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9 Abstract

10 This paper presents the development of an artificial neural network (ANN) model for the prediction of pure and impure CO2

11 minimum miscibility pressures (MMP) of oils. The pure CO2 MMP of a reservoir fluid (live oil) is correlated with the molecular

12 weight of C5 + fraction, reservoir temperature, and concentrations of volatile (methane) and intermediate (C2–C4) fractions in

13 the oil. The impure CO2 MMP factor, Fimp, is predicted by correlating the concentration of contaminants (N2, C1, H2S and SO2)

14 in CO2 stream and their critical temperatures. The Fimp is a correction factor to the MMP of pure CO2. The advantage of using

15 the ANN model is evaluated by comparing the measured MMP values with the predicted results from the ANN models as well

16 as those from other statistical methods. The developed ANN models are able to reflect the impacts on CO2 MMP of molecular

17 weight of C5 + fraction, reservoir temperature, and solution gas in the oil. The ANN model of impure CO2 MMP factor can

18 distinguish the effects on MMP of different contaminants in the CO2 stream. It can also be used to predict the CO2 MMP of a

19 reservoir oil and the level of contaminants in the CO2 stream which can be tolerated for a miscible injection.

20 D 2002 Published by Elsevier Science B.V.
21
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23
2425 1. Introduction

26 Over the last two decades, carbon dioxide injection

27 has become the leading enhanced oil recovery (EOR)

28 process for light oils (Grigg and Schechter, 1997). The

29 CO2 injection can prolong, by 15 to 20 years, the

30 production life of light oil fields nearing depletion

31 under waterflood; the method could recover 15% to

3225% of the original oil in place. It also brings environ-

33mental benefits by facilitating storage of CO2 in the

34reservoir.

35In a miscible CO2 flood, multiple-contact misci-

36bility between the injected CO2 and the reservoir fluid

37can be achieved at pressures greater than a minimum

38value that is referred to as minimum miscibility

39pressure (MMP). The MMP is the single most impor-

40tant parameter in designing a miscible flood. It has

41been recognized that the MMP for CO2 in a reservoir

42depends on oil temperature, oil composition, and CO2

43purity. The latter parameter is the only one that

44operators can influence. Some contaminants, mainly
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45 N2 in the flue gas and CH4 from the reservoir-

46 produced gas, in CO2 can either increase or reduce

47 the CO2 MMP. Since separation of CO2 could be

48 costly, reinjecting recycled CO2 without removing

49 hydrocarbon gases could make the process more

50 attractive economically. Therefore, for a reservoir,

51 the CO2 MMP and the tolerable level of contaminants

52 in the CO2 stream are key parameters for design of a

53 miscible CO2 flood system, as well as the associated

54 gas separation and field injection components.

55 Numerous empirically derived and thermodynamic

56 models for predicting CO2 MMP have been reported

57 in the literature. Enick et al. (1988) provided a review

58 of the related literature. Some of the empirical corre-

59 lations disregarded the C1 through C4 fraction and

60 were based only on the reservoir temperature and the

61 molar weight of C5 + fraction in the oil. Alston et al.

62 (1985) offered an empirical correlation that accounts

63 for the effect on MMP caused by solution gas present

64 in reservoir fluids. The minimum miscibility pressure

65 was correlated with reservoir temperature, the oil’s C5 +

66 molecular weight, volatile oil fraction (CH4 +N2),

67 intermediate oil fraction (C2 to C4, H2S, and CO2),

68 and composition of the CO2 stream. More recently,

69 Zuo et al. (1993) modified the correlation derived by

70 Johnson and Pollin (1981) by introducing two compo-

71 sitional parameters: the mole fractions of the light and

72 the intermediate components in reservoir fluids.

73 Although these two correlations account for the effect

74 on MMP of solution gas, it was found (Dong et al.,

75 2000) that they could not provide satisfactory predic-

76 tion of MMP for reservoir oils that had high solution-

77 gas-to-oil ratios and high volatile-component fractions.

