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11.5 Regression

The regression model is a statistical procedure that allows a researcher to
estimate the linear, or straight line, relationship that relates two or more
variables. This linear relationship summarizes the amount of change in
one variable that is associated with change in another variable or variables.
The model can also be tested for statistical significance, to test whether
the observed linear relationship could have emerged by chance or not. In
this section, the two variable linear regression model is discussed. In a sec-
ond course in statistical methods, multivariate regression with relationships
among several variables, is examined.

The two variable regression model assigns one of the variables the status
of an independent variable, and the other variable the status of a de-
pendent variable. The independent variable may be regarded as causing
changes in the dependent variable, or the independent variable may occur
prior in time to the dependent variable. It will be seen that the researcher
cannot be certain of a causal relationship, even with the regression model.
However, if the researcher has reason to make one of the variables an in-
dependent variable, then the manner in which this independent variable is
associated with changes in the dependent variable can be estimated.

In order to use the regression model, the expression for a straight line is
examined first. This is given in the next section. Following this is the for-
mula for determining the regression line from the observed data. Following
that, some examples of regression lines, and their interpretation, are given.

11.5.1 Linear Relationships

In the regression model, the independent variable is labelled the X variable,
and the dependent variable the Y variable. The relationship between X
and Y can be shown on a graph, with the independent variable X along the
horizontal axis, and the dependent variable Y along the vertical axis. The
aim of the regression model is to determine the straight line relationship
that connects X and Y .

The straight line connecting any two variables X and Y can be stated
algebraically as

Y = a + bX

where a is called the Y intercept, or simply the intercept, and b is the
slope of the line. If the intercept and slope for the line can be determined,
then this entirely determines the straight line.
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Figure 11.6: Diagrammatic Representation of a Straight Line

Figure 11.6 gives a diagrammatic presentation of a straight line, showing
the meaning of the slope and the intercept. The solid line that goes from
the lower left to the upper right of the diagram has the equation Y = a+bX.
The intercept for the line is the point where the line crosses the Y axis. This
occurs at X = 0, where

Y = a + bX = a + b(0) = a + 0 = a

and this means that the intercept for the line is a.
The slope of the line is b and this refers to the steepness of the line,

whether the line rises sharply, or is fairly flat. Suppose that two points on
the line are (X1, Y1) and (X2, Y2). The horizontal and vertical distances
between these two points form the basis for the slope of the line. In order to
determine this slope, begin with point (X1, Y1), and draw a horizontal line
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as far to the right at X2. This is the solid line that goes to the right from
point (X1, Y1). Then draw a vertical line going from point (X2, Y2) down as
far as Y1. Together these produce the right angled triangle that lies below
the line. The base of this triangle is referred to as the run and is of distance
X2 − X1. The height of the triangle is called the rise, and this height is
Y2 − Y1. The slope of the line is the ratio of the rise to the run. This is

Slope of the line =
rise
run

or
Slope = b =

rise
run

=
Y2 − Y1

X2 −X1
.

If a line is fairly flat, then the rise is small relative to the run, and the
line has a small slope. In the extreme case of a horizontal line, there is no
rise, and b = 0. When the line is more steeply sloped, then for any given
run, the rise is greater so that the slope is a larger number. In the extreme
case of a vertical line, there is no run, and the slope is infinitely large.

The slope is negative if the line goes from the upper left to the bottom
right. If the line is sloped in this way, Y2 < Y1 when X2 > X1.

Slope = b =
Y2 − Y1

X2 −X1
< 0.

That is, the run has a positive value, and the run has a negative value,
making the ratio of the rise to the run a negative number.

Once the slope and the intecept have been determined, then this com-
pletely determines the straight line. The line can be extended towards in-
finity in either direction.

The aim of the regression model is to find a slope and intercept so that
the straight line with that slope and intercept fits the points in the scatter
diagram as closely as possible. Also note that only two points are necessary
to determine a straight line. If only one point is given, then there are many
straight lines that could pass through this point, but when two points are
given, this uniquely defines the straight line that passes through these two
points. The following section shows how a straight line that provides the
best fit to the points of the scatter diagram can be found.

11.5.2 The Least Squares Regression Line

Suppose that a researcher decides that variable X is an independent variable
that has some influence on a dependent variable Y . This need not imply
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that Y is directly caused by X, but the researcher should have some reason
for considering X to be the independent variable. It may be that X has
occurred before Y or that other researchers have generally found that X
influences Y . In doing this, the aim of the researcher is twofold, to attempt
to find out whether or not there is a relationship between X and Y , and
also to determine the nature of the relationship. If the researcher can show
that X and Y have a linear relationship with each other, then the slope of
the line relating X and Y gives the researcher a good idea of how much the
dependent variable Y changes, for any given change in X.

If there are n observations on each of X and Y , these can be plotted in
a scatter diagram, as in Section 11.4.2. The independent variable X is on
the horizontal axis, and the dependent variable Y along the vertical axis.
Using the scatter diagram, the researcher can observe the scatter of points,
and decide whether there is a straight line relationship connecting the two
variables. By sight, the researcher can make this judgment, and he or she
could also draw the straight line that appears to fit the points the best. This
provides a rough and ready way to estimate the regression line. This is not
a systematic procedure, and another person examining the same data might
produce a different line, making a different judgment concerning whether or
not there is a straight line relationship between the two variable.

In order to provide a systematic estimate of the line, statisticians have
devised procedures to obtain an estimate of the line that fits the points better
than other possible lines. The procedure most commonly used is the least
squares criterion, and the regression line that results from this is called
the least squares regression line. While not all steps in the derivation
of this line are shown here, the following explanation should provide an
intuitive idea of the rationale for the derivation.

Begin with the scatter diagram and the line shown in Figure 11.7. The
asterisks in the diagram represent the various combinations of values of X
and Y that are observed. It is likely that there are many variables that
affect or influence the dependent variable Y . Even if X is the single most
important factor that affects Y , these other influences are likely to have
different effects on each of the observed values of Y . It is this multiplicity
of influences and effects of various factors on Y that produces the observed
scatter of points. A single straight line cannot possibly connect all these
points. But if there is a strong effect of X on Y , the X and Y values may
fall more or less along a straight line. It is this general pattern that the
researcher is attempting to find.
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The regression line is given the expression

Ŷ = a + bX

where X represents the observed values of the independent variable, and Ŷ
represents the values of the dependent variable Y that are on the regression
line. These are the predicted values of the dependent variable. That is, for
each value of X, the predicted values of the dependent variable Y are those
that lie on the line. The observed values of Y may or may not lie on the
line. Because a straight line cannot pass through all the possible points in
a scatter diagram, most of the observed values of Y do not lie on the line.
While the line may be useful at predicting values of Y for the various values
of X, there will always be errors of prediction. (The ˆ on top of Y means
that these values are estimates of Y . The expression Ŷ is called Y hat).
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Figure 11.7: Error of Estimate in Regression Line
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Now consider point (X1, Y1) near the upper right of the diagram. For
this point, the observed value of the independent variable is X1 and the
observed value of the dependent variable is Y1. If the regression line had
been used to predict the value of the dependent variable, the value Ŷ1 would
have been predicted. As can be seen by examining the dashed line that lies
at height Ŷ1, the point (X1, Ŷ1) lies on the regression line. This value of the
dependent variable was obtained by putting X1 in the equation, and

Ŷ1 = a + bX1.

The error of prediction for X1 is Y1− Ŷ1. By entering X1, the observed
value of X, in the equation, it is possible to come close to predicting the
value of the dependent variable, but there is always some error of prediction.
The aim of the least squares regression line is to minimize these errors of
prediction. Let the error of prediction associated with X1 be e1, so that

e1 = Y1 − Ŷ1.

Consider the asterisk labelled (X2, Y2) near the lower left of Figure 11.7.
This point lies a considerable distance from the line, and has error of predic-
tion of Y2− Ŷ2. That is, when X = X2, the observed value of the dependent
variable Y is Y2 and the predicted value of Y is

Ŷ = a + bX2 = Ŷ2.

The error of prediction associated with X2 is

e2 = Y2 − Ŷ2.

A similar error of prediction could be obtained for each of the observed data
points.

