KOSTANT CONVEXITY FOR SYMMETRIC R-SPACES REVISITED
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An embedding of a connected and compact manifold M into Euclidean space (V,( , ))
is called extrinsically symmetric if for any x € M, the reflection r, of V about the affine
normal space at x leaves M invariant. If we equip M with the submanifold metric, then
the restriction of r, to M is an involutive isometry. Relative to these isometries, M is
an (intrinsically) symmetric space. One knows precisely what these embeddings are: by
a theorem of Ferus [3] (see also [4]), they are the so-called symmetric R-spaces, which we
present in what follows. We start with a simply connected symmetric space of non-compact
type G/K and consider the Lie algebras of G and K, which are g and €, respectively. Let
also g = €@ p be the corresponding Cartan decomposition and a C p a maximal abelian
subspace. The roots are elements of a*; we denote by W be the corresponding Weyl group,
which acts linearly on a. Pick £ € a such that a(§) € {—1,0,1}, for any root «. The adjoint
orbit K¢ := Adg(K)E turns out to be an extrinsic symmetric submanifold of p, the latter
being equipped with the inner product given by the negative of the Killing form. Such orbits
are called symmetric R-spaces. The aforementioned theorem of Ferus says that all extrinsic
symmetric submanifolds in Euclidean space are of this type.

The following result is a special case of a theorem of Kostant [6] (see also [2] for a symplectic
version and [9] for a generalization to isoparametric submanifolds). It describes the image
of M := K¢ under the orthogonal projection map 7 : p — a. To make the statement more
clear, we first recall that M Na = WE.

Theorem 1. (Kostant) If M = K¢ is a symmetric R-space, then m(M) = convex hull of WE.

Our goal here is to give an alternative proof of this theorem.

Claim 1. For any w € W and z € M, the line segment between w¢ and m(z) is contained in
w(M).

There exists a flat F' in the symmetric space M such that both w¢ and z are in F. By
a theorem of Eschenburg, Quast, and Tanaka [5] (see also [8, Theorem 7], cf. also [7]), F
equipped with the submanifold metric is a direct product of round circles, each of them
contained in an affine 2-plane, these planes being orthogonal to each other. Moreover, a is
contained in the normal space v,¢ M, hence also in v, F'. The projection of F' onto the latter
space is convex (concretely, a hypercuboid), hence its projection onto a is convex as well.
This implies Claim 1.

Claim 2. The convex hull of W¢ is contained in 7(M).
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This follows readily from Claim 1: first, the convex polytope in the claim has its edges
contained in m(M); then we prove inductively that the 2-faces, 3-faces etc. are contained in

m(M).
Claim 3. w(M) is contained in the convex hull of W¢.

If a € ais a regular vector (i.e., not canceled by any root), then the critical set of the
height function h, : M — R, hy(z) := (a,z) is W&. Thus the largest height relative to a
is reached somewhere in W¢, possibly at more than one point in there. But then, for any
y € (M), one has

(1) (a,y) < max{(a,ws) | w e W}.

The latter inequality holds true even when a is not regular: otherwise, there exists y € m(M)
such that (a,y) > (a,w¢) for all w € W; by continuity, this remains true if we replace a by
a regular vector sufficiently close to it, which is a contradiction. Now, that we know that (1)
holds for any a € a, one deduces that y is the convex hull of W¢ (recall that any polytope
in Euclidean space is completely determined by its “valid” inequalities, see e.g. [1, Theorem
6.11]).
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