78 It was realized (Dong et al., 2000) that, to improve the

79 MMP prediction accuracy, the effects of solution gas in

80 CO2 (and thus the amounts of volatile and intermediate

81 fractions in oil) should be considered.

82 Among the empirical models, only those of Alston

83 et al. (1985) and Sebastian et al. (1985) took into

84 account the effects on CO2 MMP of contaminants in

85 the CO2 stream. Results of the two models were

86 tested, with the outcomes indicating that the effects

87 of impurities on CO2 MMP were not effectively

88 reflected.

89 The development of statistical models for CO2

90 MMP prediction has been a subject that involved

91 extensive research efforts, resulting in many publica-

92 tions (Dunyushkin and Namiot, 1979; Cronquist,

931978; Yellig and Metcalfe, 1980; Mungan, 1981;

94Sebastian et al., 1984; Alston et al., 1985; Kovarik,

951985). However, the main concern with statistical

96techniques is the difficulties in satisfying many rigid

97assumptions that are essential for justifying their

98applications, such as those of sample size, linearity,

99and continuity. One alternative approach for system

100forecasting is the technique of artificial neural net-

101work (ANN) based on the theory of artificial intelli-

102gence. The massive interconnections in the ANN

103framework produces a large number of degrees of

104freedom, or fitting parameters, and thus may allow it

105to reflect the system’s complexity more effectively

106than conventional statistical techniques. Recently,

107methods of artificial neural networks have been

108applied to petroleum engineering in a number of areas

109such as well-test analysis, well-log interpretation,

110reservoir characterization, and more recently, PVT

111and permeability studies for crude oils (Waller and

112Rowsell, 1994; Gharbi and Elsharkawy, 1996, 1999).

113This study is an extension of the previous efforts,

114emphasizing on the development of an ANN model

115for predicting CO2 MMP. The main purpose is to

116examine the effects of (a) solution gas in CO2, (b)

117amount of volatile and intermediate fractions in oil,

118and (c) their ratio on pure CO2 MMP, through the

119developed ANN model. Firstly, the interrelations of

120pure CO2 MMPs (of live oils) with (a) molecular

121weight of C5 + fraction, (b) reservoir temperature, (c)

122volatile oil fraction (methane and nitrogen gas), and

123(d) intermediate oil fraction (C2–C4 and CO2, H2S)

124will be analyzed, resulting in a trained ANN model;

125the trained model will then be used to predict CO2

126MMP, with the results being compared with the

127measured live oil MMP values reported in the liter-

128ature. Secondly, the correlations between the impure

129CO2 MMP factor (Fimp) and the contaminant concen-

130trations (for N2, C1, H2S, and SO2) in the CO2 stream

131will be examined. The Fimp represents the effect on

132CO2 MMP of contaminants in CO2 stream. Lastly, the

133developed ANN models will be used to predict the

134variations of CO2 MMP with MW of C5 + fraction,

135temperature of reservoir, and contaminant contents in

136CO2 stream. In addition, the effectiveness of the

137developed ANN models will be evaluated by compar-

138ing the prediction results with (a) the measured MMP

139levels and (b) the prediction results from other stat-

140istical models.
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141 ANN’s main difference from statistical methods is

142 its relinquishment in terms of strict conditions for data

143 samples and associated assumptions. This is applicable

144 to the existing situation of data availability for impure

145 CO2MMP factors, which is not good enough for either

146 statistical or numerical modeling. At the same time,

147 analytical models are advantageous over the ANN in

148 terms of its touching the detailed mechanisms of

149 interactions among various impact factors; at the same

150 time, such methods’ limitations are also from their

151 attempts to specify the complicated processes by

152 detailed mathematical formulations, since many uncer-

153 tain, interactive, and dynamic system components can

154 hardly be expressed as accurate analytical formula-

155 tions. Under such a situation, ANN becomes the only

156 usable tool for analyzing the related effects and inter-

157 actions; it can be used without violating either a

158 number of prerequisites associated with statistical

159 models or being forced to assuming unrealistic or

160 over-simplified system conditions that are needed for

161 analytical simulation.

