
DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES

4. Lengths and Areas on a Surface

An important instrument in calculating distances and areas is the so called first funda-
mental form of the surface S at a point P . This is nothing but the restriction of the scalar
product of R3 to the vector subspace TPS. Before getting to the actual definition, we need
a bit of linear algebra.

4.1 Quadratic forms (part I).1 Let V be a two dimensional vector space. A symmetric
bilinear form on V is a function B : V × V → R with the following properties:

SBF1. B(v, w) = B(w, v), for all v, w in V
SBF2. B(av1 + bv2, w) = aB(v1, w) + bB(v2, w), for all v1, v2, w in V and all a, b in R.

The corresponding quadratic form is Q : V → R given by

Q(v) := B(v, v)

for all v in V . It will become clear immediately why do we call it “quadratic” (that is, “of
degree two”). Let’s take a basis e1, e2 of V . We can write v = v1e1 + v2e2, w = w1e1 + w2e2
and we have

B(v, w) = [v]A[w]T

where

[v] = (v1 v2), [w] = (w1 w2), [w]
T =

(
w1

w2

)
, A =

(
a b
b c

)
.

The entries a, b, c of the symmetric matrix A are as follows:

(1) a = B(e1, e1), b = B(e1, e2), c = B(e2, e2).

They are called the coefficients of the quadratic form Q. As about Q, for any w = w1e1+w2e2
in V we have

(2) Q(w) = aw2
1 + 2bw1w2 + cw2

2

which is indeed a degree two polynomial in w1 and w2. We note that if Q is given, we can
recover B by the formula

B(v, w) =
1

2
(Q(v + w)−Q(v)−Q(w)),

which you may want to check.

We say that Q is a positive definite quadratic form if

Q(w) > 0, for all w in V,w ̸= 0.

Equivalently,
aw2

1 + 2bw1w2 + cw2
2 > 0

for any two numbers w1, w2, not both of them equal to 0. In turn, this is equivalent to the
fact that the quadratic polynomial ax2 + 2bx+ c is positive for any x. We have proved the
following result.

Lemma 4.1.1. The quadratic form given by (2) is positive definite if and only if

a > 0 and b2 − ac < 0.

1More about quadratic forms will be needed (and discussed) in the next chapters.
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4.2. The first fundamental form. Let S be a regular surface in R3 and P a point on S.
Recall that the tangent plane TPS is a two dimensional vector subspace of R3.

Definition 4.2.1. The first fundamental form of S at P is the function denoted IP , from
TPS to R, given by

IP (v) := v · v,
for any v in TP (S).

One can easily see that IP is a quadratic form on the vector space TPS, namely the one
corresponding to the symmetric bilinear form v · w, for v, w ∈ TPS. It is obviously positive
definite. As we will see immediately, it can be used to compute lengths and areas on S. First
we would like to express it in terms of a local parametrization around P . So let φ : U → S
be a local parametrization and Q = (u, v) in U with φ(Q) = P . The vectors φ′

u(Q) and
φ′
v(Q) are a basis of TPS. By equation (1), the coefficients of IP are as follows:

E := φ′
u(Q) · φ′

u(Q), F := φ′
u(Q) · φ′

v(Q), G := φ′
v(Q) · φ′

v(Q).

If we let Q = (u, v) vary in U , the formulas above give three differentiable functions, E, F ,
and G on U . Let’s finish this discussion by recording the formula

IP (w1φ
′
u(Q) + w2φ

′
v(Q)) = w2

1E(Q) + 2w1w2F (Q) + w2
2G(Q),

for any w1, w2 in R (that is, for any vector w1φ
′
u(Q) + w2φ

′
v(Q) in TPS). Shortly, we write

(3) Ip(w1, w2) = Ew2
1 + 2Fw1w2 +Gw2

2

In the following we will show some calculations of the first fundamental form.

Example. We consider the cylinder represented in Figure 1, call it C. A local parametriza-
tion of it is given by

φ(u, v) = (cos u, sinu, v)

where 0 < u < 2π, and v is in R. Let’s take the point P = φ(u, v) on C. The plane TPC is

x

y

z

P

φ'

φ'

u

v

Figure 1. The cylinder and its tangent plane at the
point P .
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spanned by

φ′
u(u, v) = (− sinu, cosu, 0), and φ′

v(u, v) = (0, 0, 1).

The coefficients of the first fundamental form are

E = φ′
u · φ′

u = 1, F = φ′
u · φ′

v = 0, G = φ′
v · φ′

v = 1.

So if we fix (u, v) and we take w in Tφ(u,v)S of the form

w = w1φ
′
u(u, v) + w2φ

′
v(u, v),

then we have

(4) IP (w) = w2
1 + w2

2.

