also note that d
dλ
|0αλ(s) is in Tα(s)S, so

α′′(s) · ( d

dλ
|0αλ(s)) = α′′(s)T · ( d

dλ
|0αλ(s)).

�

We deduce the following corollary.

Corollary 7.1.3. A curve α : I → S parametrized by arc length is a geodesic if and only if

α′′(s)T = 0,

for all s in I (as before, α′′(s)T denotes the orthogonal projection of α′′(s) to Tα(s)S). Equiv-
alently, for any s in I, the vector α′′(s) is perpendicular to the tangent plane at α(s) to
S.

Note. The corollary is for us the main characterization of a geodesic, which will be used
throughout the course. Most textbooks use this as a definition. Our Definition 7.1.1 is cer-
tainly more intuitive, but less useful and less clear (what exactly means “P and Q sufficiently
close to each other”?)

The idea of the proof of Corollary 7.1.3. If α is a geodesic, then we pick two points P
and Q on the curve, sufficiently close to each other, and vary the piece of α between P and
Q; the length of the latter curve is minimal, thus the derivative with respect to the variation
parameter λ is equal to 0. From Theorem 7.1.2 (ii), we can deduce that α′′(s)T = 0, for all
s. The converse (if α′′(s)T = 0 for all s, then α is a geodesic) is harder to prove (see for
instance [dC], Section 4-6.)

Examples. 1. Great circles on a sphere are geodesics. Because if α : R → S2 is a
parametrization by arc length of such a circle, then for any s in R, the vector α′′(s) is
parallel to the radius of α(s) (being perpendicular to α′(s)), thus it is perpendicular to the
tangent plane at α(s) to S2.

2. One can also determine the geodesics on a cylinder C (see Chapter 4, Figure 4). To
this end we use the local isometry f from the plane to the cylinder described in HW no. 4,
Question no. 4. The point is that in general, a local isometry between two surfaces maps
geodesics to geodesics (see Definition 7.1.1 and remember that a local isometry preserves
lengths of curves). Thus geodesics on the cylinder are images of straight lines under f (the
“rolling” map); it’s easy to see that they are just helices2 on the cylinder.

In general, finding the geodesics on a given surface is not easy. In the following we will show
how to determine geodesics contained in the image of a local parametrization, by solving a
system of differential equations.

2See Chapter 2.
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Proposition 7.1.4. Let (U, ϕ) be a local parametrization of the surface S and let α : I → S
be a curve parametrized by arc length, whose trace is contained in ϕ(U). Write

α(s) = ϕ(u(s), v(s)),

where s 7→ u(s) and s 7→ v(s) are real functions of s. Then α is a geodesic if and only if3

u′′(s) + Γ1
11(u(s), v(s))(u′(s))2 + 2Γ1

12(u(s), v(s))u(s)′v′(s) + Γ1
22(u(s), v(s))(v′(s))2 = 0(1)

v′′(s) + Γ2
11(u(s), v(s))(u′(s))2 + 2Γ2

12(u(s), v(s))u′(s)v′(s) + Γ2
22(u(s), v(s))(v′(s))2 = 0.

Here Γk
ij are the Christoffel symbols associated to (U, ϕ) (see Chapter 6 of the notes).

Proof (sketch). In each space Tϕ(Q)S we have the basis ϕ′

u(Q), ϕ′

v(Q). By Lemma 3.3.3,
we have

α′(s) = u′(s)ϕ′

u(u(s), v(s)) + v′(s)ϕ′

v(u(s), v(s)).

Consequently, if we omit writing (u(s), v(s)), we have

(2) α′′(s) = u′′(s)ϕ′

u + u′(s)(ϕ′′

uuu
′(s) + ϕ′′

uvv
′(s)) + v′′(s)ϕ′

v + v′(s)(ϕ′′

vuu
′(s) + ϕ′′

vvv
′(s)).

Now ϕ′′

uu, ϕ
′′

uv, ϕ
′′

vu and ϕ′′

vv can be expressed by Equations (1), Chapter 6. We plug them
into (2) and take into account that the equation α′′(s)T = 0 means that the coefficients of
ϕ′

u and ϕ′

v are both zero. These give the two equations (1). �

From the general theory of differential equations we can deduce the following geometric
information about geodesics: if P is a point on S and w a vector in TP S, with ‖w‖ = 1,
then there exists a unique geodesic α : I → S with

α(0) = P and α′(0) = w.