162 2. Model development

163 In biology, a neural network is an array of neurons

164 in the brain that processes information from input

165 stimuli to produce comprehensible sensations. In the

166 computer world, a neural network is a computer

167 architecture that resembles its operators’ process

168 numerical inputs to generate outputs that are in some

169 way meaningful to the user. Artificial neural networks

170 (ANNs) are characterized as computational models

171 with particular abilities to adapt, learn, general-

172 ize, recognize, cluster, and organize data (Dayhoff,

173 1990). ANNs are computing tools composed of many

174 simple interconnected elements called neurons by

175 analogy with neurophysiology. ANNs have a unique

176 ability of recognizing underlying relationships bet-

177 ween input and output events. They are well suited

178 for modeling systems with complex relationships

179 among incomplete or noisy data sets. Petroleum engi-

180 neering applications of ANNs include areas such as

181 well-test analysis, well-log interpretation, field devel-

182 opment, reservoir characterization, formation damage,

183 production, and drilling.

184 A typical neuron is shown in Fig. 1. A neuron has

185 two components (Dayhoff, 1990): (1) a weighted

186summer which perform a weighted summation of its

187inputs with components (X1, X2, X3, . . ., Xn), i.e.,

188s=SwiXi + b, where b is the bias of the networks; and

189(2) a linear, nonlinear or logic function which gives an

190output corresponding to s. Here, many kinds of

191functions can be used, including threshold (logic),

192sigmoid, hyperbolic tangent and Gaussian functions.

193In this study, each of them is examined at each neuron

194during the training process in order to get desired

195ANNs. In a typical ANN, there are three types of

196neurons: input neurons which may receive external

197data, output neurons which send data out of the ANN,

198and hidden neurons whose signals remain within the

199ANN. There are three types of layers corresponding to

200the types of neurons. The hidden neurons may form

201one or more hidden layers. The neurons in each layer

202are usually fully interconnected with neurons from

203neighboring layers. The importance of each inter-

204neuron connection is determined by its numerical

205value. A three-layered back-propagation network

206structure is depicted in Fig. 2 (Dayhoff, 1990). The

207ANN shown in Fig. 2 has an input layer, an output

208layer, and one hidden layer. The input layer contains

209an array of variables into which the input data of the

210system are read from an external source. Similarly, the

211predicted data or results, which can be multiple

212vectors, are written in the output layer. Initially, the

213input layer receives the input and passes it to the

214hidden layer. If more hidden layers exist, the pro-

215cessed information from the first hidden layer is then

216passed the next hidden layer for processing. Finally,

217the output layer receives information from the last

218hidden layers. In this study, the number of hidden

219layer is not fixed. The training tool will automatically

Fig. 1. Basic components of a neuron.
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220select suitable number of hidden layer to get the

221desired ANN model.

222When an ANN is constructed, small numbers

223(weights) are assigned randomly to the connections

224between neurons. In general, the output from neural j

225in layer k can be calculated by the following equation:

ujk ¼ Fk

XNk�1

i¼1

wijkuiðk�1Þ þ bjk

 !

226227

228Coefficients wijk and bjk are connection weight and

229bias of the network, respectively; they are fitting

230parameters of the model. The purpose is to obtain a

231mapping from an input vector to an output one. It is

232desired that the difference between the predicted and

233the observed (actual) values in the output vector be as

234small as possible. The fitting parameters are modified

Fig. 3. Basic back-propagation dynamics.

Fig. 2. A fully interconnected three-layered back-propagation

network.
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235 until an error criterion between the input and the output

236 is satisfied based on the topology of the ANN and the

237 learning technique. The adjustment of the weights is

238 defined as the learning process. The ANN is tested

239 with input/output values used in training. After train-

240 ing and testing, the network is ready to perform tasks

241 such as pattern recognition, classification, or function

242 approximation. There are mainly two types of net-

243 works, feed-forward networks and recurrent networks.

