University of Regina

 Department of Mathematics and Statistics

 Department of Mathematics and Statistics}

MATH431/831 - Differential Geometry - Winter 2014

Homework Assignment No. 4

1. Find the area of the torus (see the end of Section 3.1). Hint. Use the parametrization given in Homework 3, Question 2. Because that parametrization does not cover the whole torus, you will have to compute first the area corresponding to the square $\epsilon \leq u, v \leq 2 \pi-\epsilon$, then make $\epsilon \rightarrow 0$.
2. Show that the area of the graph of $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ over the compact region R in the $x y$ plane is given by

$$
\iint_{R} \sqrt{1+\left(g_{x}^{\prime}\right)^{2}+\left(g_{y}^{\prime}\right)^{2}} d A
$$

3. Let S, \tilde{S} be two surfaces, (U, φ) and $(U, \tilde{\varphi})$ local parametrizations of S, respectively \tilde{S} (with the same domain U) and denote by E, F, G, respectively $\tilde{E}, \tilde{F}, \tilde{G}$ the coefficients of the corresponding first fundamental forms (they are functions from U to \mathbb{R}). Show that if

$$
E(Q)=\tilde{E}(Q), \quad F(Q)=\tilde{F}(Q), G(Q)=\tilde{G}(Q)
$$

for any Q in U, then the map

$$
f:=\tilde{\varphi} \circ \varphi^{-1}: \varphi(U) \rightarrow \tilde{S}
$$

is a local isometry. Hint. First show that $d(f)_{P}\left(\varphi_{u}^{\prime}(Q)\right)=\tilde{\varphi}_{u}^{\prime}(Q)$ and $d(f)_{P}\left(\varphi_{v}^{\prime}(Q)\right)=$ $\tilde{\varphi}_{v}^{\prime}(Q)$, for any Q in U.
4. Consider the example at the beginning of Section 4.4. Show that $f: \Pi \rightarrow C$ given by $f(x, y, 0)=(\cos x, \sin x, y)$ is a local isometry. Hint. One can do that by describing $d(f)_{P}: T_{P} \Pi \rightarrow T_{f(P)} C$ explicitly and checking equation (5), as indicated in the notes. You are invited to do it differently (and more economically!), namely by using question no. 3 . Warning: the standard parametrizations of Π and C are not defined on the same open subset U of \mathbb{R}^{2}, like in question 3 . However, you can use the same method.
5. Consider the helix described in Section 2.1 of the notes, and make $a:=1, b:=1$. Through each of its points consider the straight line parallel to the horizontal plane which intersects the z axis. The surface generated by these lines is called the helicoid (see Figure 1). It has the global parametrization

$$
\varphi_{1}(u, v)=(u \cos v, u \sin v, v)
$$

where u and v are in \mathbb{R} (this follows easily from the equation of the helix given in chapter 2). We also consider the catenoid, which is generated by rotating the catenary $x=\cosh z$ situated in the $x z$ plane around the z axis (see Figure 2). It has a local parametrization

$$
\varphi_{2}(u, v)=(\cosh u \cos v, \cosh u \sin v, u)
$$

where u is in \mathbb{R} and $0<v<2 \pi$. Show that the piece of helicoid between the plane $z=0$ and $z=2 \pi$ and the catenoid are locally isometric. More precisely, show that such a local isometry is given by

$$
f\left(\varphi_{1}(\sinh u, v)\right)=\varphi_{2}(u, v)
$$

for all $\varphi_{1}(u, v)$ on the helicoid. Hint. Use the result mentioned in question no. 3 for $\varphi(u, v):=\varphi_{1}(\sinh u, v)$ and $\tilde{\varphi}(u, v):=\varphi_{2}(u, v)$.

Figure 1. The helicoid.

Figure 2. The catenoid.