Here I is a “small” interval around 0. An interesting question is how “big” can be made
the interval I? And an interesting answer is: if S is compact (with respect to the subspace
topology induced from R

3), then we can always take I = R; that is, we can extend the domain
of any geodesic to the whole R. We will not address this point here (this is a consequence
of the theorem of Hopf-Rinow, see for instance [dC, Section 5-3]).

7.2. The Theorem of Gauss-Bonnet. The sum of the angles of a triangle is equal to π.
Equivalently, in the triangle represented in Figure 3, we have

θ1 + θ2 + θ3 = 2π.

Proof: if you go along the triangle, when you come back to where you started the trip, you
will have rotated yourself with 3600.

Now let’s take a triangle on the sphere S2, whose sides are geodesics (that is, pieces of
great circles). Let us try to determine again θ1 + θ2 + θ3, this time in Figure 4. We can see
there that the sphere is partitioned in the following five pieces: the thickened triangle, its
antipodal image, and the slices of angle θ1, θ2, and θ3. The slice of angle θ3 has area 2θ3

(because the slice of size 2π is the whole sphere, and has area 4π), and similarly for θ1 and
θ2. If A denotes the area of the thickened triangle, then we have

2A + 2θ1 + 2θ2 + 2θ3 = 4π ⇒ θ1 + θ2 + θ3 = 2π − A.

So the sum of the (inside) angles of the triangle is this time equal to π + A.

In this section we will give a formula for the sum of the angles of a geodesic polygon on
an arbitrary surface. There is a preparatory result we need to prove first. We will consider
a special kind of a local parametrization, namely orthogonal parametrization. By definition,
this is (U, ϕ) with the property that for any Q in U , the vectors ϕ′

u(Q) and ϕ′

v(Q) are

3It is important to note that (1) is a nonlinear system of two differential equations of order two with
unknowns u(s) and v(s).
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θ
θ

θ1 2
3

Figure 3. θ1 + θ2 + θ3 = 2π

θθθ 1 23 θ 3O
Figure 4. θ1 + θ2 + θ3 < 2π

perpendicular (orthogonal). Equivalently we have F = 0 everywhere on U . Consequently,
the vectors

(3) e1 =
1√
E

ϕ′

u, e2 =
1√
G

ϕ′

v

are an orthonormal basis in every tangent space.

Lemma 7.2.1. Let (U, ϕ) be an orthogonal parametrization of a surface and α : (a, b) →
ϕ(U) a geodesic parametrized by arc length, of the form

α(s) = ϕ(u(s), v(s)),

for all s in (a, b). If φ(s) denotes the angle from4 ϕ′

u(α(s)) to α′(s), then we have

dφ

ds
=

1

2
√

EG

(

E ′

v

du

ds
− G′

u

dv

ds

)

.

Proof. First we prove the following claim.

4The angle φ = φ(s) satisfies 0 ≤ φ < 2π, and is uniquely determined by α′ = (cosφ)e1 + (sin φ)e2
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Claim. We have
(

d

ds
e1(α(s))

)T

= −dφ

ds
e2(α(s)),

where, as usually, the superscript T indicates the orthogonal projection to the tangent space.

φ ee '
e 1

1
2 α '

Figure 5. Proof of Lemma 7.2.1 (the plane is Tα(s)S
and the thickened arrow is (e′1)

T ).

To prove the claim, we differentiate the relation

α′ · e1 = cos φ

and obtain

(4) α′′ · e1 + α′ · e′1 = −(sin φ)φ′ ⇒ α′ · e′1 = −(sin φ)φ′,

where we have used that α is a geodesic. On the other hand, because ‖e1‖ = 1, the vector
e′1 is perpendicular to e1, so the vector (e′1)

T is parallel to e2, that is, (e′1)
T = λe2, for some

number λ (see also Figure 5). Because

α′ · e′1 = α′ · (e′1)T = λα′ · e2 = λ cos(π/2 − φ) = λ sin φ,

equation (4) implies

λ = −φ′,

and the claim is proved.

