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Homework Assignment No. 3 - Solutions

1. Consider the map

ϕ(u, v) = (cos u sin v, sin u sin v, cos v)

where 0 < u < 2π, 0 < v < π.

(a) Show that ϕ(u, v) is on S2 for all (u, v) (see also Figure 1). Which

is the image of ϕ (in other words, which portion of the sphere is covered

by all ϕ(u, v))?
(b) Show that ϕ gives a local parametrization of the sphere S2 (you may

omit checking that ϕ−1 : ϕ(U) → U is continuous).

(c) Represent the coordinate curves on the sphere.

(d) Find another local parametrization on S2 of the same kind which, together

with the one given here, cover the whole sphere.

u v P = ( x , y , z )
x

y
z

Figure 1. The image of ϕ is S2 without the half circle
represented in the xz plane. The image of ϕ̃ is S2 without
the (dotted) half circle represented in the xy plane.

Solution. (a) The only points not included in the image of ϕ are those with u = 0
or v = 0 or v = π. Those are exactly the points on the half circle contained in the
xy plane represented in Figure 1.

(b) Only condition 2 needs to be checked. We have

ϕ′

u = (− sin u sin v, cos u sin v, 0), ϕ′

v = (cos u cos v, sin u cos v,− sin v).
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These vectors are linearly independent if and only if one of the determinants
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is different from zero. They are as follows:

− sin v cos v, cos u sin2 v, sin u sin2 v.

It’s easy to check that for any u, v with 0 < u < 2π, 0 < v < π, at least one of the
three numbers from above is non zero.

(c) If we fix v = v0 we obtain the curve u 7→ ϕ(u, v0), with 0 < u < 2π. This is a
circle (without a point) on the sphere which is parallel to the equator.

If we fix u = u0 we obtain the curve v 7→ ϕ(u0, v), with 0 < v < π. This is a half
circle on a sphere (a meridian).

(d) We will find another parametrization, whose image is the sphere without the
dotted circle. That is

ϕ̃(u, v) = (− cos u sin v, cos v, sinu sin v),

where again 0 < u < 2π, 0 < v < π.
2. Consider the map

ϕ(u, v) = ((a + r cos u) cos v, (a + r cos u) sin v, r sin u)

where 0 < u < 2π, 0 < v < 2π.
(a) Show that ϕ(u, v) is on the torus T defined in section 3.1 of the notes

(see also Figure 2). Which is the image of ϕ (in other words, which

portion of the sphere is covered by all ϕ(u, v))?
(b) Show that ϕ gives a local parametrization of the torus T (you may omit

again checking that ϕ−1 : ϕ(U) → U is continuous).

r( 0 , a , 0 )Px y
z

u ( 0 , a + r c o s u , r s i n u )v
Figure 2. The points on T which are not in the image
of ϕ are the dotted circles.

Solution. (a) One can easily see that the components of ϕ(u, v) are exactly the
coordinates of the point P in Figure 2. The only points not included in the image of
ϕ are those with u = 0 and v = 0. These are the two dotted circles in Figure 2.
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(b) Like before, the only difficult thing to check is that the vectors ϕ′

u and ϕ′

v are
linearly independent. We have

ϕ′

u = (−r sin u cos v,−r sin u sin v, r cos u)

and
ϕ′

v = (−(a + r cos u) sin v, (a + r cos u) cos v, 0).

We have
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−r sin u sin v (a + r cos u) cos v
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= −r(a + r cos u) sinu
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= −r(a + r cos u) cosu cos v
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−r sin u cos v −(a + r cos u) sin v

r cos u 0
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= r(a + r cos u) cosu sin v

3. Let two points p(t) and q(t) move with the same speed, p starting from (0, 0, 0)
and moving along the z axis and q starting at (a, 0, 0), a 6= 0, and moving

parallel to the y axis. The motions go in both senses, that is, t can be

positive or negative. Show that the line through p(t) and q(t) describes

the set in R
3 given by

y(x − a) + zx = 0.

Then show that this is a regular surface.

q ( t )p ( t )
y

x
z

( a , 0 , 0 )
Figure 3. We are interested in all straight lines deter-
mined by p(t) and q(t), where t is in R.

Solution. See Figure 3. The equation of the straight line determined by p(t) =
(0, 0, ct) and q(t) = (a, ct, 0) is

x − 0

a − 0
=

y − 0

ct − 0
=

z − ct

0 − ct
,
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so
x

a
=

y

ct
= −

z − ct

ct
.

The idea is to eliminate t from these equations. From the first equation one obtains

ct =
ay

x
.

We replace in the second equation and obtain
y
ay

x

= −
z
ay

x

+ 1.

This gives

y(x− a) + zx = 0

which is the desired equation.
We consider the function

f(x, y, z) = y(x− a) + zx.

We have f ′

x = y + z, f ′

y = x − a and f ′

z = x. The latter two expressions cannot be

simultaneously 0, so f−1(0) is a regular surface.
4. (a) Let f : R

3 → R be a differentiable function and c a number such that

for any P in f−1(c) at least one of f ′

x(P ), f ′

y(P ), and f ′

z(P ) is non-zero.