4.3. Lengths and areas. Let φ : U → S be a local parametrization of the surface S. We
will give two formulas, one for the length of a curve, the other for the area of a “piece” of a
surface, under the hypothesis that the curve and the piece of surface are contained in φ(U).
An important idea is that both formulas involve just the first fundamental form Iφ(u,v), where
(u, v) is in U .

First let α : (a, b) → R3 be a parametrised curve, with α(t) in S, for all t. Take c, d such
that a < c < d < b. Then, according to Definition 1.3.2, we have

ℓ(α|[c,d]) =
∫ d

c

∥α′(t)∥dt =
∫ d

c

√
Iα(t)(α′(t))dt.

We now turn to the area of a piece of a surface, which is contained in the image of the
local parametrization φ : U → S. First let us fix Q0 = (u0, v0) a point in U , take ∆u and ∆v
two small numbers and let ∆R be the rectangle represented in Figure 2. What’s the area
of φ(∆R)? The latter can be approximated by the parallelogram whose sides have length
equal to

ℓ(u 7→ φ(u, v0);u0 ≤ u ≤ u0 +∆u)

respectively

ℓ(v 7→ φ(u0, v); v0 ≤ v ≤ v0 +∆v)

and the angle between the two sides equal to the angle between φ′
u(Q0) and φ′

v(Q0). The
first length is ∫ u0+∆u

u0

∥φ′
u(ω, v0)∥dω

and is approximately equal to

∥φ′
u(Q0)∥∆u = ∥(∆u)φ′

u(Q0)∥
Similarly, the second length is approximately equal to

∥φ′
v(Q0)∥∆v = ∥(∆v)φ′

v(Q0)∥.
Consequently, the area of φ(δR) can be approximated by the area of the parallelogram
determined by the vectors (∆u)φ′

u(Q0) and (∆v)φ′
v(Q0). The latter is just the length of the

scalar product of the two vectors. We have proved

Area(φ(R)) ≈ ∥(∆u)φ′
u(Q0)× (∆v)φ′

v(Q0)∥ = ∥φ′
u(Q0)× φ′

v(Q0)∥∆u∆v

= ∥φ′
u(Q0)× φ′

v(Q0)∥Area(∆R).

This suggests2 the following definition:

2See the definition of the double integral from vector calculus (for instance in Stewart’s textbook).
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Figure 2. The area of φ(∆R) is approximately equal to
the area of the parallelogram determined by φ′

u(Q0)∆u
and φ′

v(Q0)∆v

Definition 4.3.1. If R is a compact3 subset of U , then the area of φ(R) is

Area(φ(R)) =

∫ ∫
R

∥φ′
u × φ′

v∥dA.

The problem with this definition is that it is possible to cover a region of a surface by
two parametrizations. More precisely, it is possible to have two parametrizations (U,φ) and
(Ũ , φ̃) such that

φ(R) = φ̃(R̃),

where R and R̃ are compact subsets of U , respectively Ũ . One can show that if this is the
case, then ∫ ∫

R

∥φ′
u × φ′

v∥dA =

∫ ∫
R̃

∥φ̃′
u × φ̃′

v∥dA.

To justify this, we take the change of parameter map φ−1 ◦ φ̃ = (h1, h2) and write

φ̃(ũ, ṽ) = φ(h1(ũ, ṽ), h2(ũ, ṽ)).

This implies

φ̃′
ũ =

∂φ

∂u

∂h1

∂ũ
+

∂φ

∂v

∂h2

∂ṽ
=

∂h1

∂ũ
φ′
u +

∂h2

∂ṽ
φ′
v.

We get a similar formula for φ̃′
ṽ, and then we deduce that

φ̃′
ũ × φ̃′

ṽ = det(J(h1, h2))φ
′
u × φ′

v,

where J(h1, h2) is the Jacobi (2 × 2) matrix of (h1, h2). We note that (h1, h2) maps R̃
to R and we use the change of variables formulas for double integrals. For a more detailed
justification, see for instance [dC], page 97. So the definition of the area above is independent
of the choice of parametrization.

We can express area in terms of the first fundamental form (3) as follows. We use the
general formula

∥a× b∥2 + (a · b)2 = ∥a∥2∥b∥2,
where a, b are two arbitrary vectors in R3 (prove this!). For a = φ′

u and b = φ′
v we obtain

∥φ′
u × φ′

v∥ =
√
EG− F 2.

Note that EG− F 2 > 0, by Lemma 4.1.1. We obtain the following formula for the area.

Area(φ(R)) =

∫ ∫
R

√
EG− F 2dA.

3That is, U is bounded and closed.
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Exercise. Find the area of the torus (see the end of Section 3.1 and Homework no. 3,
question 2).