244 In this study, the back-propagation technique with

245 momentum is used. The fitting procedure from which

246 weights wijk are determined is performed using a least-

247 squares minimization routine. In this routine, the sum

248 of root-squared relative errors between the calculated

249 and the experimental data is to be minimized. In

250 general, the back-propagation method uses the follow-

251 ing steps (Fig. 3):

252 (a) Read a specific input and calculate its correspond-

253 ing output.

254 (b) If the error between the produced output and the

255 desired output is acceptable, then stop.

256 (c) If the error is unacceptable in step (b), then the

257 weights are adjusted for all of the interconnections

258 that go into the output layer. Next, an error value

259 is calculated for all of the units in the hidden layer

260 that is just below the output layer. Then, the

261 weights are adjusted for all interconnections that

262go into the hidden layer. The process is continued

263until the last layer of weights has been adjusted.

264

265Typically, an application of back-propagation

266requires both a training set and a test set. Both the

267two sets contain input/output pattern pairs. While the

268training set is used to train the network, the test set is

269used to assess the performance of the network after

270the training is complete. To provide the best test of

271network performance, the test set should be different

272from the training set. The most successful ANN

273architecture is the one that has the smallest prediction

274error on a data set for which it was not trained. For

275pure CO2 MMP modeling, the reservoir temperature

276T, molecular weight of C5 +, volatile oil fraction Xvol,

277and intermediate oil fraction Xint are selected as input

278variables. Minimum miscibility pressure (MMP) is the

279output variable. The data used for developing the

280ANN model are from Jacobson (1972), Dicharry et

281al. (1973), Wittstrom and Hagemeier (1978), White

282and Lindsay (1972), Graue and Zana (1981), Gardner

283et al. (1981), Frimodig et al. (1983), Cardenas et al.

284(1984), and Alston et al. (1985). Two scenarios of

285reservoir temperature are used: one with the degree

286Fahrenheit (jF) (Alston et al., 1985) and the other

287with the Kelvin (K).

288For modeling the impure CO2 MMP factor (Fimp),

289the concentrations of different components in the gas

Fig. 5. The measured versus ANN-simulated MMP values (with K

for temperature).

Fig. 4. The measured versus ANN-simulated MMP values (with jF
for temperature).
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290 mixture (CO2 and contaminants) are used as input

291 variables. Based on data availability and importance

292 of the contaminants, N2, CH4, H2S, and SO2 are

293 selected for the modeling study; the output variable

294 is Fimp. For a pure CO2 stream, Fimp is equal to 1. The

295 value of Fimp for impure CO2 is equal to the impure

296 CO2 MMP divided by the pure CO2 MMP of the same

297 oil. The data used for system training are from Alston

298 et al. (1985) and Dong (1999).

299 Various neural network architectures were inves-

300 tigated to obtain desired models for predicting pure

301 CO2 MMP and impure factor (Fimp) as a function of

302 selected input variables. Different scenarios on the

303 number of hidden layers, the number of neurons in

304 each hidden layer, and the type of transfer function for

305 each neuron are analyzed. An architecture of one or

306 two hidden layers is initially used, followed by the

307 selections for the number of neurons and the types of

308 transfer functions (logic, sigmoid, or hyperbolic tan-

309gent), with the target of obtaining the best fit to the

310given data.

3113. The training results

312The scatter plots in Figs. 4–6 provide comparisons

313of the measured CO2 MMP levels with the ANN-

314derived ones as well as those provided by Alston et al.

315(1985) using statistical models. Figs. 4 and 5 present

Fig. 8. The measured versus modeled impure factors (from

Sebastian et al., 1984).

