
DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES

6. Gauss’ Theorema Egregium

Question. How can we decide if two given surfaces can be obtained from each other by

“bending without stretching”?

The simplest example is a flat strip, say of paper, which can be rolled (without stretching!)
to give a cylinder; a bit more precisely, a piece of the plane can be deformed to a piece of a
cylinder. On the other hand, it is intuitively clear that we cannot deform without stretching
a piece of a plane to a piece of a sphere (or of an ellipse, of a hyperboloid, of a torus etc. —
just try to wrap such an object!) In general, the question is hard. Let’s try to translate the
question into a more formal language:

• bending = map between surfaces

• without stretching = preserving the distances between two points, which is the same
as local isometry (see the last section in chapter 4 of the notes)

Gauss came up with the idea that an answer to our question can be given by measuring
curvature of curves on a surface, more precisely, the principal curvatures, but in a very in-
genious way. Because if we compare the plane and the cylinder we see that their principal
curvatures are k

plane
1 = k

plane
2 = 0 whereas k

cylinder
1 = 1, k

cylinder
2 = 0. Even though they are lo-

cally isometric, the plane and the cylinder have different principal curvatures. Nevertheless,
their product is the same! Recall that the latter product is what we called the Gauss cur-
vature. In fact, Gauss’ observation was that what we noticed in the case of the deformation
plane→cylinder is a very general phenomenon: if there is a deformation without stretching
of the surface S1 to the surface S2, then the product of the principal curvatures at any point
on S1 is preserved by the deformation. Another instructive (and easy to visualize, thanks to
the computer generated animation available online) example is the continuous deformation
of the helicoid in the catenoid. If you follow a point on the helicoid during this process, the
Gauss curvature doesn’t change, even though the surface changes its shape radically during
the process. Gauss’ theorem can be stated as follows:

Theorema Egregium.1 If f : S1 → S2 is a local isometry, then the Gauss curvature of S1

at P equals the Gauss curvature of S2 at f(P ).

Remark. 1. The theorem can only be used to rule out (local) isometries between surfaces.
By this we mean that the converse of the theorem is not true: one can find a diffeomorphism
(that is, a differentiable bijective map) between surfaces which preserves the Gauss curvature
at any point, but is not an isometry. You will see such an example in Homework no. 5. In
the same spirit: we cannot deduce that the plane and the cylinder (or the helicoid and the
catenoid) are locally isometric just because they have the same Gauss curvature!

2. In fact the importance of the theorem goes beyond the application mentioned above
(that is, rule out locally isometric surfaces). Many authors consider it “the most important
single theorem in differential geometry”. But it’s not easy to explain why, so we refer the
reader to Spivak’s monograph [Sp], the end of chapter 3, part B (page 143 - 144, “What
does Theorema Egregium really mean?”).

The rest of the chapter is devoted to the proof of this theorem. The key point is to consider
a local parametrization (U, ϕ) and produce a formula for K(ϕ(Q)) (where Q is in U) which
depends only on the functions E, F , and G (the coefficients of the first fundamental form).

1Gauss’ original paper where this theorem was stated and proven was written in Latin. He says that this
is a remarkable theorem, which in Latin means theorema egregium (egregium=remarkable).
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First we note that for any Q in U , the vectors ϕ′

u, ϕ
′

v, and N furnish a basis of R
3. Thus

we can consider the expansions

ϕ′′

uu = Γ1
11ϕ

′

u + Γ2
11ϕ

′

v + L1N

ϕ′′

uv = Γ1
12ϕ

′

u + Γ2
12ϕ

′

v + L2N

ϕ′′

vu = Γ1
21ϕ

′

u + Γ2
21ϕ

′

v + L2N(1)

ϕ′′

vv = Γ1
22ϕ

′

u + Γ2
22ϕ

′

v + L3N

N ′

u = a11ϕ
′

u + a21ϕ
′

v

N ′

v = a12ϕ
′

u + a22ϕ
′

v.

The numbers Γk
ij are called the Christoffel symbols of the parametrization (U, ϕ). Altogether,

they are in number of 2 × 2 × 2 = 8, but in fact, since ϕ′

uv = ϕ′

vu, we have

Γ1
12 = Γ1

21 and Γ2
12 = Γ2

21.