From the claim we deduce

dφ

ds
= − d

ds
(e1(α(s))) · e2(α(s)).

We replace
d

ds
(e1(α(s)) =

d

ds
(e1(u(s), v(s)) = (e′1)u

du

ds
+ (e′1)v

dv

ds
,

then we take into account of (3) and deduce the desired formula (we skip the computations).
�

We will also need the notion of surface integral of a function (you may have seen this in
the Vector Calculus course). Namely, of (U, ϕ) is a local parametrization of a surface S,
f : S → R a function, and R a compact subspace of ϕ(U), then, by definition

(5)

∫ ∫

R

fdσ :=

∫ ∫

ϕ−1(R)

f(ϕ(u, v))‖ϕ′

u × ϕ′

v‖dA =

∫ ∫

ϕ−1(R)

f ◦ ϕ
√

EG − F 2dA
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where the last two integrals are double integrals over the the region ϕ−1(R) in R
2. The last

equality comes from the fact that

‖ϕ′

u × ϕ′

v‖ =
√

EG − F 2.

We are now ready to state and prove the following version of the theorem of Gauss-Bonnet.

Theorem 7.2.2. (Gauss-Bonnet local). Let (U, ϕ) be a local orthogonal parametrization
of a surface and let R contained in ϕ(U) be a region bounded by the geodesics αk : Ik → S,
k = 1, 2, 3, with

α1(s11) = α2(s21), α2(s22) = α3(s32), and α3(s33) = α1(s13),

for the numbers

• s13 < s11 in I1

• s21 < s22 in I2

• s32 < s33 in I3

Denote by θ1, θ2, θ3 the external angles of the triangle R (for instance, θ1 is the angle from5

α′

1(s13) to α′

3(s33) etc., see Figure 6). Then we have

θ1 + θ2 + θ3 = 2π −
∫ ∫

R

Kdσ,

where K is the Gauss curvature. α ( s ) = α ( s )
α ( s ) = α ( s ) α ( s ) = α ( s )

1
1 2

3
32

1 3 3 3
2 2 3 21 1 2 1 ΘΘ

Θ 1
32

α
α

α1
2

3
Figure 6. The region R is bounded by (pieces of traces
of) the geodesics α1, α2, and α3. By θ1 we mean the
angle between the tangent vectors α′

3(s33) and α′

1(s13);
similarly for θ2 and θ3.

Proof (sketch). We use Lemma 7.2.1 for the geodesics αi, where i = 1, 2, 3. Denote by φi

the angle between ϕ′

u and α′

i along αi. We have

dφi

ds
=

1

2
√

EG

(

E ′

v

du

ds
− G′

u

dv

ds

)

.

5It is important, although not enough emphasized in these notes, that the surface is oriented: this means
that in any tangent spaces we have a distinguished sense of rotation, and this allows us to measure the signed

angle between two non-opposite vectors in a tangent space to the surface, which is in the interval (−π, π).
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along ϕi. If we integrate we obtain

φ1(s11) − φ1(s13) =

∫ s13

s11

1

2
√

EG

(

E ′

v

du

ds
− G′

u

dv

ds

)

φ2(s22) − φ2(s21) =

∫ s22

s21

1

2
√

EG

(

E ′

v

du

ds
− G′

u

dv

ds

)

(6)

φ3(s33) − φ3(s32) =

∫ s33

s32

1

2
√

EG

(

E ′

v

du

ds
− G′

u

dv

ds

)

If we add the left hand sides we obtain

(φ3(s33) − φ1(s13)) + (φ2(s22) − φ3(s32)) + (φ1(s11) − φ2(s21)).

If we look at Figures 6 and 7, we can easily see that the latter expression is equal to
−θ1 − θ2 − θ3 + 2kπ, where k is an integer. If Figure 6 was in a plane (not on an arbitrary
surface) and ϕ′

u was the same, the sum would actually be always −θ1 − θ2 − θ3 + 2π. One
can show (and it’s not trivial) that even if the triangle is on a surface, the sum equals
−θ1 − θ2 − θ3 + 2π.