Now imagine that there could be many possibles line that could be
drawn. Each of these has associated with it a set of errors of prediction
for the Y values. Some of these lines fit the points of the scatter diagram
better than do other lines. Better fitting lines have smaller errors of pre-
diction than do lines that do not fit the points so well. One of the aims of
the regression model is to find the line that fits the points best of all. In
order to find this line, statisticians use the least squares criterion. This
criterion involves attempting to minimize the sums of the squares of the
errors of prediction. It is this minimization that produces the line that fits
the observed points best of all.
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The least squares criterion can be written in algebraic form as follows.
Suppose there are n observed points (Xi, Yi), where i = 1, 2, . . . , n. Now
consider a line that is drawn in the plane. For each observed X value, a pre-
dicted Y value of Ŷ can be obtained by putting the X value in the equation
for the line. These predicted values of Y will differ from the observed values
of Y . For each of the i observations the difference between the observed and
predicted value can be written

ei = Yi − Ŷi.

One criterion for determing the line that fits the points best is that the
positive and negative errors cancel out so that

∑
ei = 0.

The squares of these error terms are

e2
i = (Yi − Ŷi)2

and the sum of the squares of these errors is
∑

e2
i =

∑
(Yi − Ŷi)2

The least squares regression line is the straight line that has the minimum
possible value for this sum.

It can be shown mathematically that there is only one line that satisfies
the criterion ∑

ei = 0

and that produces
Minimum

∑
e2
i .

It can be shown with some algebra and calculus that this occurs when a and
b take the following values:

a = Ȳ − bX̄

b =
∑

(Xi − X̄)(Yi − Ȳ )∑
(Xi − X̄)2
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This intercept a and slope b are the statistics that produce the line that
fits the points the best. All other possible lines result in larger values for
the sums of the squares of the errors of prediction,

∑
e2
i .

The values of a and b can be computed as shown in the above formulas,
but computationally it is more straightforward to use the formulas that were
developed when determining the correlation coefficient. In Section 11.4.3,
the values SXX and SXY were used. These were defined as

SXX =
∑

X2 − (
∑

X)2
n

SXY =
∑

XY − (
∑

X)(
∑

Y )
n

These expressions can be calculated from the observed values of X and
Y in the same manner as in Section 11.4.3. Based on these expressions, the
slope and intercept can be shown to equal

b =
SXY

SXX

a = Ȳ − bX̄

The steps involved in determining a and b are as follows. First compute∑
X, the sum of the X values, and X̄, the mean of X. Do the same for

Y , computing
∑

Y and Ȳ . Also compute the squares of the X values, and
sum these to obtain

∑
X2. Then take the products of each X times each

Y . The sum of these is
∑

XY . From the summations
∑

X,
∑

Y ,
∑

X2

and
∑

XY , compute SXX and SXY . These are then used to obtain a and
b. The resulting least squares regression line is written

Ŷ = a + bX
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where Ŷ is the predicted value of Y .
An example of how a regression line can be obtained is contained in the

following example. After that, a test for the statistical significance of the
regression line is given.

Example 11.5.1 Regression of Alcohol Consumption on Income for
the Provinces of Canada, 1985-86

Alcohol consumption per capita varies considerably across the provinces
of Canada, with consumption in the province having the highest level of
consumption averaging 50% greater than in the province having the low-
est consumption level. There are many variables that might affect alcohol
consumption, factors such as different laws, different price levels for alcohol,
different types of stores where alcohol can be purchased, and so on. One
of the main factors that is likely to affect alcohol consumption is the in-
come of consumers. Economists generally consider alcohol to be a superior
good, one whose consumption level increases as incomes rise. This example
contains data concerning alcohol consumption in each province of Canada,
and income per household for each province. Use the data in Table 11.1 to
obtain the regression line relating income and alcohol consumption.

Province Income Alcohol

Newfoundland 26.8 8.7
Prince Edward Island 27.1 8.4
Nova Scotia 29.5 8.8
New Brunswick 28.4 7.6
Quebec 30.8 8.9
Ontario 36.4 10.0
Manitoba 30.4 9.7
Saskatchewan 29.8 8.9
Alberta 35.1 11.1
British Columbia 32.5 10.9

Table 11.1: Income and Alcohol Consumption, Provinces of Canada

Table 11.1 gives family income per capita in 1986 for each of the provinces
of Canada, and alcohol consumption in litres per person 15 years and older
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in 1985-86. The income data comes from Statistics Canada, Economic Fam-
ilies - 1986 Income [machine-readable data file]. 1988 Edition. The data
concerning alcohol consumption is taken from Saskatchewan Alcohol and
Drug Abuse Commission, Fast Factsheet (Regina, 1988).

Figure 11.8: Scatter Diagram of Income and Alcohol Consumption

Solution.
The first step in obtaining the regression equation is to decide which

of the two variables is the independent variable and which is the dependent
variable. The suspicion is that differences in income levels are a factor in ex-
plaining differences in alcohol consumption per capita across the provinces.
This means that income is being considered the independent variable, af-
fecting alcohol consumption, the dependent variable.

While there are many other factors that are likely to affect alcohol con-
sumption, if different income levels lead to different levels of alcohol con-
sumption, the relationship between the two variables may be apparent in a
scatter diagram. In Figure 11.8, the values of income are plotted along the
horizontal axis. The values of the dependent variable, alcohol consumption,
are plotted on the vertical axis.
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Based on the scatter diagram of Figure 11.8, there appears to be a
definite relationship between income and alcohol consumption. The three
provinces with the lowest alcohol consumption are also those that have the
lowest income. For the three highest income provinces, alcohol consumption
per capita is also the greatest. The other provinces are between these two
extremes on both variables. While the relationship is not perfect, it appears
that a straight line that starts near the lower left of the diagram, and goes
toward the upper right, can show the relationship between the two variables.

The regression equation regresses alcohol consumption on income, that
is, income is the independent variable and alcohol consumption is the depen-
dent variable. For the regression, income is represented by X and alcohol
consumption by Y . The calculations for the regression are shown in Ta-
ble 11.2. Note that the fourth column, the squares of Y are not required
in order to determine the regression equation. However, these values have
been included because they are required in order to calculate the correla-
tion coefficient, and in Section 11.5.4, to conduct an hypothesis test for the
statistical significance of the regression line.

X Y X2 Y 2 XY

26.8 8.7 718.24 75.690 233.16
27.1 8.4 734.41 70.560 227.64
29.5 8.8 870.25 77.440 259.60
28.4 7.6 806.56 57.760 215.84
30.8 8.9 948.64 79.210 274.12
36.4 10.0 1324.96 100.000 364.00
30.4 9.7 924.16 94.090 294.88
29.8 8.9 888.04 79.210 265.22
35.1 11.1 1232.01 123.210 389.61
32.5 10.9 1056.25 118.810 354.25

306.8 93.0 9503.52 875.98 2878.32

Table 11.2: Calculations for Regression of Alcohol Consumption on Income
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From Table 11.2, the following values are obtained:

∑
X = 306.8

∑
Y = 93.0

∑
X2 = 9, 503.52

∑
Y 2 = 875.98

∑
XY = 2, 878.32

and these can then be used to determine the following:

SXY =
∑

XY − (
∑

X)(
∑

Y )
n

= 2, 878.32− (306.8)(93.0)
10

= 2, 878.32− 2, 853.24
= 25.08

SXX =
∑

XX − (
∑

X)2

n

= 9, 503.52− 306.82

10
= 9, 503.52− 9, 412.644
= 90.896

SY Y =
∑

Y 2 − (
∑

Y )2

n

= 875.98− 93.02

10
= 875.98− 864.9
= 11.08

The value for the slope of the regression line is

b =
SXY

SXX
=

25.08
90.896

= 0.276
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The intercept is

a = Ȳ − bX̄

=
93.0
10

− 0.276
306.8
10

= 9.30− (0.276× 30.68)
= 9.30− 8.68 = 0.832

The least squares regression line is thus

Ŷ = 0.832 + 0.276X.

Figure 11.9 shows the scatter diagram along with the regression line.

Figure 11.9: Scatter Diagram and Regression Line for Regression of Alcohol
Consumption on Income

While the intercept a = 0.832 has little real meaning, the slope of the line
can be interpreted meaningfully. The slope b = 0.276 is positive, indicating
that as income increases, alcohol consumption also increases. The size of
the slope can be interpreted by noting that for each increase of one unit in
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X, the dependent variable Y changes by 0.276 units. For this example, X
is in units of one thousand dollars of income, and Y is in units of litres of
alcohol consumed annually per capita. This means that each $1,000 increase
in family income is associated with an increase of a little over one quarter
of a litre of alcohol consumption per capita annually. This relationship has
been estimated across the ten provinces of Canada, so that this gives an idea
of the manner in which income and alcohol consumption are related across
the provinces.

