University of Regina Department of Mathematics and Statistics

MATH431/831 – Differential Geometry – Winter 2014

Homework Assignment No. 4

- 1. Find the area of the torus (see the end of Section 3.1). **Hint.** Use the parametrization given in Homework 3, Question 2. Because that parametrization does not cover the whole torus, you will have to compute first the area corresponding to the square $\epsilon \leq u, v \leq 2\pi \epsilon$, then make $\epsilon \to 0$.
- 2. Show that the area of the graph of $g: \mathbb{R}^2 \to \mathbb{R}$ over the compact region R in the xy plane is given by

$$\int \int_{R} \sqrt{1 + (g'_x)^2 + (g'_y)^2} dA.$$

3. Let S, \tilde{S} be two surfaces, (U, φ) and $(U, \tilde{\varphi})$ local parametrizations of S, respectively \tilde{S} (with the same domain U) and denote by E, F, G, respectively $\tilde{E}, \tilde{F}, \tilde{G}$ the coefficients of the corresponding first fundamental forms (they are functions from U to \mathbb{R}). Show that if

$$E(Q) = \tilde{E}(Q), \ F(Q) = \tilde{F}(Q), \ G(Q) = \tilde{G}(Q),$$

for any Q in U, then the map

$$f := \tilde{\varphi} \circ \varphi^{-1} : \varphi(U) \to \tilde{S}$$

is a local isometry. **Hint.** First show that $d(f)_P(\varphi'_u(Q)) = \tilde{\varphi}'_u(Q)$ and $d(f)_P(\varphi'_v(Q)) = \tilde{\varphi}'_v(Q)$, for any Q in U.

- 4. Consider the example at the beginning of Section 4.4. Show that $f : \Pi \to C$ given by $f(x, y, 0) = (\cos x, \sin x, y)$ is a local isometry. **Hint.** One can do that by describing $d(f)_P : T_P\Pi \to T_{f(P)}C$ explicitly and checking equation (5), as indicated in the notes. You are invited to do it differently (and more economically!), namely by using question no. 3. Warning: the standard parametrizations of Π and C are not defined on the same open subset U of \mathbb{R}^2 , like in question 3. However, you can use the same *method*.
- 5. Consider the helix described in Section 2.1 of the notes, and make a := 1, b := 1. Through each of its points consider the straight line parallel to the horizontal plane which intersects the z axis. The surface generated by these lines is called the *helicoid* (see Figure 1). It has the global parametrization

$$\varphi_1(u,v) = (u\cos v, u\sin v, v)$$

where u and v are in \mathbb{R} (this follows easily from the equation of the helix given in chapter 2). We also consider the *catenoid*, which is generated by rotating the catenary $x = \cosh z$ situated in the xz plane around the z axis (see Figure 2). It has a local parametrization

$$\varphi_2(u, v) = (\cosh u \cos v, \cosh u \sin v, u)$$

where u is in \mathbb{R} and $0 < v < 2\pi$. Show that the piece of helicoid between the plane z = 0 and $z = 2\pi$ and the catenoid are locally isometric. More precisely, show that such a local isometry is given by

$$f(\varphi_1(\sinh u, v)) = \varphi_2(u, v),$$

for all $\varphi_1(u, v)$ on the helicoid. **Hint.** Use the result mentioned in question no. 3 for $\varphi(u, v) := \varphi_1(\sinh u, v)$ and $\tilde{\varphi}(u, v) := \varphi_2(u, v)$.

FIGURE 1. The helicoid.

FIGURE 2. The catenoid.