University of Regina

 Department of Mathematics and Statistics

 Department of Mathematics and Statistics}

MATH431/831 - Differential Geometry - Winter 2014

Homework Assignment No. 3

1. Consider the map

$$
\varphi(u, v)=(\cos u \sin v, \sin u \sin v, \cos v)
$$

where $0<u<2 \pi, 0<v<\pi$.
(a) Show that $\varphi(u, v)$ is on S^{2} for all (u, v) (see also Figure 1). Which is the image of φ (in other words, which portion of the sphere is covered by all $\varphi(u, v)$)?
(b) Show that φ gives a local parametrization of the sphere S^{2} (you may omit checking that $\varphi^{-1}: \varphi(U) \rightarrow U$ is continuous).
(c) Represent the coordinate curves on the sphere.
(d) Find another local parametrization on S^{2} of the same kind which, together with the one given here, cover the whole sphere.
2. Consider the map

$$
\varphi(u, v)=((a+r \cos u) \cos v,(a+r \cos u) \sin v, r \sin u)
$$

where $0<u<2 \pi, 0<v<2 \pi$.
(a) Show that $\varphi(u, v)$ is on the torus T defined in Section 3.1 of the notes (see also Figure 2). Which is the image of φ (in other words, which portion of the sphere is covered by all $\varphi(u, v))$?
(b) Show that φ gives a local parametrization of the torus T (you may omit again checking that $\varphi^{-1}: \varphi(U) \rightarrow U$ is continuous).
3. Let two points $p(t)$ and $q(t)$ move with the same speed, p starting from $(0,0,0)$ and moving along the z axis and q starting at $(a, 0,0), a \neq 0$, and moving parallel to the y axis. The motions go in both senses, that is, t can be positive or negative. Show that the line through $p(t)$ and $q(t)$ describes the set in \mathbb{R}^{3} given by

$$
y(x-a)+z x=0
$$

Then show that this is a regular surface.
4. (a) Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a differentiable function and c a number such that for any P in $f^{-1}(c)$ at least one of $f_{x}^{\prime}(P), f_{y}^{\prime}(P)$, and $f_{z}^{\prime}(P)$ is non-zero. Consider the surface $S=f^{-1}(0)$. Show that the equation of the tangent plane to S at a point P is

$$
x f_{x}^{\prime}(P)+y f_{y}^{\prime}(P)+z f_{z}^{\prime}(P)=0 .
$$

Hint. You may want to use the following general fact: the equation of a plane through the origin which is perpendicular to a given vector (a, b, c) is $a x+b y+c z=0$.
(b) Let S be the graph of the differentiable function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Show that the equation of the tangent plane at a given point $P=\left(x_{0}, y_{0}, g\left(x_{0}, y_{0}\right)\right)$ to S is

$$
z=g_{x}\left(x_{0}, y_{0}\right) x+g_{y}\left(x_{0}, y_{0}\right) y
$$

5. Construct a diffeomorphism (that is, a map f which is differentiable, bijective, and its inverse f^{-1} is differentiable) between the paraboloid of equation $z=x^{2}+y^{2}$ and a plane, for instance the $x y$ coordinate plane.
6. (Not to be marked). Prove that if a regular surface S meets a plane π in a single point P, then this plane coincides with the affine tangent plane to S at P. Note. By definition, the affine tangent plane to S at P is $P+T_{P} S$, which is an affine two-dimensional subspace of \mathbb{R}^{3}. For instance, if (U, φ) is a local parametrization and $\varphi(Q)=P$, then the affine tangent plane is the plane through P which is parallel to $\varphi_{u}^{\prime}(Q)$ and $\varphi_{v}^{\prime}(Q)$.

Figure 1. A local parametrization of S^{2}.

Figure 2. A local parametrization of the torus T : which are the coordinates of P ?