Province X Y Ŷ ei = Yi − Ŷi

Newfoundland 26.8 8.700 8.229 0.471
PEI 27.1 8.400 8.312 0.088
Nova Scotia 29.5 8.800 8.974 -0.174
New Brunswick 28.4 7.600 8.671 -1.071
Quebec 30.8 8.900 9.333 -0.433
Ontario 36.4 10.000 10.878 -0.878
Manitoba 30.4 9.700 9.223 0.477
Saskatchewan 29.8 8.900 9.057 -0.157
Alberta 35.1 11.100 10.520 0.580
British Columbia 32.5 10.900 9.802 1.098

Table 11.3: Actual and Fitted Values and Prediction Errors

Finally, the equation can be used to determine the predicted values of
alcohol consumption, and these can in turn be used to obtain the prediction
errors. These are not usually calculated in the detail shown here. The
errors are contained in Table 11.3. For example, for Newfoundland, income
per capita is $26,800, so that X = 26.8. Putting this value in the equation
gives

Ŷ = 0.832 + 0.276X = 0.832 + (0.276× 26.8) = 0.832 + 7.397 = 8.229.

That is, the equation predicts that alcohol consumption for Newfoundland
is 8.229, while in fact it is 8.700. This means that there is a prediction error
of

Y − Ŷ = 8.700− 8.229 = 0.471

for Newfoundland. The equation underpredicts the level of alcohol con-
sumption for Newfoundland. The errors of prediction for each of the other
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provinces can be seen in the table. For all but two of the provinces, the
equation comes within one litre per capita of predicting the actual value
of alcohol consumption. For only New Brunswick and British Columbia
does the equation not predict so well, with alcohol consumption for New
Brunswick being overpredicted by 1.1 litres and British Columbia being un-
derpredicted by 1.1 litres. Also note that the sum of the errors of prediction
is 0, with the negative errors of prediction being balanced overall by the
positive errors of prediction.

11.5.3 Using the Regression Line

There are various ways that the regression line can be used. Table 11.3 used
the regression line of alcohol consumption on income to predict values of al-
cohol consumption for each province. The line could also be used to predict
values in other regions where the income per capita is known. These pre-
dictions are of two sorts, interpolation and extrapolation. Before discussing
these, a short note concerning how to draw the line is given.

Drawing the Line. In order to draw a line in the X − Y plane, it is
necessary to obtain only two points on the line. The regression equation
Ŷ = a + bX is used to do this. Pick two values of X, one value near the
lower end of the observed X values, and one near the upper end. These need
not be values actually observed, but could be any values of X. Then obtain
the predicted Y values for these X values. The resulting combinations of X
and Y give two points in the plane, and these are joined to produce the line.

In Figure 11.9, the values X = 26 and X = 36 are the two values selected.
The predicted values of Y for these values of X are

Ŷ = 0.832 + 0.276X = 0.832 + (0.276× 26) = 0.832 + 7.176 = 8.088

Ŷ = 0.832 + 0.276X = 0.832 + (0.276× 36) = 0.832 + 9.936 = 10.768

These two values are shown as the squares in Figure 11.9

Interpolation. When the value for a particular X is within the range of
X values used to determine the regression line, the use of this X to predict
a Y value is referred to as interpolation. In Example 11.5.1, suppose it is
known that a particular city has a per capita income of 31 thousand dollars.
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Then the line can be used to predict the level of alcohol consumption in this
city. Putting X = 31 into the equation for the regression line gives

Ŷ = 0.832 + 0.276X = 0.832 + (0.276× 31) = 0.832 + 8.556 = 9.388

The predicted alcohol consumption level for this city would be 9.4 litres per
capita annually.

When using the regression equation to predict values of Y , it is unlikely
that the prediction will be a perfectly accurate prediction of the dependent
variable Y . There are many factors that are likely to affect the value of Y ,
and the independent variable X is only one of these. Even if the regression
line fits the points of the scatter diagram quite closely, there will be errors
of prediction as a result of random variation, or the effect on the variable of
these other factors.

For example, suppose that the regression line of Example 11.5.1 is used to
predict alcohol consumption for a city in the Yukon territory or in Alaska.
If the per capita income for this city in the Yukon territory or Alaska is
known, and this value falls between 26 and 36 thousand dollars, then the
equation can be used to predict alchol consumption. But for this city, the
equation may not provide a very close estimate of alcohol consumption per
capita. The Yukon may have a different pattern of alcohol consumption
than does the rest of Canada. In the case of Alaska, the city is not even
in Canada, and there may be different laws and quite different patterns of
alcohol consumption.

Extrapolation. The regression line can be extended indefinitely in either
direction. The dependent variable Y can be predicted for values of X that
lie considerably outside the range of the values over which the straight line
was estimated. In Example 11.5.1, the 10 provinces of Canada had incomes
that ranged between approximately 26 and 36 thousand dollars. Over this
range of incomes, the relationship between income and alcohol consumption
appears to be linear. But outside this range, the relationship may no longer
be linear. While values of X outside this range may be used in the equation,
extrapolation of this sort may lead to considerable errors of prediction.

Suppose that a city has a per capita income of 50 thousand dollars.
Using the regression line from Example 11.5.1, the predicted value of alcohol
consumption for this city is

Ŷ = 0.832 + 0.276X = 0.832 + (0.276× 50) = 0.832 + 13.8 = 14.632.
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The equation predicts alcohol consumption of 14.6 litres per capita for this
city, well above the level of alcohol consumption for any province shown.
While this may well be close to the level of alcohol consumption for this city,
it seems unlikely that alcohol consumption would be this high. It may be
that the relationship between income and alcohol consumption levels off after
reaching a certain income level, and reaches an upper limit. The straight
line relationship may turn into a curved relationship beyond a certain point.
Without observations on units that have larger values of X, the researcher
has no way of determining whether this is the case or not.

When extrapolating, the researcher must be quite careful to realize that
the prediction error may be quite considerable for values of X that lie out-
side the range of values over which the straight line relationship has been
obtained. If this caution is taken, extrapolation can provide a useful ap-
proach, allowing the researcher to examine the linear effect of X on Y for
values outside the observed range.

Changes in X and Y . The slope of the regression line can be used to
estimate the effect on Y of a change in the values of X. Recall that the
slope b is

b =
Change in Y
Change in X

.

This expression can be rearranged so that

Change in Y = b× Change in X.

Using the slope for the regression line of Example 11.5.1, an increase of 10
thousand dollars in per capita income could be expected to increase alcohol
consumption by

Change in Y = 0.276× 10 = 2.76

or 2.8 litres of alcohol per capita annually.
An estimate of the change in Y obtained from the regression line is one

of the reasons regression may be preferred to correlation when investigating
the relationship between two variables. While a correlation coefficient tells
whether two variables are related or not, the slope of the regression line tells
how the two variables are related. If the researcher has a reason for making
one of the variables an independent, and the other a dependent variable, then
the slope of the estimated regression line provides an estimate of how one
variable might change as the other variable is changed. This estimate is, of
course, subject to some errors, and is an estimate of the average relationship.
For any specific set of two values of X, the relationship may not hold.
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11.5.4 Hypothesis Test for the Line

Just as there is a test to determine whether the correlation coefficient is
sufficiently different from 0 to provide evidence for a relationship between
two variables, there is also a test for the slope of the regression line. In order
to test whether the line can be regarded as showing a slope that is different
than 0, it is first necessary to introduce some other concepts concerning the
regression line. These are the standard error of estimate, and the idea of
the true regression line.

Parameters for the True Regression Line. The values of a and b
obtained when estimating the regression line are statistics, obtained by using
values of the observed data. This results in a particular regression line, one
that fits the observed data points better than any other regression line. It is
possible to imagine that there is a true regression line, where all members of
the population are observed, and where there are no measurement or data
production errors. Let this regression line have the intercept α, the Greek
alpha, and the slope β, the Greek beta. The true regression line is then

Ŷ = α + βX + ε

The slope β and the intercept α are parameters, and their point estimators
are a and b, respectively. The letter ε is the Greek letter epsilon. This is
used to denote the error or unexplained part of Y . Even if X does have a
linear or straight line influence on Y , X by itself cannot explain the exact
Y value. The effect of random factors, and other variables that may affect
Y in a systematic fashion, are all included as unexplained influences on Y
in ε.

