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Homework Assignment No. 2 - Solutions

1. Consider the helix, as defined on page 2, Ch. 2 (Curves in Space) of the notes.

(a) Calculate the torsion of the helix at an arbitrary point. Hint. Use the

parametrization by arc length and the formula B′ = −τN.

(b) Show that the normal line at an arbitrary point on the helix (that is, the

straight line through that point which contains the vector1 N(s)) intersects

the z axis, and the angle between the two lines is equal to π
2.

(c) Show that the angle between the tangent line at any point of the helix and

the z axis (or, if you prefer, between the vectors T and e3) is independent

of the point. In the terminology of section 2.3 of the notes, we say that

the helix is a curve of constant slope with respect to the vector e3.
Solution. (a) We have
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We deduce that
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Consequently,

B′(s) = (
b

c2
cos

s

c
,
b

c2
sin

s

c
, 0).

From B′ = −τN we deduce

τ(s) =
b

c2
(independent of s).

(b) The normal line is parallel to N(s) and goes through ᾱ(s). It equations are

x− a cos sc
cos sc
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sin s
c
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.

They can be written as

y = x tan
s

c
, z =
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c
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This line intersects the z axis at the point (0, 0, bsc ). The latter point has the same z coor-
dinate as ᾱ(s), consequently the (normal) line determined by it and ᾱ(s) is perpendicular
to the z axis.

(c) The angle θ between T and e3 is determined by

cos θ = T · e3 =
b

c
,

1General Formula: the line through the point P = (x0, y0, z0) which contains the vector v = (v1, v2, v3) has
equations x−x0

v1
= y−y0

v2
= z−z0

v3
.
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which is indeed independent of s.
2. Let α : (a, b) → R3 be a curve parametrized by arc length such that α′′(s) 6= 0,

for all s in (a, b) (see the assumption mentioned on the first page of chapter

2 of the notes).

(a) Show that if the trace of α is contained in a plane, then the vectors T (s)
and N(s) are parallel to that plane. Hint. Consider a vector v perpendicular

to the plane and a point P in the plane. For any point α(s) on the curve, the vector

α(s)−P is parallel to the plane, so it’s perpendicular to v. You only need to

show that both α′(s) and α′′(s) are perpendicular to v (keyword: dot product).

(b) Show that the trace of α is contained in a plane if and only if τ(s) = 0,
for all s.

Solution. (a) We have

(α(s)− P ) · v = 0⇒ α′(s) · v = 0→ α′′(s) · v = 0,

for all s. Thus T (s) and N(s) are perpendicular to v, hence parallel to the plane of the
curve.

(b) “ ⇒ ” Assume that the curve is contained in a plane. The vectors T (s) and N(s)
are parallel to the plane (see point (a)), hence B(s) is constant (it’s one of the unit vectors
perpendicular to the plane). This implies B′(s) = 0, hence τ(s) = 0 for all s.

“⇐ ” Assume that τ(s) = 0 for all s. This implies B′(s) = 0, thus B(s) = B0 is constant.
On the other hand, if we fix s0, we observe that

d

ds
(α(s)− α(s0)) ·B(s) = α′(s)B(s) + (α(s)− α(s0))B

′(s) = 0,

thus

(α(s)− α(s0)) ·B0 = 0.

This implies that α(s) is in the plane which contains α(s0) and is perpendicular to B0.
3. (a) If κ > 0 and τ are two given numbers, determine all curves in space with

constant curvature κ and constant torsion τ. Hint. It is sufficient to find

one such curve (why?). Use question 1.

(b) Let α : (a, b) → R3 be a curve with constant curvature κ > 0 and torsion

equal to 0 at any point. Show that the trace α is a piece of a of a circle

of radius 1/κ.
(c) Show that the trace of the curve

α(t) = (
4

5
cos t, 1− sin t,−3

5
cos t)

is a circle. Find the radius of the circle.

Solution. (a) By looking at question 1, we see that any helix has both curvature and
torsion constant. So we can guess that the only curves with curvature and torsion constant
are the helices. We have to proceed systematically, as follows.