Consider the surface S = f−1(0). Show that the equation of the tangent

plane to S at a point P is

xf ′

x(P ) + yf ′

y(P ) + zf ′

z(P ) = 0.

Hint. You may want to use the following general fact: the equation of a plane

through the origin which is perpendicular to a given vector (a, b, c) is ax+by+

cz = 0.

(b) Let S be the graph of the differentiable function g : R
2 → R. Show

that the equation of the tangent plane at a given point P = (x0, y0, g(x0, y0))
to S is

z = gx(x0, y0)x + gy(x0, y0)y.

Solution. (a) Let α′(0) be a tangent vector at P , where α : (−ǫ, ǫ) → R
3 is a curve

with α(t) in S, for all t and α(0) = P . Set

α(t) = (x(t), y(t), z(t)).

We have

f(x(t), y(t), z(t)) = 0,

for all t in (−ǫ, ǫ). We differentiate (take derivative at 0) and obtain

f ′

x(P )x′(0) + f ′

y(P )y′(0) + f ′

z(P )z′(0) = 0,

so the vector (f ′

x(P ), f ′

y(P ), f ′

z(P )) is perpendicular to α′(0) = (x′(0), y′(0), z′(0))
(their dot product is 0). We have shown that (f ′

x(P ), f ′

y(P ), f ′

z(P )) is perpendicular
to any vector in the tangent plane, so it is perpendicular to the plane itself. We use
the hint and obtain the desired equation.

(b) Take f(x, y, z) := g(x, y) − z and use point (a).
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5. Construct a diffeomorphism (that is, a map f which is differentiable, bijective,

and its inverse f−1 is differentiable) between the paraboloid of equation

z = x2 + y2 and a plane, for instance the xy coordinate plane.

Solution. Denote the paraboloid by P and the plane by Π. The map f : P → Π
given by f(x, y, z) = (x, y, 0) is such a diffeomorphism. Its inverse is f−1 : Π → P ,
f−1(x, y, 0) = (x, y, x2 + y2). The two maps are both differentiable, as consequence
of example 3, page 13, chapter 3 of the notes.
Note. We can replace x2 + y2 by any function of two variables g(x, y). So any graph
of a function of two variables is a surface diffeomorphic to a plane.

6. (Not to be marked) Prove that if a regular surface S meets a plane Π
in a single point P, then this plane coincides with the affine tangent

plane to S at P. Note. By definition, the affine tangent plane to S at P is

P + TP S, which is an affine two-dimensional subspace of R
3. For instance,

if (U,ϕ) is a local parametrization and ϕ(Q) = P, then the affine tangent plane

is the plane through P which is parallel to ϕ′

u(Q) and ϕ′

v(Q).

Solution. See Figure 4.

O

P

T SP

( a , b , c )

S
Π

Figure 4. We are proving that the plane Π is the same
as P + TP S.

We consider a parametrization (U, ϕ) of S such that ϕ(Q) = P for some Q = (u0, v0)
in U . Write

ϕ(u, v) = (x(u, v), y(u, v), z(u, v))
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for all (u.v) in U . Assume that the equation of the plane Π is

(ax + by + cz + d = 0.

The fact that the plane Π has a unique intersection point with S is the same as saying
that the function U → R

(u, v) 7→ ax(u, v) + by(u, v) + cz(u, v) + d

has a unique zero at Q. We deduce (see the lemma below) that the partial derivatives
of ax(u, v) + by(u, v) + cz(u, v) + d at (u0, v0) are zero. This means

ax′

u(Q) + by′

u(Q) + bz′u(Q) = 0, ax′

v(Q) + by′

v(Q) + bz′v(Q) = 0.

This means that the vector (a, b, c) is perpendicular to the plane spanned by ϕ′

u(Q)
and ϕ′

v(Q), which is the tangent plane. So both the affine tangent plane and the
plane Π are perpendicular to (a, b, c) and go through P : they must be equal.
Lemma. Let g : U → R be a differentiable function, where U is an open subset of

R
2. If g has a unique zero at Q = (u0, v0), then

∂g

∂u
(Q) = 0 and

∂g

∂v
(Q) = 0.

Proof. Assume that one of the partial derivatives, for instance ∂g

∂v
(Q), is non zero.

Consider the function G : U → R
2, G(u, v) = (u, g(u, v)). The Jacobian matrix of G

at Q is

(JG)(Q) =

(

1 g′

u(Q)
0 g′

v(Q)

)

,

which is nonsingular. Consequently G is a local diffeomeorphism around Q, that is,
there exists open neighborhoods W of Q in U and V of

G(Q) = (u0, 0)

in R
2 such that G is a diffeomorphism from W to V . In V there exists at least

one (actually infinitely many) point (u1, 0) with u1 6= u0. The point G−1(u1, 0) is in
W ⊂ U , it is different from G−1(u0, 0) = Q and it satisfies

G(G−1(u1, 0)) = (u1, 0),

which implies
g(G−1(u1, 0)) = 0.

This contradicts that Q is the only zero point of g.

Remark. The result in the lemma is not true for functions of one variable. If a function
x 7→ g(x) has a unique zero at x0, then its derivative doesn’t have to vanish at x0 (it’s very
simple to find a counterexample!)