Fig. 7. The measured versus ANN–simulated impure factors.

t1.1 Table 1

Statistical analysis for calibration results from the ANN and

statistical models (for MMP)t1.2

Method Average

relative

error (%)

Minimum

relative

error (%)

Maximum

relative

error (%)

Standard

deviation

(psia)

Correlation

coefficientt1.3

ANN (jF) 5.91 0.08 27.30 157.57 0.987t1.4
ANN (K) 6.48 0.46 25.51 158.61 0.987t1.5
Statistical 8.88 0.33 23.34 290.05 0.963t1.6

Fig. 6. The measured versus modeled MMP values (from Alston

et al., 1985).

Y.F. Huang et al. / Journal of Petroleum Science and Engineering 1023 (2002) xxx–xxx6
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316 the error analysis of results with the input reservoir

317 temperatures expressed as Fahrenheit (jF) and Kelvin

318 (K), respectively. It is indicated that, when reservoir

319 temperature is expressed in different units (jF and K),

320 the related ANN inputs will be different. These differ-

321 ent input data will then result in differences in training

322 and calibrating processes for the ANN model, leading

323 to varied relations between the measured and the

324 ANN-simulated MMP values. In this study, the two

325 sets of data were used to verify each other in order to

326 improve the model’s performance. Fig. 6 shows the

327 error levels from the model of Alston et al. (1985)

328 based on the same data set but a different method

329 (statistical technique). As shown, the ANN models

330 produce much lower error levels, compared with the

331 statistical approach (Alston et al., 1985).

332 Table 1 shows the outputs of statistical analyses for

333 calibration results from the ANN and statistical mod-

334 els for MMP forecasting. It is indicated that the

335 developed ANN models have lower calibration errors

336than those developed by Alston et al. (1985). In detail,

337for the ANN model, the calibrated relative errors are

3385.91% for jF and 6.48% for K, and the correlation

339coefficients are both 0.987. In comparison, for the

340statistical model (Alston et al., 1985), the calibrated

341relative error is 8.88%, and the correlation coefficient

342is 0.963.

343The scatter plots as shown in Figs. 7–9 provide

344comparisons of the measured impure factor (Fimp)

345values with the ANN-derived ones as well as those

346provided by Sebastian et al. (1984) and Alston et al.

347(1985) based on the same data set but different

348statistical models. Much lower error levels were

349encountered from the results of the ANN model,

350compared with those of statistical approaches (Sebas-

351tian et al., 1984; Alston et al., 1985). Table 2 shows

352the outputs of statistical analyses for calibration

353results from the ANN and statistical models for

354impure factor (Fimp) forecasting. It is indicated that

355the developed ANN model has lower calibration

356errors than those developed by Sebastian et al.

357(1984) and Alston et al. (1985).

3584. Application to MMP and Fimp forecasting

359After the ANN models were established, they

360could then be used for MMP and Fimp forecasting

361under a variety of conditions. With measured data

362sets that were not used for training, the modeling

363outputs could then be compared with measured val-

364ues to verify the model’s accuracy. The data from

365Rhuma (1992) were used to validate the accuracy of

366ANN outputs for pure CO2 MMP. ANN verifications

367for Fimp predictions were not conducted due to data

368unavailability. The following applications of ANN for

369Fimp forecasting were based on an assumption that its

370accuracy is comparable to that of MMP forecasting.

371The predicted results of pure CO2 MMP are

372showed in Figs. 10–12. Among them, Figs. 10

t2.1 Table 2

Statistical analysis for calibration results from the ANN and statistical models (for impure factor)t2.2

Method Average relative

error (%)

Minimum relative

error (%)

Maximum relative

error (%)

Standard

deviation

Correlation

coefficientt2.3

ANN 3.83 0.12 8.87 0.07 0.99t2.4
Statistical (Alston et al.) 13.25 0.16 44.14 0.45 0.80t2.5
Statistical (Sebastian et al.) 25.25 0 65.68 0.62 0.63t2.6

Fig. 9. The measured versus modeled impure factors (from Alston

et al., 1985).
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373 and 11 are the prediction results of MMP obtained

374 from ANN models under different reservoir temper-

375 atures (jF and K); Fig. 12 shows the results from

376 Alston et al. (1985) using statistical methods. As

377 shown, higher prediction accuracies were obtained

378 by the ANNmodels, compared with those by statistical

379 approaches.

