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Solutions

1. Find the curvature of the ellipse at an arbitrary point (see the notes, Section 1.2, Example
3) and check that if a > b then the ellipse is more curved at (a, 0) than at (0, b).

Solution. We use x(t) = a cos t, y(t) = b sin t, and obtain

κp(t) =
ab

(a2 sin2 t + b2 cos2 t)
3

2

.

At (a, 0) we have t = 0 and the curvature is

κp(0) =
a

b2
.

At (0, b) we have t = π

2
and the curvature is

κp(
π

2
) =

b

a2
.

It is obvious that a > b implies
a

b2
>

b

a2
.

2. In the context of Section 1.5 of the notes, check that the osculating circle given by Definition
1.5.2 satisfies the conditions (i),(ii), and (iii).

Solution. (i) The distance between (x(t), y(t)) and (x̄(t), ȳ(t)) is

‖(x̄(t), ȳ(t)) − (x(t), y(t))‖ = ‖ 1

κp(t)‖α′(t)‖(−y′(t), x′(t))‖ =
1

|κp(t)|
.

So (x(t), y(t)) is on the osculating circle.
(ii) The vector with tail at (x(t), y(t)) and tip at (x̄(t), ȳ(t)) is

(x̄(t), ȳ(t)) − (x(t), y(t)) =
1

κp(t)‖α′(t)‖(−y′(t), x′(t)),

which is perpendicular to α′(t) = (x′(t), y′(t)) (the scalar product of them is 0). Conse-
quently, the straight line perpendicular to that vector through (x(t), y(t)) is tangent to both
the circle and the curve.

(iii) The curvature of the circle of radius 1
|κp(t)|

is

± 1
1

|κp(t)|

= ±κp(t).
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3. Show that the evolute of the ellipse

α(t) = (a cos t, b sin t)

is the curve of equation1

ᾱ(t) =

(

(a2 − b2) cos3 t

a
,
(b2 − a2) sin3 t

b

)

.

Solution. This is a simple application of equation (4) (page 15) in the notes. We also refer
to question 1 above. We obtain

x̄(t) =a cos t +
1

ab

(a2 sin2 t+b2 cos2 t)
3

2

·
√

a2 sin2 t + b2 cos2 t
(−b cos t)

a cos t − (a2 sin2 t + b2 cos2 t)b cos t

ab
.

After a short calculation this gives indeed

(a2 − b2) cos3 t

a
.

Similar calculations can be done to obtain

ȳ(t) =
(b2 − a2) sin3 t

b
.

4. (a) In the context of Section 1.6 of the notes, find a parametrization of the cycloid (as
α(t) = (x(t), y(t))) taking the radius of the circle to be 1. HintYou may want to assume

that the circle rolls along the x axis and the initial position of the point on the circle is the

origin O (see Figure 1). Choose the parameter t as the angle between the line segments Cα(t)

and CA.

(b) Find all points t with α′(t) = 0 (these are called singular points).
(c) Determine the length of the piece of the cycloid which corresponds to a complete (that

is, of 3600) rotation of the circle.
(d) Find the limits of the slope of the tangent line to the cycloid at α(t) as t → 2π, t < 2π,

respectively t → 2π, t > 2π.

Solution.

(a) The crucial observation is that the (straight) line segment OA and the (circular) line
segment α(t)A have the same length, which is t. Consequently, the coordinates of α(t) are

x(t) = t − sin t, y(t) = 1 − cos t.

The trace of the cycloid can be seen in Figure ??.
(b) There is some interesting looking points on that curve, namely at t = 2kπ. We only

note that these are the singular points of the curve. So there is no tangent vector at any of
those points.

1See Section 1.5 of the notes for a figure.
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c o s ( t )s i n ( t )1α ( t ) C AO
Figure 1. We choose t to be the angle between the lines
Cα(t) and CA (which is vertical).

Figure 2. This is the trace of the cycloid, more pre-
cisely, the trajectory of the point on the circle after two
complete rotations.

(c) The required length of the piece of the cycloid is
∫ 2π

0

√

(1 − cos t)2 + sin2 tdt =

∫ 2π

0

√
2 − 2 cos tdt =

=

∫ 2π

0

√

4 sin2 t

2
dt =

∫ 2π

0

2 sin
t

2
dt = −4 cos

t

2
|2π
0

= 8,

where we have used that 1 − cos t = 2 sin2 t
2
.