It is next necessary to imagine many different samples of data. Each
sample provides a different set of values of X and Y . For each set of these
pairs of X and Y values, there is a different scatter diagram, and a different
regression line. Each regression line is a least squares regression line, fitting
the observed points better than any other line. But becuase each scatter di-
agram is different, each regression line differs. This means that each sample
has associated with it a value of a and b, defining the best fitting regression
line for that sample.

If the samples are random samples, these values of a and b vary in a
systematic fashion. The mean of a is α, the true intercept, and the mean of
b is β. Each of a and b has a standard deviation. For now, these are defined
as sa for a, with sb representing the standard deviation of b. In addition,

852



under certain conditions that can be specified for the error term ε, each of
the distributions of a and b can be approximated by a t distribution with
the means and standard deviations as just given. These t distributions
have n − 2 degrees of freedom, where n is the size of the sample. This can
be written as follows:

a is tn−2(α, sa)

b is tn−2(β, sb)

These distributions can then be used to test the regression line for statistical
significance.

For an hypothesis test, the researcher is usually interested only in the
slope. The intercept is a necessary component of the regression line, telling
where the line will be placed in the vertical direction. But there are relatively
few examples of situations where the researcher must test for the significance
of the intercept.

The hypothesis test for the slope β of the regression line begins with the
null hypothesis that there is no relationship between the variables. Ordinar-
ily, the researcher can anticipate whether the direction of the relationship is
positive or negative, so that the alternative hypothesis will be a one direc-
tional one, that β > 0 or that β < 0. The null and alternative hypotheses
are thus

H0 : β = 0

meaning that there is no relationship between X and Y . If the relationship
is expected to be a positive one between X and Y , the alternative hypothesis
is

H1 : β > 0

and if a negative relationship is expected, then

H1 : β < 0

While it is possible to conduct a two tailed test of the form β 6= 0, this is
not commonly done with regression, because the researcher is interested in
the direction of the relationship.

The test statistic and its distribution are given above, and the standard-
ized t statistic is the variable b minus its mean β, divided by its standard
deviation sb. This is

t =
b− β

sb
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and the t statistic has n − 2 degrees of freedom. The researcher selects a
significance level, and if the t statistic falls in the region of rejection of the
null hypothesis, then the assumption of no relationship is rejected, and the
alternative hypothesis accepted. The formula for determing sb is given in
the next section. Here an example of the hypothesis test for the relationship
between alcohol consumption and income is given.

Example 11.5.2 Hypothesis Test for the Relationship between Al-
cohol Consumption and Income

In Example 11.5.1, X represents per capita income, and Y represents
alcohol consumption per capita. Let α be the true intercept and β be the
true slope of the regression line relating income and alcohol consumption.
The sample of 10 provinces can be regarded as one means of obtaining
data concerning this relationship. For this sample, n = 10, a = 0.832 and
b = 0.276, so that the least squares regression line is

Ŷ = a + bX = 0.832 + 0.276X.

When this data is entered into a computer program, the program gives the
standard deviation for the slope as sb = 0.0756. This can be used to test for
significance as follows.

The null hypothesis is that there is no relationship between family income
and alcohol consumption per capita. If this is the case, then β = 0. The
researcher suspects that alcohol consumption per capita is positively related
to income. If this is the case, then β > 0. The value of b obtained from
the sample is b = 0.276, and while this is positive, the question is whether
this is enough greater than 0, to reject the null hypothesis and accept the
alternative hypothesis.

The null and alternative hypotheses are

H0 : β = 0

H1 : β > 0

The test statistic is the sample slope b and this has a t distribution with
mean β, standard deviation sb = 0.0756, and n − 2 = 10 − 2 = 8 degrees
of freedom. Pick the 0.01 level of significance, and for a one tailed test,
t0.01;8 = 2.897. The region of rejection of H0 is all t values of 2.897 or more.
If t < 2.897, then the null hypothesis cannot be rejected.
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From the sample

t =
b− β

sb

=
0.276− 0
0.0756

= 3.651 > 2.897

This means that the slope and the t value are in the region of rejection for the
null hypothesis. At the 0.01 level of significance, there is evidence that the
relationship between income and alcohol consumption is indeed a positive
one. That is, under the assumption of no relationship between the two
variables, the probability of obtaining a value of b of 0.276 or larger, is less
than 0.01. Since this is quite a small probability, most researchers would
conclude that this provides quite strong evidence that there is a positive
relationship between income and alcohol consumption.

11.5.5 Goodness of Fit

Another way of examining whether the regression line shows a relationship
between the two variables is to determine how well the line fits the observed
data points. This was examined earlier, at the end of Example 11.5.1, where
the errors of prediction Y − Ŷ were given. But to list all the errors of
prediction is an awkward way of examining the fit of the line. Fortunately,
these errors of prediction can be summarized into a single statistic called R
squared and written R2. This statistic is also called the goodness of fit
of the regression line. A formula for this statistic is provided next, followed
by an explanation of the statistic.

The most straightforward formula for R2 is based on the values SXX ,
SXY and SXY calculated earlier in connection with the correlation coefficient
and the regression line. Based on these expressions

R2 =
S2

XY

SXXSY Y
.
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The minimum value for R2 is 0. This would occur when there is no
relationship between the two variables, so that X does not help at all in
explaining the differences in values of Y . The maximum possible value for
R2 is 1. This would occur when the two variables are perfectly related, so
that the observed values of Y exactly correspond with the predicted values
from the regression line, and there are no prediction errors. This would
mean a perfect goodness of fit.

By comparing this formula with the formula for the correlation coefficient
r, it can be seen that R2 = r2. However, the goodness of fit has a different
interpretation than does the correlation coefficient.

For Example 11.5.1, it was shown that

SXY = 25.08

SY Y = 11.08

SXX = 90.896

Based on these,

R2 =
S2

XY

SXXSY Y

=
25.082

11.08× 90.896

=
629.0064

1007.12768
= 0.625

This shows that the fit of the regression line to the points is fairly good,
above one half, but still considerably less than 1. An R2 of 0.625 means
that 0.625 or 62.5% of the variation in the values of Y can be explained on
the basis of the regression line. That is, alcohol consumption varies across
the provinces of Canada, and income differences among provinces explain
62.5% of these differences in alcohol consumption. This does not necessar-
ily mean that income differences are a cause of different levels of alcohol
consumption, although the evidence does point in that direction. The ex-
planation is a statistical one, meaning that 62.5% of the differences among
alcohol consumption in the different provinces are explained statistically by
differences in income per capital among the provinces. The following para-
graphs should assist in explaining this.
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The Basis for R2. The R2 or goodness of fit statistic can be explained
as follows. Being with the expression

∑
(Y − Ȳ )2.

This expression is called the variation in Y , and is a means of considering
how different from each other the values of Y are. Note that the variation of
Y is the same as the numerator of the expression for the variance of Y . The
variation in Y tells how varied the values of Y are by taking the deviations
about the mean of Y , squaring these deviations, and adding them. If the
values of Y are all concentrated around the mean Ȳ , then the variation is a
small number, but if the values of Y are more spread out, then the variation
is a larger number. The aim of the goodness of fit statistic is to tell what
proportion of this variation can be explained statistically on the basis of the
independent variable X.

Note that Y − Ȳ can be written

Y − Ȳ = Y − Ŷ + Ŷ − Ȳ = (Y − Ŷ ) + (Ŷ − Ȳ )

The first part of the above expression, (Y − Ŷ ) is the same as the error of
prediction, encountered earlier. This can be regarded as the unexplained
portion of the deviation of Y about the mean. This is a measure of the
extent to which factors other than X cause the value of Y to differ from
what is predicted from the regression line. The latter part of the expression
(Ŷ − Ȳ ), can be considered to be the explained portion of the deviation of
Y about the mean. This is explained in the sense that the regression line
predicts Ŷ , so that the difference Ŷ − Ȳ is expected on the basis of the
regression line.