380 Table 3 shows the results of error analyses for

381 prediction outputs from the developed ANNs and the

382statistical models of Alston et al. (1985). It is indicated

383that outputs from the ANNs are more accurate than

384those from the models of Alston et al. (1985). Com-

385pared with the calibration results as shown in Table 1,

386the relative errors and standard deviations become

387higher, while the correlation coefficients are lower.

388In detail, the average relative errors are 12.08% for jF
389and 12.32% for K, and correlation coefficients are

3900.936 for jF and 0.939 for K. However, the accuracy

391and correlation level are still much higher than those of

392statistical models (relative error =17.05%, and corre-

393lation = 0.896).

394With the developed ANNs models for MMP and

395Fimp forecasting, we can further study the variations of

396MMP under different reservoir temperatures, C5 +

397molecular weights, volatile oil fractions, and intermedi-

398ate oil fractions. According toAlston et al. (1985), if the

399volatile oil fraction and intermediate oil fraction vary at

400the same rate, the MMP will remain constant. This is

401because the ratio of volatile oil fraction to intermediate

t3.1Table 3

Error analysis for prediction outputs t3.2

Method Average

relative

error (%)

Minimum

relative

error (%)

Maximum

relative

error (%)

Standard

deviation

(psia)

Correlation

coefficient t3.3

ANN (jF) 12.08 0.51 86.88 333.31 0.936 t3.4
ANN (K) 12.32 0.09 96.83 337.32 0.939 t3.5
Statistical 17.05 0.29 76.24 552.21 0.896 t3.6

Fig. 12. The measured versus statistically predicted MMP values

(from Alston et al., 1985).

Fig. 10. The measured versus ANN-predicted MMP values (with jF
for temperature).

Fig. 11. The measured versus ANN-predicted MMP values (with K

for temperature).

Y.F. Huang et al. / Journal of Petroleum Science and Engineering 1023 (2002) xxx–xxx8
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402 oil fraction is constant, even though the contents of

403 solution gas are changing. In the real field, however,

404 MMP will change even when the volatile oil fraction

405 and the intermediate oil fraction vary at the same rate.

406 In this study, the base points for the contents of solution

407 gas are selected as Xvol = 16.09% and Xint = 19.68%.

408 Thus, the contents of solution gas will then increase

409 with increments of 2%, 4%,. . ., of the base points. In

410 this way, the ratio of volatile oil fraction to intermediate

411 oil fraction will keep to be a constant, while the

412 contents of solution gas are changing dynamically.

413 Using the developed ANN model, variations of MMP

414 under given reservoir temperature and C5 + molecular

415 weight but varying contents of solution gas can be

416 examined.

417 In general, MMP will be constant if effect of

418 volatile-oil-fraction variation is the same as that of

419 intermediate-oil-fraction variation. However, as

420 shown in Fig. 13, MMP is an increasing function of

421 the mole fractions of volatile oil and intermediate oil,

422 even though Xvol/Xint is a constant. This indicates that

423 the effect of Xvol variation is greater than that of Xint

424 variation; conversely, if MMP was a decreasing func-

425 tion, the effect of Xint would be greater than that of

426 Xvol. This result is consistent with the experimental

427 results from Dong et al. (1999).