We take dot product of the first four equations with N and use equations (3), page 12,
chapter 5 of the notes. We obtain

L1 = e, L2 = f, L3 = g,

where e, f, g are the coefficients of the second fundamental form. The Christoffel symbols
can be determined by taking again the first four equations and making dot products with
ϕ′

u and ϕ′

v. We obtain:

Γ1
11E + Γ2

11F = ϕ′

uu · ϕ
′

u =
1

2
Eu(2)

Γ1
11F + Γ2

11G = ϕ′

uu · ϕ
′

v = Fu −
1

2
Eu

Γ1
12E + Γ2

12F = ϕ′

uv · ϕ
′

u =
1

2
Ev(3)

Γ1
12F + Γ2

12G = ϕ′

uv · ϕ
′

v =
1

2
Gu

Γ1
22E + Γ2

22F = ϕ′

vv · ϕ
′

u = Fv −
1

2
Gu(4)

Γ1
22F + Γ2

22G = ϕ′

vv · ϕ
′

v =
1

2
Gv

Each of the three groups of equations can be considered as a linear system of two equations
with two unknowns. The determinant of each system is EG − F 2 which is strictly positive
(why?). We can solve each system and obtain concrete expressions for Γk

ij in terms of E, F, G

and their derivatives.

Now we consider the obvious equation

(ϕ′′

uu)
′

v − (ϕ′′

uv)
′

u = 0.

If we use (1), we deduce

Γ1
11ϕ

′′

uv + Γ2
11ϕ

′′

vv + eN ′

v + (Γ1
11)

′

vϕ
′

u + (Γ2
11)

′

vϕ
′

v + e′vN

= Γ1
12ϕ

′′

uu + Γ2
12ϕ

′′

vu + fN ′

u + (Γ1
12)

′

uϕ
′

u + (Γ2
12)

′

uϕ
′

v + f ′

uN
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We use again (1) to substitute all second order derivatives. Then we equate the coefficient
of ϕ′

v. We obtain:

Γ1
11Γ

2
12 + Γ2

11Γ
2
22 + ea22 + (Γ2

11)
′

v

= Γ1
12Γ

2
11 + Γ2

12Γ
2
12 + fa21 + (Γ2

12)
′

u.

But we actually know a21 and a22, by the Weingarten equations (see chapter 5, section 4 of
the notes). By making the replacements we obtain:

(Γ2
12)

′

u − (Γ2
11)

′

v + Γ1
12Γ

2
11 + Γ2

12Γ
2
12 − Γ2

11Γ
2
22 − Γ1

11Γ
2
12

= −E
eg − f 2

EG − F 2
= −EK

and this gives the desired

formula for K in terms of E, F, G and their partial derivatives of first and second order with

respect to u and v.

To finish the proof, we consider the local isometry f : S1 → S2. Take P a point of S1.
Because d(f)P : TP S1 → Tf(P )S2 is a linear isomorphism, f is a local diffeomorphism at
P , which implies that there exists a local parametrization (U, ϕ) of S1 around P such that
(U, f ◦ ϕ) is a local parametrization of S2 around f(P ). For any Q in U , the canonical basis
of Tf(ϕ(Q))S2 consists of

(f ◦ ϕ)′u(Q) = d(f)ϕ(Q)(ϕ
′

u(Q)), (f ◦ ϕ)′v(Q) = d(f)ϕ(Q)(ϕ
′

v(Q)).

Moreover, if we denote P = ϕ(Q), we have

If(P )(d(f)P (w)) = IP (w),

for all w = w1ϕ
′

u(Q) + w2ϕ
′

v(Q) in TP S1. We also have

d(f)P (w) = w1(f ◦ ϕ)′u(Q) + w2(f ◦ ϕ)′v(Q),

and
IP (w) = E(Q)w2

1 + 2F (Q)w1w2 + G(Q)w2
2

as well as
If(P )(d(f)P (w)) = Ẽ(Q)w2

1 + F̃ (Q)w1w2 + G̃(Q)w2
2.

We deduce E(Q) = Ẽ(Q), F (Q) = F̃ (Q), and G(Q) = G̃(Q) for any Q = (u, v) in U .
Combined with the formula for K from above, these imply that the curvature of S1 at ϕ(Q)
equals the curvature of S2 at f(ϕ(Q)), for any Q in U . �
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