First we show that if κ > 0 and τ are two given numbers, then there exists a helix of
curvature equal to κ and torsion equal to τ . This amounts to showing that there exists two
numbers a and b such that

a

a2 + b2
= κ,

b

a2 + b2
= τ.

To find a and b we divide the two equations and obtain

a = b
κ

τ
.
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The second equation gives
b

(bκτ )2 + b2
= τ

thus

b =
τ

κ2 + τ2
.

Then we obtain

a =
κ

κ2 + τ2
.

Now let α be the helix with a and b given by the previous two equations. If β is an
arbitrary curve of curvature κ and torsion τ , then we have

β(s) = Aα(s) +X

where A is an orthogonal transformation with Ae3 = Ae1×Ae2 and X is a constant vector
in R3.

(c) We determine the curvature and the torsion of α. To this end we need
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then
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and

(α′(t)× α′′(t)) · α′′′(t) = 0.

The curvature is
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4
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= 1

and the torsion is

τ(t) = 0.

Since these are both constant, the curve must be a helix with a = 1 and b = 0, which is a
circle of radius 1.

4. Finish the proof of Theorem 2.1.4. That is, compute α′′′(t), calculate α′×α′′
and (α′ × α′′) · α′′′, and prove the two formulas.

Solution. We continue the calculations from the notes. We have
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We deduce that

α′ × α′′ =
(
ds

dt

)3

κT ×N =

(
ds

dt

)3

κB
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which implies the formula for κ. Then

(α′ × α′′) · α′′′ =
(
ds

dt

)3

κB · α′′′ =
(
ds

dt

)6

κ2τ = τ‖α′ × α′′‖2

which implies the second formula.
5. (Not to be marked.) This is an example intended to show what kind of phenomena

can happen if we neglect the assumption made in the notes, Ch. 2, first page.

Consider the curve α : R→ R3 given by

α(t) =


(t, 0, e−

1
t2 ), if t > 0

(0, 0, 0), if t = 0

(t, e−
1
t2 , 0), if t < 0.

(a) Show that the curve α is differentiable (that is, all its components are

of class C∞) and regular. Consequently, the vector T (t) is defined for

any t.
(b) Show that κ(0) = 0, consequently N(0) (as well as B(0) and τ(0)) is not defined.

(c) Show that it is not possible to extend N and B by continuity at t = 0 (they

both have a jump at 0).
Solution. (a) It is an exercise in calculus that the functions

f(t) =

{
e−

1
t2 , if t > 0

0, if t ≤ 0

and

g(t) =

{
e−

1
t2 , if t > 0

0, if t ≤ 0

are of class C∞ and the derivatives of any order of f and g at 0 are equal to 0 (Hint: one
shows recursively that f and g have derivatives from the left and from the right of any order
at 0, and they are both equal to 0).

(b) To find κ(0) we note that the first formula in Theorem 2.1.4 works in this case. More
precisely, we have to do again what we did in the first part of the proof: reparametrize the
curve by arc length, obtain β(s) = α(t(s)), and note that we have again

(1) α′′(t) =
d2s

dt2
T +

(
ds

dt

)2 dT

ds
.

The curvature at t = 0 is

κ(0) =

∥∥∥∥dTds (s(0))

∥∥∥∥ .
We have α′′(0) = 0 and

d2s

dt2
(0) = 0.

The last equation has to be justified: We have

ds

dt
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√
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2
t3
e−

1
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)2
, if t 6= 0

0, if t 6= 0

Then
d2s

dt2
(0) = lim

t→0

d

dt

(
ds

dt

)
= 0
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where one has to work a bit to justify the last equality (that is, compute the derivative of√
1 +

(
2
t3
e−

1
t2

)2
and show that it approaches 0 it t→ 0).

Now coming back to (1), we deduce that

dT

ds
(s(0)) = 0,

thus κ(0) = 0, as desired.
(c) First note that T (0) = (1, 0, 0). As t→ 0, t < 0, the vector N(t) approaches a vector

in the xy plane which is perpendicular to T (0). As t→ 0, t > 0, the vector N(t) approaches
a vector in the xz plane which is perpendicular to T (0). The two limit vectors cannot be
equal. Thus we cannot extend N at 0. Consequently, we cannot extend B at 0 as well.


