University of Regina Department of Mathematics and Statistics

MATH431/831 - Differential Geometry - Winter 2014

Homework Assignment No. 5

1. Consider again the hyperbolic paraboloid \mathcal{H} (see Chapter 5, page 11), which is the surface of equation $z=y^{2}-x^{2}$. Choose the obvious (global) parametrization of \mathcal{H} and the corresponding unit normal vector field N (the Gauss map). Determine as follows:
(a) $T_{O} \mathcal{H}$,
(b) $d(N)_{O}$,
(c) k_{1} and k_{2},
(d) two principal vectors at O,
(e) H and K at O.

Hint. The hardest point is (b): to do it, take a curve α on \mathcal{H} with $\alpha(0)=O$ and calculate $d(N)_{O}\left(\alpha^{\prime}(0)\right)$.
2. A surface of revolution is obtained by rotating the curve α in the $x z$ plane described by

$$
x=f(v), \quad z=g(v), a<v<b
$$

around the z axis (see Figures 1 and 2). Call S the subset of \mathbb{R}^{3} obtained in this way.

Figure 1. A surface of revolution.

Figure 2. Parallels and meridians on a surface of revolution.
The curve in the $x z$ plane is called the generating curve, the circles described by points
of C after rotation are called parallels and the curves described by $v \mapsto \varphi\left(u_{0}, v\right)$, with $a<v<b$ are called meridians. A parametrization of S is given by

$$
\varphi(u, v)=(f(v) \cos u, f(v) \sin u, g(v))
$$

where $0<u<2 \pi$, and $a<v<b$. You don't need to justify this: just notice that the assumption

$$
f(v) \neq 0 \text { for any } v
$$

is important, because otherwise we would have $f\left(v_{0}\right)=0$ for some v_{0}, which would imply that $\varphi\left(u, v_{0}\right)=\left(0,0, v_{0}\right)$, for all u, so φ wouldn't be injective. Also note that this is a local parametrization, since not all points on S are in the image of φ. To simplify the calculations, we will assume that the curve α is parametrized by arc length, that is

$$
f^{\prime}(v)^{2}+g^{\prime}(v)^{2}=1,
$$

for all v.
(a) Compute E, F, G and e, f, g at any point $P=\varphi(u, v)$.
(b) Show that there is a principal vector tangent to the meridian through P, and another one tangent to the parallel through P.
(c) Show that the Gauss curvature of S at $P=\varphi(u, v)$ is

$$
K=-\frac{f^{\prime \prime}(v)}{f(v)}
$$

3. Consider the surface S which is the graph of the function h of two variables. That is, S is described by $z=h(x, y)$. Show that the Gauss curvature of S at the point $(x, y, h(x, y))$ is

$$
K=\frac{h_{x x}^{\prime \prime} h_{y y}^{\prime \prime}-\left(h_{x y}^{\prime \prime}\right)^{2}}{\left(1+\left(h_{x}^{\prime}\right)^{2}+\left(h_{y}^{\prime}\right)^{2}\right)^{2}}
$$