Since the goodness of fit is based on the variation, it is necessary to
square the above expression for Y − Ȳ , and sum these squares. The squares
of these deviations about the mean, and the sums of these squares are

(Y − Ȳ )2 = (Y − Ŷ )2 + (Ŷ − Ȳ )2 + 2(Y − Ŷ )(Ŷ − Ȳ )
∑

(Y − Ȳ )2 =
∑

(Y − Ŷ )2 +
∑

(Ŷ − Ȳ )2 + 2
∑

(Y − Ŷ )(Ŷ − Ȳ )

The latter expression seems rather intimidating, but it turns out that it can
be simplified because it can be shown that the last summation equals zero.
The sum ∑

(Y − Ŷ )(Ŷ − Ȳ ) = 0
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and this then means that
∑

(Y − Ȳ )2 =
∑

(Y − Ŷ )2 +
∑

(Ŷ − Ȳ )2

and it should be possible to make sense out of this last expression. On the
left is the variation in Y , often called the total variation, or the total sum
of squares. On the right are two other forms of variation, which together
sum to the total variation. The first expression on the right is termed the
unexplained variation or the error sum of squares. This is the sum
of the squares of the error terms, or the sum of squares of the unexplained
differences of the Y from their predicted values. The last term on the right
is called the explained variation or the regression sum of squares.
This is the sum of the squares of the predicted values about the mean. This
can be regarded as explained variation in the sense that the regression line
explains these differences. This can be summarized as follows.

Expression for
Variation Source of Variation

∑
(Yi − Ȳ )2 Total Variation or Total Sum of Squares∑
(Yi − Ŷ )2 Unexplained Variation or Error Sum of Squares∑
(Ŷi − Ȳ )2 Explained Variation or Regression Sum of Squares

The goodness of fit is defined as the explained variation divided by the
total variation.

R2 =
Explained Variation

Total Variation
=

∑
(Ŷi − Ȳ )2∑
(Yi − Ȳ )2

It can now be seen why the limits on R2 are 0 and 1. If the regression line
explains none of the variation in the Y values, then the explained variation is
0, with the unexplained variation being equal to the total variation. In con-
trast, if there are no errors of prediction, and all the variation is explained,
then R2 = 1 because the total variation equals the explained variation.

While it is unlikely to be apparent that R2 defined in the manner it is
here, and the earlier expression used for computing R2 are equal, the two
expressions can be shown to be equal.

In the regression line of Example 11.5.1, it can be shown that the parts
of the variation are as follows.
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Source of Variation Amount of Variation

Explained Variation
∑

(Ŷi − Ȳ )2 = 6.92
Unexplained Variation

∑
(Yi − Ŷ )2 = 4.16

Total Variation
∑

(Yi − Ȳ )2 = 11.08

By breaking the variation into these parts, the goodness of fit is

R2 =
∑

(Ŷi − Ȳ )2∑
(Yi − Ȳ )2

=
6.92
11.08

= 0.625

and this is the same value of R2 as obtained earlier.

11.5.6 Standard Errors

The last set of statistics to be introduced here is the standard error of
estimate, and the standard deviation of the slope. From each observed
value of X, the regression line gives a predicted value Ŷ that may differ
from the observed value of Y . This difference is the error of estimate or
error of prediction and can be given the sumbol e. For observation i,

ei = Yi − Ŷi

As noted earlier, in Example 11.5.1, when all these errors of estimate are
added, they total 0. That is,

∑
ei = 0

These values of ei represent deviations of the observed about the predicted
values of Y . Just as deviations about the mean can be summarized into
the standard deviation, so these errors can be summarized into a standard
error. The standard error of estimate is often given the symbol se and is

se =

√∑
(Yi − Ŷi)2

n− 2

It can be seen that this is very similar to the standard deviation, with two
exceptions. In the numerator, the deviations of the predicted values about
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the regression line, rather than the deviations of the observed values about
the mean are used. The second difference is that the denominator is n − 2
rather than n− 1. In the case of se, this occurs because the deviations are
about the regression line, and two values are required to fix a regression line.
In the case of the standard deviation, the deviation is about the mean, and
a given value for the mean fixes one of the n sample values.

In terms of computation a different approach is used. It can be shown
that

se =

√∑
Y 2 − a

∑
XY − b

∑
XY

n− 2

All of the terms on the right are obtained in the process of calculating the
regression line, so that se can be computed from the sums of the table used
to determine a and b.

Finally, the standard deviation for sb can be determined from se. The
standard deviation of the sampling distribution of b is

sb =
se√
SXX

Once the standard error of estimate is calculated, then the above formula
can be used to determine sb.

The following example calculates these for the alcohol and income ex-
ample, and also shows how the standard error can be interpreted.

Example 11.5.3 Standard Errors for Regression of Alcohol Con-
sumption on Income

From Table 11.2 and following, n = 10 and

∑
X = 306.8

∑
Y = 93.0

∑
X2 = 9, 503.52

∑
Y 2 = 875.98

∑
XY = 2, 878.32

SXY = 25.08

SY Y = 11.08
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SXX = 90.896

These can be used to determine se and sb.

se =

√∑
Y 2 − a

∑
XY − b

∑
XY

n− 2

=

√
875.98− (0.832× 93.0)− (0.276× 2, 878.32

10− 2

=
√

875.98− 77.376− 794.416
8

=
√

4.188
8

=
√

0.523
= 0.724

and the standard error of estimate is 0.724.
The standard deviation of the sampling distribution of b, sometimes

referred to as the standard error of b is

sb =
se√
SXX

=
0.724√
90.896

=
0.724
9.534

= 0.0759

Because of rounding differences, this value for sb differs slightly from the
earlier value obtained from the computer output. Note that sb is used when
conducting the hypothesis test for the statistical significance of the regression
coefficient.

Interpretation of the Standard Error of Estimate. The first point
to note concerning the standard error of estimate, se is that it is measured in
units of the dependent variable Y . In the above example, this means that the
standard error of estimate is measured in litres of alcohol per capita, the unit
used to measure Y . This happens because the calculation of the standard
error of estimate is based on the errors of estimate. These are differences
between the observed and predicted values of the dependent variable Y , so
that these are measured in units of the dependent variable.
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The standard error of estimate can be interpreted in much the same
manner as the standard deviation. Recall that in Section 5.9.3 of Chapter
5, there were various rules concerning the percentage of cases that were
within one, two or three standard deviations of the mean. These same rules
can be used for the standard error of estimate, with the exception that these
are distances around the line, rather than around Ȳ .

Figure 11.10: Standard Error and the Regression Line

Figure 11.10 gives the scatter diagram for the alcohol and income ex-
ample, with the regression line Ŷ = 0.832 + 0.276X shown as the heavily
shaded line in the centre. The standard error for this example is se = 0.721.
Two lines are drawn parallel to the regression line, one line a distance of
0.721 above the regression line, and the other line a distnace of 0.721 below
the regression line. These two lines define a band around the regression line
that is within one standard error of the line. As a rough rule of thumb, it is
to be expected that about two thirds of all the points in the scatter diagram
lie within this band. By counting the points, it can be seen that 7 of the 10
points of the scatter diagram lie within this band, so that 3 of the 10 points
lie farther than one standard error from the regression line.
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A line parallel to the regression line, but lying two standard errors on
each side of the regression line could also be drawn. The rule of thumb
concerning this is that 95% or more of the points in the scatter diagram lie
within two standard errors of the least squares regression line. While this
line is not drawn in Figure 11.10, it is easy to see that all 10 of the points
in the diagram do lie within two standard errors of the regression line.

The standard error provides an idea of how well the line fits the points
of the scatter diagram. If the standard error is very small, then the fit of
the line to the points is very good. If the standard error is quite large, then
the line does not fit the points very well. Exactly what is a large or small
standard error depends on the problem involved, and the extent to which an
accurate estimate of the dependent variable Y is required. In the alcohol and
income example, the standard error is 0.721 litres of alcohol. This provides a
rough estimate of the relationship between income and alcohol consumption,
meaning that estimates of alcohol consumption on the basis of knowledge
of family income can be provided to within about three quarters of a litre,
about two thirds of the time.

The rules of thumb concerning the standard error are that

Ŷ ± se contains about two thirds of the cases.
Ŷ ± 2se contains roughly 95% of the cases.

Ŷ ± 3se contains over 99% of the cases.