4.4. Isometries and conformal maps. Let’s start with the following example. Which is
the first fundamental form of the xy coordinate plane? We saw in Example 1, Section 3.1
that a parametrization of that plane is

φ(u, v) = (u, v, 0),

where (u, v) is in R2. So at any point Q in R2 we have

φ′
u(Q) = (1, 0, 0), φ′

v(Q) = (0, 1, 0).

Thus for any P in the plane, the coefficients of IP are as follows

E = ∥(1, 0, 0)∥2 = 1, F = (1, 0, 0) · (0, 1, 0) = 0, G = ∥(0, 0, 1)∥2 = 1.

This implies

IP (w1, w2) = w2
1 + w2

2,

for any w1, w2 in R. Now if we compare this with the first fundamental form of the cylinder
given by (4), we see the same expression. In other words, the plane and the cylinder can be
parametrized in such a way that the first fundamental forms are the same. The explanation
is that, if we denote the plane by Π, then there exists a differentiable map f : Π → C whose
differential

d(f)P : TPΠ → Tf(P )C

“preserves” the first fundamental forms IP of Π at P , respectively If(P ) of C at f(P ). More
precisely, we have

(5) If(P )(d(f)P (w)) = IP (w),

for all w in TPΠ. The map f can be easily seen if we look at the parametrization of C given
in Section 4.1. It is

f(x, y, 0) = (cos x, sinx, y),

for all (x, y, 0) in Π.

Exercise. Check Equation (5) above.

More generally, we have the following definition.

Definition 4.4.1. (a) A differentiable map f between the regular surfaces S1 and S2 is a
local isometry if for any point P in S and any vector w in TPS1 we have

If(P )(d(f)P (w)) = IP (w),

where IP , If(P ) are the first fundamental forms of S1 at P , respectively of S2 at f(P ).

(b) A differentiable map f : S1 → S2 is an isometry if it is a local isometry and bijective.

(c) If there exists an isometry from S1 to S2 we say that the surfaces S1 and S2 are
isometric.

For instance, the map f : Π → C described above is a local isometry, but not an isometry
(because it’s not injective). In fact, we can show that Π and C are not isometric (that is,
there exists no isometry from Π to C).

Remarks. 1. One can easily see that if f is a local isometry, then it is a local diffeomorphism,
that is, for any P in S1 there exists an open neighborhood V1 of P in S1 and an open
neighborhood V2 of f(P ) in S2 such that f is a diffeomorphism from V1 to V2.
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2. A local isometry preserves the lengths of curves. More precisely, let f : S1 → S2 be
a local isometry. If α is a curve whose trace is on S1, then β(t) = f(α(t)) is a curve on S2

with the property that
ℓ(α|[c,d]) = ℓ(β|[c,d]).

Another example of a pair of locally isometric surfaces is the helicoid and the catenoid
(this will be a homework exercise). Examples of isometric surfaces can be obtained by taking
a sheet of paper and bending it into various shapes (the bent sheet is isometric to the initial
one). A more concrete example is

f(x, y) = (cos y, sin y, x)

which is an isometry between R×(0, 2π) and the cylinder C without the vertical line (1, 0, z),
z in R.

We now define a new notion, namely conformal maps between surfaces.

Definition 4.4.2. A differentiable map f between the surfaces S1 and S2 is called a
conformal map if for any point P in S and any vector w in TPS1 we have

(6) If(P )(d(f)P (w)) = λ(P )IP (w),

where λ : S1 → R is a differentiable function with λ(P ) > 0 for all P in S1.

A conformal map does not preserve lengths, like an isometry (see Remark 2 above), but
it preserves angles. This is what the following result say.

Proposition 4.4.3. If f : S1 → S2 is a conformal map, then for any point P in S1 and any
two vectors w, w̃ in TPS1, we have

d(f)P (w) · d(f)P (w̃)
∥d(f)P (w)∥∥d(f)P (w̃)∥

=
w · w̃

∥w∥∥w̃∥
.

Consequently, the angle between the vectors w and w̃ is the same as the angle between their
images under d(f)P .

Proof. The result follows immediately from the following equation.

d(f)P (w) · d(f)P (w̃) = λ(P )w · w̃.
In turn, this follows from

∥d(f)P (w)∥2 = λ(P )∥w∥2,
(which is a straightforward consequence of (6)), and the equations:

2d(f)P (w) · d(f)P (w̃) = ∥d(f)P (w) + d(f)P (w̃)∥2 − ∥d(f)P (w)∥2 − ∥d(f)P (w̃)∥2,
2w · w̃ = ∥w + w̃∥2 − ∥w∥2 − ∥w̃∥2.

�
Exercise. Show that the stereographic projection Φ from the xy plane to the sphere S2 (see
Section 2.3 of the notes) is a conformal map.
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