428 Through the developed ANN models, variations of

429 CO2 MMP under different reservoir temperatures and

430 C5 + molecular weights can be examined, with the

431volatile oil fraction (Xvol) and the intermediate oil

432fraction (Xint) being fixed at 10.5% and 14.28%,

433respectively. Figs. 14 and 15 show that the MMPs

434increase with reservoir temperature and C5 + molec-

435ular weight. The relation between MMP and reservoir

436temperature is close to linear when the level of C5 +

437molecular weight is high. For many reservoir oils with

438nearly equal values of volatile and intermediate frac-

439tions, the developed ANNs can be used to quantify the

440relation between CO2 MMP and reservoir temperature

441under different C5 + molecular weights, such that

442forecasting of CO2 MMP becomes possible.

443It is generally recognized that the effect of an

444impurity (or contaminant) on CO2 MMP depends on

445whether the impurity can enhance the CO2’s solubil-

446ity. This idea of the solubility was used to estimate the

447effects of impurities on CO2 MMP by Alston et al.

448(1985) and Sebastian et al. (1984), where they incor-

449porated an average critical temperature of the gas

450mixture within the correlations. It was indicated that

451solvency could be improved if CO2 was diluted with

452an impurity whose critical temperature was higher

453than that of CO2. However, the solvency deteriorated

454if CO2 was diluted with an impurity with a lower

455critical temperature. In general, the effects of H2S and

456SO2 on MMP are less dramatic than those of CH4 and

457N2.

458Fig. 7 shows an excellent agreement between

459predicted and measured Fimp values. Thus, the

Fig. 13. Variations of MMP with solution-gas contents (at T= 316 K and MC5 + = 196.1).

Y.F. Huang et al. / Journal of Petroleum Science and Engineering 1023 (2002) xxx–xxx 9
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460 effects of each impurity (N2, C1, H2S or SO2) in the

461 CO2 stream on the MMP can be examined by

462 simulating Fimp levels under different mole fractions

463 using the developed ANN model. The results are

464 shown in Fig. 16, indicating that N2 has the most

465 significant effect; a small variation in N2 content

466 could result in a great fluctuation in CO2 MMP

467 level. The content of C1 is also an increasing

468 function of CO2 MMP level, with a less significant

469 effect. In comparison, the contents of H2S and SO2

470are slightly decreasing functions of MMP. There-

471fore, N2 is the most important impurity which

472should be well considered before the recycled CO2

473is reinjected.

474In Fig. 16, MMP is an increasing function of N2

475concentration. The MMP increases rapidly when the

476N2 concentration is between 4% and 9%. Thus, keep-

477ing N2 concentration lower than 4% would be a

478desired strategy. Attempts to reduce N2 concentration

479to lower than 4% could lead to low efficiencies and

Fig. 15. Variations of MMP with temperature and C5 + molecular weight (at Xint = 10.5% and Xvol = 14.28%) (with K for temperature).

Fig. 14. Variations of MMP with temperature and C5 + molecular weight (at Xint = 10.5% and Xvol = 14.28%) (with jF for temperature).
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480 high costs. This information is important for deter-

481 mining the desired removal rate of N2 in the recycled

482 CO2 stream.

483 5. Discussion

484 Conventional pressure, volume and temperature

485 (PVT) simulation techniques can directly address

486 complexities associated with factors that affect the

487 MMP level. However, such simulation efforts often

488 suffer from problems of data unavailability for specify-

489 ing complicated state equations and quantifying inter-

490 relationships among various system components. This

491 might lead to over simplification of the related pro-

492 cesses and thus reduced prediction accuracy. On the

493 other hand, although statistical models have lower

494 requirements in terms of data availability, the associ-

495 ated difficulties in satisfying many rigid assumptions

496 that are essential for justifying their applications have

497 affected their performances.

498 In this study, the ANN approach is for the first time

499 used to predict MMP and Fimp. The results demon-

500 strate that, under conditions with limited field infor-

501 mation, the ANN approach could produce a higher

502 accuracy than statistical models.