While these are very rough rules, they provide another way of thinking
about the fit of the regression line. R2 provides a statistic that describes the
goodness of fit of the line. The standard error of estimate, se is a statistic
that gives an idea of the average distance from the line that the observed
values of X and Y lie.

11.5.7 Example of Regression Using Time Series Data

The data in Table F.1 of Appendix F allows a researcher to examine the
relationship between various labour force variables in more detail than in
Example 11.4.4. The earlier example gave a negative correlation between the
crude birth rate and the female labour force participation rate in Canada
from the 1950s through the mid 1970s. In Appendix F, annual data for
Canada for the years 1953 through 1982 is provided. While many connec-
tions among these variable could be hypothesized, here regression models
that examine two hypotheses are considered.
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The labour force participation rate for females aged 20-24 either fell
slightly, or stayed constant through most of the 1950s, but rose continu-
ously and dramatically from 1959 through 1982. Various explanations for
these changes have been given by researchers. This section focusses on two
of these. Some researchers have argued that the increased participation of
young females in the labour force was a result of the increase in wages that
these females could receive. A second explanation is that young people and
young families experienced a decline in relative economic status beginning
in the 1950s, and this led to increased labour force participation of young
females in the labour force. This section examines these two models, provid-
ing two regression models. Following the calculation of the regression lines
and the tests of significance, there are some comments on the usefulness of
these models.

The decline in relative economic status argument is examined first. Eco-
nomic status is measured by variable RIYF, the relative income of young
males. As noted in Appendix F, this variable is a ratio of the income of
young males to the income of middle aged families. This variable increases
from 1953 to 1957, and declines continuously after that. While the absolute
income of young families increased through much of this period, in relative
terms young families experienced a decline in economic status. That is, rela-
tive to the living standards of middle aged families, younger males had lower
incomes. This could have led to a decline in the economic status of young
families, had not more women entered the labour force, and contributed to
family income. According to the relative economic status argument, more
young females entered the labour force in an attempt to earn income that
could maintain or improve the economic status of young families. In order
to test whether this is a reasonable explanation for the increase in female
labour force participation, FPR is the dependent variable, and RIYF is the
independent variable. Table 11.4 gives the calculations for the regression,
with Y representing the female labour force participation rate FPR, and X
representing the relative economic status of young families.

∑
X = 8.58147

∑
Y = 1726.0

∑
X2 = 2.597183

∑
Y 2 = 101, 926.30
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RIYF FPR
Year X Y X2 Y 2 XY

1953 0.37866 47.2 0.143383 2227.84 17.8728
1954 0.38799 46.6 0.150536 2171.56 18.0803
1955 0.39685 46.3 0.157490 2143.69 18.3742
1956 0.40498 47.1 0.164009 2218.41 19.0746
1957 0.41285 46.5 0.170445 2162.25 19.1975
1958 0.38780 47.4 0.150389 2246.76 18.3817
1959 0.36281 46.5 0.131631 2162.25 16.8707
1960 0.34889 47.9 0.121724 2294.41 16.7118
1961 0.33593 48.7 0.112849 2371.69 16.3598
1962 0.31499 49.7 0.099219 2470.09 15.6550
1963 0.29566 50.3 0.087415 2530.09 14.8717
1964 0.27796 51.0 0.077262 2601.00 14.1760
1965 0.26175 52.6 0.068513 2766.76 13.7681
1966 0.28461 55.6 0.081003 3091.36 15.8243
1967 0.30635 56.6 0.093850 3203.56 17.3394
1968 0.25556 58.4 0.065311 3410.56 14.9247
1969 0.20925 59.3 0.043786 3516.49 12.4085
1970 0.23535 58.5 0.055390 3422.25 13.7680
1971 0.24629 59.9 0.060659 3588.01 14.7528
1972 0.24630 60.5 0.060664 3660.25 14.9011
1973 0.23382 62.5 0.054672 3906.25 14.6138
1974 0.23966 63.0 0.057437 3969.00 15.0986
1975 0.23923 67.0 0.057231 4489.00 16.0284
1976 0.22450 67.4 0.050400 4542.76 15.1313
1977 0.23961 68.9 0.057413 4747.21 16.5091
1978 0.21401 70.3 0.045800 4942.09 15.0449
1979 0.23843 71.3 0.056849 5083.69 17.0001
1980 0.20914 73.0 0.043740 5329.00 15.2672
1981 0.22050 72.9 0.048620 5314.41 16.0745
1982 0.17174 73.1 0.029495 5343.61 12.5542

Total 8.58147 1726.0 2.597183 101926.30 476.6349

Table 11.4: Calculations for Regression of FPR on RIYF
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∑
XY = 476.6349

n = 30

SXY =
∑

XY − (
∑

X)(
∑

Y )
n

= 476.6349− (8.58147)(1726.0)
30

= 476.6349− 493.7206
= −17.0857

SXX =
∑

XX − (
∑

X)2

n

= 2.597183− 8.581472

30
= 2.597183− 2.454721
= 0.142462

SY Y =
∑

Y 2 − (
∑

Y )2

n

= 101, 926.30− 1, 726.02

30
= 101, 926.30− 99, 302.53
= 2, 623.77

The value for the slope of the regression line is

b =
SXY

SXX
=
−17.0857
0.142462

= −119.932

The intercept is

a = Ȳ − bX̄

=
1, 726.0

30
− (−119.932

8.58147
30

)

= 57.533− (−119.932× 0.286049)
= 57.533 + 34.306 = 91.839

The least squares regression line is thus

Ŷ = 91.839− 119.93X.
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Note that the slope of the line is negative, indicating that as the relative
economic status of the young males and the female labour force participation
rate move in opposite directions from each other. For most of the 1953-1982
period, the relative economic status of young males declined while the female
labour force participation rate increased.

The fit of the line is given by the goodness of fit statistic R2. This is

R2 =
S2

XY

SXXSY Y

=
(−17.0857)2

0.142462× 2, 623.77

=
291.9211
373.7875

= 0.7810

This means that 0.7810 of the total variation in the female labour force
participation rate can be explained statistically on the basis of variation in
the relative economic status of young males. Also note that the correlation
coefficient r is the square root of R2, so that

r =
√

R2 =
√

0.7810 = −0.8837.

The correlation coefficient is the negative square root in this case, because
SXY < 0, and the relationship between X and Y is a negative one.

The standard error of estimate is

se =

√∑
Y 2 − a

∑
Y − b

∑
XY

n− 2

=

√
101, 926.30− (91.839× 1, 726.0)− (−119.93× 476.6349)

30− 2

=
√

101, 926.30− 158, 514.114 + 57, 162.83256
28

=
√

575.00956
28

=
√

20.53606
= 4.532

and the standard error of estimate is 4.532.
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The standard deviation of the sampling distribution of b is

sb =
se√
SXX

=
4.532√

0.142462

=
4.532

0.377441
= 12.007

This value can now be used to test for the significance of the slope of the
regression line. The null hypothesis is that there is no relationship between
X and Y , that is, that β = 0, where β represents the true slope of the
relationship between X and Y . The alternative hypothesis is that β < 0
since the claim is that the economic status of young families (X) is negatively
related to female labour force participation (Y ). The null and alternative
hypotheses are

H0 : β = 0

H1 : β < 0

The statistic used to test the relationship is b, and it has mean β and stan-
dard deviation sb. The distribution of b is a t distribution with n − 2 =
30 − 2 = 28 degrees of freedom. At the 0.01 level of significance, for a one
tailed t test, the critical t value is -2.468. The region of rejection of H0 is
all t values of -2.468 or lower. The t statistic is

t =
b

sb
=
−119.93
12.007

= −9.988 < −2.468.

The t value is in the region of rejection, so that b is enough different from 0
to reject the hypothesis of no relationship between X and Y . There is very
strong evidence that β < 0 and that the relationship between the relative
economic status of young males and female labour force participation is a
negative relationship.

Wages and Female Labour Force Participation. For the second hy-
pothesis, the claim is that increased wages were an important reason why
female labour force participation increased. For this regression model, the
independent variable X is AWW, the index of average weekly wages. The
dependent variable Y is again the female labour force participation rate,
FPR. The detailed calculations for this regression model are not given here,
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but only the summations and the statistics required to describe and test
the regression model are provided. You can use the values of AWW as X
and FPR as Y , to verify the following. You need not carry all the decimals
shown below, although you should carry at least 4 or 5 significant figures
throughout the calculations. If you carry fewer significant figures than this,
you will come close when making the calculations, but your answers will
differ because of rounding.