α
α

α1
2

3φφ

φ φ
φφ

1 3

2 1 23

Figure 7. The thickened arrows are ϕ′

u at each of the
three points.

Now let’s analyze the sum of the right hand sides of Equations (6). This represents the
line integral

∮

C

E ′

v

2
√

EG
du − G′

u

2
√

EG
dv,

where C is the (closed) path in R
2 (with coordinates u, v) obtained by joining the paths

s 7→ ϕ−1(α1(s)), s 7→ ϕ−1(α2(s)), and s 7→ ϕ−1(α3(s)).
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Green’s formula says that
∮

C

fdu + gdv =

∫ ∫

D

(

∂g

∂u
− ∂f

∂v

)

dA.

In our case, we obtain
∮

C

E ′

v

2
√

EG
du − G′

u

2
√

EG
dv = −

∫ ∫

ϕ−1(R)

((

E ′

v

2
√

EG

)

′

v

+

(

G′

u

2
√

EG

)

′

u

)

dA.

In Chapter 6 we have obtained a formula for the curvature K in terms of the coefficients
E, F , and G of the first fundamental form. It turns out that this formula, used in the case
F = 0, becomes very simple, namely

K = − 1

2
√

EG

((

E ′

v√
EG

)

′

v

+

(

G′

u√
EG

)

′

u

)

.

This implies
∮

C

E ′

v

2
√

EG
du − G′

u

2
√

EG
dv =

∫ ∫

ϕ−1(R)

K
√

EGdA =

∫ ∫

R

Kdσ,

where we have used Equation (5). The theorem is now proved. �

To understand the global version of the theorem of Gauss-Bonnet, we need a few more
notions, as follows:

• a region R on a surface S is a compact subset of S bounded by finitely many curves
• a triangle is a region bounded by three curves
• a triangulation of a region R is a finite collection of triangles T1, . . . , Tn such that

1.
⋃n

i=1 Ti = R
2. If Ti ∩ Tj 6= φ, then either i = j, or Ti ∩ Tj is a common edge of Ti and Tj, or

Ti ∩ Tj is a common vertex of Ti and Tj .

Figure 8 should help in understanding these notions. A geodesic region is a region bounded by
geodesics. A geodesic triangle is a triangle whose edges are geodesics. A geodesic triangulation
is a triangulation by geodesic triangles. Compact surfaces (like the sphere, the ellipsoid, the
torus etc. — you are free to think of those as surfaces that have an “inside”) are geodesic
regions (not bounded by any geodesic). If T1, . . . , Tn is a triangulation of the region R, then
we denote as follows:

• n2 the number of triangles (actually n2 = n)
• n1 the number of edges
• n0 the number of vertices
• χ = n2 − n1 + n0

We will rely (without proof) on the following two propositions.

Proposition 7.2.3. (a) Any region on a surface (thus any compact surface) admits a
triangulation. Any geodesic region has a geodesic triangulation. Moreover, in the latter case
we can refine the triangulation in such a way that any triangle is contained in the image of
an orthogonal parametrization.

(b) If R is a region, then the number χ = n2 − n1 + n0 is the same for any triangulation
of R. We call it the Euler-Poincaré characteristic of R, denoted χ(R).

Proposition 7.2.4. Let R be a region in the surface S and T1, . . . , Tn a triangulation with
the property that each Ti is contained in the image of a local parametrization. Let also f be
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Figure 8. A region on a surface and a triangulation of
it (with n0 = 16, n1 = 35, and n2 = 18). We take this
opportunity to mention that, as explained in the footnote
on page 7, the angles θ1 and θ2 are negative (the other
external angles are all positive).

a differentiable function on S. The number

n
∑

i=1

∫

Ti

fdσ =:

∫

R

fdσ

does not depend on the choice of the triangulation (note that each term of the sum above is
well defined in view of Equation (5)). We call this the integral of f on R.

We are now ready to state a more general version6 of the theorem of Gauss-Bonnet.

Theorem 7.2.5. (Gauss-Bonnet global) Let S be an orientable surface and R a geodesic
region in S. Choose the parametrizations of the curves which bound R in such a way that
we can go along the contour determined by them in the sense given by the orientation with
increasing parameters; let θ1, θ2, . . . , θn be the external angles (like in Theorem 7.2.2, see
also Figure 8). Then we have

θ1 + θ2 + . . . + θn = 2πχ(R) −
∫ ∫

R

Kdσ.