(d) The slope of the tangent line is

y′(t)

x′(t)
=

sin t

1 − cos t

for any t 6= 2kπ, k integer. We use L’Hôpital’s rule to deduce

lim
t→2π,t<2π

y′(t)

x′(t)
= lim

t→2π,t<2π

cos t

sin t
= lim

t→2π,t<2π
tan t = −∞.

In the same way, the limit of the slope from the right is ∞. This corresponds to the picture
in Figure ?? (that is, the tangent lines from both sides approach the vertical line through
α(2π)).

5. In the context of Section 1.6 of the notes, find a parametrization of the cardioid (as α(t) =
(x(t), y(t))) taking the radius of the two circles to be 1. Then find the curvature of the
cardioid at an arbitrary point.
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Solution. See Figure ??. We need to find the coordinates of α(t). We denote by t the angle
between the line segments OA and CA, which is the same as the angle between AC and
α(t)C. In the triangle DCα(t) the angle D is right; the angle C is t − (π

2
− t) = 2t − π

2
. So

‖CD‖ = cos(2t − π

2
) = sin(2t) ‖α(t)D‖ = sin(2t − π

2
) = − cos(2t)

The y coordinate of α(t) is

‖CB‖ − ‖CD‖ = 2 sin t − sin 2t = 2 sin t(1 − cos t).

The x coordinate of α(t) is

‖α(t)D‖ + ‖OB‖ = − cos(2t) + (2 cos t − 1) = −2 cos2 t + 1 + (2 cos t − 1) = 2 cos t(1 − cos t)

To summarize, the cardioid is the trace of

α(t) = (2 cos t(1 − cos t), 2 sin t(1 − cos t)).

α ( t )C
OA t t

BD
Figure 3

To find the curvature we need

x′(t) = 2(− sin t + 2 cos t sin t) = 2(− sin t + sin 2t), x′′(t) = −2 cos t + 4 cos 2t

y′(t) = 2 cos t − 2 cos 2t, y′′(t) = −2 sin t + 4 sin 2t.

So

x′y′′ − x′′y′ = 4(− sin t + sin 2t)(− sin t + 2 sin 2t) − 4(cos t − cos 2t)(− cos t + 2 cos 2t)

= 4(sin2 t + cos2 t) + 8(sin2 2t + cos2 2t) + 12(− sin t sin 2t − cos t cos 2t) = 12(1 − cos t),

where we have used the formula cos a cos b + sin a sin b = cos(a − b). Also

(x′(t))2 + (y′(t))2 = 8 − 8 sin t sin 2t − 8 cos t cos 2t = 8(1 − cos t).

The curvature is

κp(t) =
12(1 − cos t)

(8(1 − cos t))
3

2

=
3

4
√

2(1 − cos t)
1

2

.
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6. Find a parametrization by arc length of the catenary (see Section 1.6 of the notes). For
simplicity, take a = 1.

Solution. Since x(t) = t, y(t) = cosh t, we have

x′(t) = 1, y′(t) = sinh t,

so

s(t) =

∫ t

0

√

1 + sinh2(u)du =

∫ t

0

cosh(u)du = sinh u|t0 = sinh t.

We solve the equation

s = cosh(t),

which gives

t = arcsinh(s).

The desired parametrization is

ᾱ(s) = α(arcsinh(s)) = (arcsinh(s), cosh(arcsinh(s))).

Because

cosh v =
√

1 + sinh2 v,

for any number v, we have

cosh(arcsinh(s)) =
√

1 + s2.

Thus the parametrization by arc length is

ᾱ(s) = (arcsinh(s),
√

1 + s2).

7. Show that for any point P on the tractrix (see Section 1.6 of the notes) the length of the
line segment between P and the y axis is constant (independent of t).

Solution. Recall from the notes that

α(t) = (sin t, cos t + log(tan
t

2
).

To write the equation of the tangent line, we need to determine

α′(t) = (cos t,− sin t +
1

tan t

2

· 1

cos2 t

2

· 1

2
) = (cos t,− sin t +

1

sin t
) = (cos t,

cos2 t

sin t
).

The tangent line goes through α(t) and has the direction given by α′(t). So the slope of
the line is

cos2 t

sin t

cos t
= cotan(t).

The equation of the tangent line is

y − cos t − log(tan
t

2
) = cotan(t)(x − sin t).

To find the intersection with the y axis, we make x = 0 and obtain

y = log(tan
t

2
).
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The distance between α(t) and the point P on the y axis of coordinates (0, log(tan t

2
) is

√

sin2 t + cos2 t = 1,

which is indeed independent of t.

P

ΑHtL

Figure 4. The point P is the intersection of the tangent
line at α(t) with the y axis.