∑
X = 2, 757.230

∑
Y = 1, 726.0

∑
X2 = 262, 272.8960

∑
Y 2 = 101, 926.30

∑
XY = 163, 279.0784

n = 30

SXY =
∑

XY − (
∑

X)(
∑

Y )
n

= 163, 279.0784− (2, 757.230)(1, 726.0)
30

= 163, 279.0784− 158, 632.6327
= 4, 646.4457

SXX =
∑

X2 − (
∑

X)2

n

= 262, 272.8960− 2, 757.2302

30
= 262, 272.8960− 253, 410.5758
= 8, 862.3202

SY Y =
∑

Y 2 − (
∑

Y )2

n

= 101, 926.30− 1, 726.02

30
= 101, 926.30− 99, 302.53
= 2, 623.77
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The value for the slope of the regression line is

b =
SXY

SXX
=

4, 646.4457
8, 862.3202

= 0.52429

The intercept is

a = Ȳ − bX̄

=
1, 726.0

30
− (0.52429

2, 757.230
30

)

= 57.533− (0.52429× 91.9077)
= 57.533− 48.186 = 9.347

The least squares regression line is thus

Ŷ = 9.347 + 0.52429X.

The slope of the line in this example is positive, indicating that as wages
increase, the female labour force participation rate increases. For most of
the 1953-1982 period, both wages and female labour force participation rates
rose, so that the two variables move together in a positive manner.

The fit of the line is given by the goodness of fit statistic R2. This is

R2 =
S2

XY

SXXSY Y

=
4, 646.44572

8, 862.3202× 2, 623.77

=
21, 589, 457.64
23, 252, 689.87

= 0.9285

This means that 0.9285, or 92.85% of the total variation in the female labour
force participation rate can be explained statistically on the basis of variation
in the average wage. The correlation coefficient r is

r =
√

R2 =
√

0.9285 = −0.9636.

The standard error of estimate is se = 2.589 and sb = 0.0275. For the
test of statistical significance,

H0 : β = 0
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H1 : β > 0

and the t statistic is

t =
b

sb
=

0.52429
0.0275

= 19.065.

There are 28 degress of freedom, and from the t table in Appendix I,

t0.0005,28 = 3.674

The t value of 19.065 is much greater than this, so that the null hypothesis
can be rejected very decisively. This data provides strong evidence for a
positive relationship between wages and female labour force participation.

Comments on the Results. The first point to note for the above regres-
sions are the high values for the goodness of fit R2 and the very significant
t statistics. This is not unusual when working with time series data. This
same feature was noted for correlation coefficients in Example 11.4.6. For
other types of data, especially for survey data, such high values for the
goodness of fit or for the test of significance cannot ordinarily be expected.

The scatter diagrams for each of the relationships is given in Figures 11.11
and 11.12. As can be seen there, both of the scatter diagrams show a fairly
close relationship with FPR. The scatter of wages and FPR appears to more
of a straight line relationship, but the scatter of relative economic status and
FPR also shows that the two variables are highly related statistically.

The next point to note is that both of the explanations have been sup-
ported by the respective regression models. In each case, the dependent
variable that was being explained was the female labour force participation
rate. The first model used the relative income of young males as the in-
dependent or explanatory variable, and showed that there was a negative
relationship between the relative economic status of young males, and the
female labour force participation rate. Based on the model, the initial in-
crease in the relative economic status of young males, followed by the long
and continuous decline, was first associated with little change in female
labour force participation, and then a long increase in this participation
rate. This explanation makes some sense, and also is strongly supported by
the model.

The other explanation is the argument that increased female labour force
participation was caused by increases in average wages. Over the thirty year
period from 1953 to 1982, the increase in wages made it more attractive for
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Figure 11.11: Scatter Diagram of Relative Economic Status and Female
Labour Force Participation

females to participate in the labour force. Looked at in another way, females
who did not enter the labour force, gave up more potential income by not
participating in the labour force. This explanation appears to be a reason-
able one, and this explanation is strongly supported by the regression model
constructed. The line relating the average weekly wage as the explanatory
variable, and the female labour force participation rate as the dependent
variable, has a positive slope. The goodness of fit is above 90%, and the
slope is very significantly positive.

Using the results here, it is difficult to decide which of the two models
provides a better explanation for the variation in the female labour force
participation rate over these years. The goodness of fit for the model with
wages as the independent variable is greater than for the model with relative
economic status as the independent variable, and this might lead a researcher
to favour the model using wages as the independent variable. But the other
model is also very significant statistically, and the two variables have a close
relationship with each other.

Given the above considerations, it might make sense to include both
wages and relative economic status as independent variables. This would
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Figure 11.12: Scatter Diagram of Relative Economic Status and Female
Labour Force Participation

make the model a multivariate one, and this moves the model beyond the
scope of this introductory textbook. However, such a multivariate model
might show that both increased wages and the decline in relative economic
status of young males contributed to the increase in female labour force
participation rates. Each of the contributory variables could be indepen-
dent factors that encouraged or pushed women into the labour force. In
addition, there are likely to be many other factors that led in this same
direction. Changed views concerning women’s roles, the desire of women for
independent sources of income, and the growth in the number of jobs that
employed women over these years, all might be contributory factors.

In conclusion, the two regression models given here are both useful means
of testing some fairly simple explanations. A more detailed analysis would
require a multivariate model, simultaneously examining the influence of a
number of different factors on female labour force participation rates.
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11.5.8 Regression Line for Data from a Survey

This section gives an example of a regression line being fitted to cross sec-
tional data obtained from a sample survey. With diverse data from a survey,
the fit of the regression line is usually much smaller than when using other
types of data. But this is partly compensated by the larger sample size that
is often available from a survey. As a result, the regression line often has
a statistically significant slope, even though the goodness of fit statistic is
very low.

This example examines the relationship between the age of the respon-
dent and the annual income of the respondent. Ordinarily it is expected
that earnings increase with age for those members of the labour force who
are regularly employed. This occurs for various reasons, including factors
such as experience gained on the job and seniority. These patterns differ
considerably by sex, occupation, industry and educational background, so
that a cross sectional survey of all labour force members may not allow this
relationship to become visible.

In order to reduce the diversity of respondents, a set of Saskatchewan
males that are married, in husband-wife families, between 30 and 60 years
of age, and employed is selected. In addition, all of these males are teachers,
that is, from the same occupational category, and an occupation where pay
does generally increase with years on the job. The data for this example
is taken from Statistics Canada’s 1989 Survey of Consumer Finances. The
income data obtained refers to annual income for the whole of 1988. The
age of the respondent is given as the X value in Table 11.5. The earnings of
the respondents are given as the Y values in Table 11.5. These are shown
in thousands of dollars. For example, the first respondent was 34 years old
in 1989, and earned $24,900 in 1988.

The data in Table 11.5 is used to determine the relationship between
age and earnings. Since it is hypothesized that earnings increase with age,
earnings are the dependent variable and age is the dependent variable. While
age alone does not cause earnings to increase, age can be considered to be a
proxy for other variables such as seniority or experience. It is to be expected
that there will be a positive relationship between age and earnings.

The scatter diagram for the data in Table 11.5 is given in Figure 11.13.
The independent variable, age, is given along the X axis. The dependent
variable is earnings, and this is given on the Y axis. While a generally
positive relationship between age and earnings may be visible in the diagram,
it is not very clear, and the extensive scatter may make it seem as if there
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X Y X Y X Y

34 24.900 46 46.193 35 40.257
57 69.000 48 52.884 44 48.936
53 42.384 47 48.853 36 29.434
40 60.000 59 40.000 56 42.374
55 56.657 34 30.306 38 38.000
35 42.000 49 36.480 45 40.500
57 64.748 57 52.884 56 67.620
42 57.824 37 50.188 58 42.398
44 42.388 51 40.446 32 42.136
34 13.884 49 40.069 54 30.995
42 42.346 36 38.081 38 22.776
45 45.000 43 42.388 38 45.000
51 20.103 44 28.786 40 51.844
48 52.000 50 46.630 38 52.000
44 22.932 50 40.308 40 39.575
43 35.214 39 39.500 43 41.962
34 29.597

Table 11.5: Age (X) and Earnings in thousands of dollars (Y ) for 49
Saskatchewan Male Teachers

is no relationship between the two variables.
From Table 11.5, the following summations can be obtained.