6This is not the most general version of the theorem, though — cf. [dC], page 274 or [Gr-Abb-Sa], page
918.
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Corollary 7.2.6. If S is a compact orientable surface, then
∫ ∫

S

Kdσ = 2πχ(S).

Rather than the theorem, we will actually prove the corollary, independently of the the-
orem. Of course, the corollary can be deduced from the theorem by taking R = S, which
implies that the boundary of R is empty and there are no angles θi to be taken into account:
but again, this is not what we’re going to do.

Proof of Corollary 7.2.6. Let us consider a geodesic triangulation T1, . . . , Tn of S with
the property that each triangle is contained in the image of an orthogonal parametrization
whose orientation is compatible with the global orientation of the surface (see Proposition
7.2.3 (a)). As usually, n0, n1, n2 are the number of vertices, edges, respectively triangles of
the triangulation. For each i = 1, 2, . . . , n we consider the external angles θ1

i , θ
2
i , θ

3
i of the

triangle Ti (recall that they are in (−π, π) and they depend on the orientation) and the
internal angles

α1
i := π − θ1

i , α2
i := π − θ2

i , α3
i := π − θ3

i .

Theorem 7.2.2 for the triangle Ti says that
∫ ∫

Ti

Kdσ = α1
i + α2

i + α3
i − π.

We add up all these equalities and obtain

(7)

∫ ∫

S

Kdσ =
n

∑

i=1

(α1
i + α2

i + α3
i ) − n2π.

The sum of angles at every vertex of the triangulation is 2π, thus

n
∑

i=1

(α1
i + α2

i + α3
i ) = 2πn0.

Every edge of the triangulation belongs to two triangles, thus

3n2 = 2n1.

Now (7) implies
∫ ∫

S

Kdσ = (2n0 − n2)π = (2n0 − 2n1 + 2n2)π = χ(S)2π.

The corollary is proved. �

Examples of compact surfaces are: the sphere, the torus with one or several holes (see
Figure 9), and any smooth deformations of those. For instance, we can deform the sphere
and obtain ellipsoids, but not only — there are many shapes you can get by deforming the
sphere (use your imagination, you can get a potato, a cucumber, a tomato etc.)

The equation stated in the corollary is surprising because if we have a compact surface S
and we deform it, then

(a) in the right hand side, χ(S) does not change under (differentiable) deformations: for
instance, take the triangulated sphere in Figure 10 and make strange shapes out of
it (for instance, a cucumber), without making sharp edges or corners and without
making self-intersections; the triangulation is preserved during the deformation, as
well as the number of triangles, edges, and vertices.
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Figure 9. Tori with two, respectively three holes.

(b) in the left hand side, K changes during the deformation: again, for the sphere, you
can deform it to a thin and long cucumber in such a way that the top is very curved,
so K at that point will become much larger than 1.

Nevertheless, in spite of what we said at (b), the “average” of K on S does not change
under the deformation: and this is unexpected!

Figure 10. A triangulation of the sphere.

Let us compute the Euler-Poincaré characteristic of the sphere. One way of doing this
is by inscribing a tetrahedron in the sphere and joining the four vertices by curves on the
sphere. We obtain a triangulation with n2 = 4, n1 = 6, n0 = 4 (see Figure 11), so

χ(S2) = 4 − 6 + 4 = 2.

To calculate the Euler-Poincaré characteristic of the torus, we use the triangulation indi-
cated in Figure 12. We have n2 = 24, n1 = 36, n0 = 12. This implies

χ(T ) = 24 − 36 + 12 = 0.

One can show that a torus with k holes has the Euler-Poincaré characteristic equal to
2 − 2k (so it can be negative).
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Figure 11. A more lucrative triangulation of the
sphere: the thickened points and lines are all on the
sphere.

Figure 12. A triangulation of the torus: the figure is
incomplete, as each quadrilateral has to be divided in
two triangles. Warning: not all triangles you see here are
elements of the triangulation (only 24 of them).
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