503 Prediction of CO2 MMP is critical for CO2

504 flooding in enhanced oil recovery processes. An

505inaccurate prediction may result in significant con-

506sequences. For example, recommendation for a too

507high operating level of MMP may result in greatly

508inflated operation costs as well as occupational

509health concerns. On the other hand, if the suggested

510MMP is too low, the miscible displacement process

511would become ineffective, leading to a high risk of

512system failure. Thus, a higher prediction accuracy

513would bring significant economic benefits.

514In the last few years, more and more attentions

515have been paid on the use of recycled CO2 for

516enhanced oil recovery, because of the worldwide

517concern on the issue of greenhouse gas emissions.

518In the recycled CO2 stream, however, a variety of

519impurities exist and may significantly affect the

520MMP. At the same time, it is costly to purify the

521CO2 stream. Therefore, identification of a suitable

522level of impurity removal rate (and thus a suitable

523level of impurity contents in the CO2 stream which

524can be tolerated for miscible injections) is desired.

525The developed ANN model for Fimp forecasting can

526supply such information in terms of the relations

527between Fimp levels and impurity contents in the

528CO2 stream, and thus help to identify an optimum

529removal rate. Thus, the chance of economic losses

530due to either unnecessarily too high removal rate (and

531thus an increased operating costs) or too low rate (and

532thus a raised risk of inflated MMP) can be minimized.

Fig. 16. The predicted values of impure factor as functions of impurity concentrations.
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533 6. Conclusions

534 In this study, ANN models for predicting CO2

535 minimum miscibility pressures (MMP) and impure

536 CO2 MMP factor (Fimp,) have been developed. The

537 interrelations of CO2 MMPs with molecular weight of

538 C5 + fraction, reservoir temperature, volatile oil frac-

539 tion, and intermediate oil fraction have been analyzed,

540 resulting in a trained ANN model. Moreover, corre-

541 lations between the impure CO2 MMP factor (Fimp)

542 and the contaminant concentrations in the CO2 stream

543 have been examined. The developed ANN models

544 have been used then to predict the variations of CO2

545 MMP with MW of C5 + fraction, temperature of

546 reservoir, and contaminant contents in CO2 stream.

547 The effectiveness of the developed ANN models was

548 also evaluated by comparing its prediction results with

549 measured MMP levels and prediction results from

550 other statistical models. The modeling results indicate

551 that reasonable predictions have been generated.

552 Especially, under conditions with limited field infor-

553 mation, the ANN approach could produce a higher

554 accuracy than statistical models.

555 In this study, the ANN approach is for the first time

556 used to predict MMP and Fimp. With the increased

557 prediction accuracy, the developed models can help to

558 identify the desired operating levels of MMP and the

559 suitable levels of impurity removal rates in enhanced

560 oil recovery processes. Pool operators can thus opti-

561 mize the injection gas to improve the process eco-

562 nomics. This provision of effective decision support

563 would bring tremendous economic efficiencies for oil

564 industries. In practical applications of the model,

565 continuous updates of the modeling system are rec-

566 ommended as long as new field operation data

567 become available. The developed ANN models are

568 user-friendly and can be easily utilized by engineers in

569 petroleum industry.

570 The ANN method has been utilized in a number of

571 applications in petroleum industry. This study is an

572 extension of the previous efforts. It is the first attempt

573 in using ANN to facilitate forecasting of CO2 mini-

574 mum miscibility pressures (MMP) and impure CO2

575 MMP factors. When applying the ANN to this new

576 area, a number of innovative considerations need to be

577 made to effectively reflect the effects of many impact

578 factors and their interactions. For example, the inter-

579 relations of CO2 MMPs with molecular weight of C5 +

580fraction, reservoir temperature, volatile oil fraction,

581and intermediate oil fraction, as well as the correla-

582tions between the impure CO2 MMP factor and the

583contaminant concentrations in the CO2 stream, have

584been examined through the developed ANN frame-

585work. These interrelationships could hardly be

586addressed through traditional approaches, while the

587ANN approach shows advantages in reflecting such

588complex uncertainty and nonlinearity.
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