∑
X = 2188.0

∑
Y = 2070.8

∑
X2 = 100576

∑
Y 2 = 94134

∑
XY = 94247

n = 49

These summations provide sufficient information to obtain SXX , SY Y ,
SXY , and from these the various statistics required for the regression line
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Figure 11.13: Scatter Diagram of Age and Earnings

and the test of significance can be obtained. These are given as follows.
(These statistics were obtained from the MINITAB computer program. If
you do the calculations yourself, the values may differ slightly because of
different rounding.)

a = 14.612

b = 0.6192

sb = 0.2021

se = 10.84

R2 = 0.166

r = 0.408

The regression equation is

Ŷ = 14.612 + 0.6192X
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The slope of 0.6192 means that a unit change in X is associated with a
change in Y of 0.619. That is, each increase in age (X) of one year is asso-
ciated with an increased of 0.619 thousand dollars. This is the estimate of
the effect of X on Y , using this sample of 49 male teachers in Saskatchewan.
The regression line shows that for this sample, each extra year of age is as-
sociated with an increase of $619 in earnings. This estimate may not apply
to any particular individual or time period, but based on this cross section
of cases, this is an estimate of the average effect of X on Y .

The significance of the slope of the line can be tested using the t test.
The null hypothesis is that the true slope for the regression line between
age and income, β, is zero, and the alternative hypothesis is that β exceeds
zero. The t statistic is

t =
b− β

sb
=

b− 0
sb

=
0.6192
0.2021

= 3.064.

For n − 2 = 49 − 2 = 47 degrees of freedom, the t value for a one tailed
test at the 0.005 level of significance is just over 2.678. The observed value
of 3.064 exceeds this, so that the null hypothesis of no relationship between
between age and earnings can be rejected. At the 0.005 level of significance,
there is evidence that the relationship between age and earnings is positive.

Figure 11.14 shows that scatter diagram, along with the least squares
regression line. Around the line, a band that lies within one standard devia-
tion is also drawn. As copuld be noted in the earlier diagram, the regression
line does not fit the points all that closely. However, the line does have a
positive slope, so that the relationship between X and Y is generally a posi-
tive one. It can be seen that a considerable number of the points fall within
one standard error of the regression line. The standard error se = 10.8, or
$10,800, so that about two thirds of all the respondents have earnings that
are within $10,800 of the earnings predicted from the regression line.

Finally, note that the goodness of fit of the regression line is only R2 =
0.166. After working with the previous examples, where the goodness of
fit was over 0.6 in all cases, this might seem too small a goodness of fit to
make the regression model at all worthwhile here. But the slope is statis-
tically significant, so that the assumption of no relationship between age
and earnings can be rejected. When survey data is used, it is not uncom-
mon to encounter this situation. The scatter diagram seems so dispersed,
and the goodness of fit statistic seems so low, that there appears to be no
relationship between X and Y . But if the slope is significant statistically,
there is evidence of some relationship between X and Y . This situation
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Figure 11.14: Scatter Diagram and Regression Line for Age and Earnings

cannot be fully resolved on the basis of a two variable regression model,
because this most likely means that there are various other factors that also
affect Y . What the two variable regression model shows is that age is a
significant factor in explaining earnings, so that as age increases, earnings
generally increase. At the same time, age by itself can only explain about
0.166, or 16.6% of the variation in earnings. There are many other factors
that influence earnings, of which age is only one. Age itself can explain
a certain portion of the variation in earnings, but the other 80% or more
of the variation in earnings is left unexplained. While this model gives no
indication of what these other factors are, among the variables that might
be investigated are the amount of schooling of the respondent, the length of
time in the job, the continuity of employment, who the employer is, and so
on. In addition, some characteristics of individuals such as the age at which
the respondent began full time work, the abilities of the individual, and the
level of ambition of the individual, might also be investigated. Some of these
factors may be diffficult to quantify and investigate. As a result, even with
a multivariate model of earnings, it is difficult to explain over one half of the
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variation in individual earnings in a large cross sectional survey of respon-
dents. The two variable regression model is still very useful though, because
it does allow the researcher to determined what are some of the factors that
do affect earnings. Based on bivariate regression models, the researcher can
then build a multivariate model, with several explanatory variables, that
can be used to explain variation in earnings.

11.5.9 Additional Comments on Regression

Before leaving the two variable regression model, a few additional comments
concerning various aspects of the regression model are made here.

Reporting Results. When reporting the results of a regression equation
it is also common to report, in brackets, the standard errors of each coef-
ficent. The results The equation for the regression of earnings on age in
Section 11.5.8 could be reported as follows:

Y = 14.612 + 0.6192X
(9.1554) (0.2021)

where the standard deviation of a is 9.1554 and sb = 0.2021. Hypotheses
tests for the intercept or the slope of the line could be easily conducted using
the data from this equation as it is reported here.

A Quick Test of Significance. A quick test of significance for the slope
of the regression line can be made by comparing the value of b and sb. As a
very rough rule of thumb, if b is at least twice the size of sb, the slope can
be regarded as being significant statistically. This is based on the following
considerations.

The null hypothesis is that the slope of the true regression line is β = 0.
The t statistic is

t =
b− β

sb

so that under the assumption that β = 0,

t =
b

sb

If t exceeds 2, and if n > 8, the t table shows that the null hypothesis that
β = 0 can be rejected at the 0.05 level of significance. (For n = 8, meaning
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n− 2 = 6, the t value for a one tailed test at the 0.05 level of signficance is
t = 1.943, so that a t value of 2 or more would lead to rejection of the null
hypothesis. Since the α = 0.05 level of significance is often the level chosen,
and since the sample size usually exceeds 8, this provides a quick test for
whether or not the slope is significantly greater than or less than zero.

From the reported regression result on the previous page, b = 0.6192 and
sb = 0.2021 so that

t =
b

sb
=

0.6192
0.2021

= 3.1 > 2

so that the slope of the regression line in that equation can be considered
to be significantly greater than 0.

If the result is to be more soundly based, the formal test of significance
should be conducted. But if you have several regression slopes to check,
the rule that the slope should be about double the value of the standard
deviation of the slope gives a quick way of providing a check for the statistical
significance of the slope of the line.

Assumptions for the Regression Model. None of the assumptions for
the regression model have been given in this section, except to note that
both the independent and the dependent variable should have an interval or
ratio level of measurement. In order to obtain the estimates of a and b, no
other assumptions are required. However, in order to conduct the hypothesis
test for the line, and to ensure that the regression model is meaningful, there
are several other assumptions involved in the model. These assumptions are
outlined here, but there full importance is not discussed in any detail.

The assumptions concerning the regression model relate to the behaviour
of the error term. In the true regression model,

Ŷ = α + βX + ε.

The term ε covers all the unexplained factors, variables other than the vari-
able X that might be considered to affect Y . It is the behaviour of this term
ε that is of concern when conducting tests of significance for the regression
line, and deciding whether the line has any real meaning.

The assumption concerning ε is that the error term has a normal distri-
bution with mean 0 and the same variance for each of the possible values of
X. In addition, for different values of X, the assumption is that the error
terms ε are uncorrelated with each other.
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While these assumptions concerning ε are fairly simply stated, their
meaning and the consequences of violating these assumptions are not nearly
so clear. Much of a second course in statistics may be devoted to examining
the validity of the assumptions when working with data, and deciding how
to work with the data when the assumptions are violated. Here only a few
comments are made concerning these assumptions.

1. The error term ε includes all the unexplained factors, that is, the
effect of all those variables other than X, that may influence Y . A
short consideration of this should allow you to realize that this makes
it quite unlikely that this term will be normally distributed, much less
having the other assumptions given. If a variable that has a major
effect on Y has been excluded from the equation, then the effect of
this variable on Y will be systematic, meaning that when this effect is
included in ε, the distribution of ε is very unlikely to be normal.

2. The assumption that the variance of ε will be the same for all values of
X is often violated. As noted when discussing the coefficient of relative
variation in Chapter 5, the standard deviation is often larger when
values of the variable are larger. If this is the case, then the variance
also differs for different values of X and this may create misleading
hypothesis tests.

3. One of the assumptions was that the values of ε are unrelated to each
other for different X values. With time series data, as in Section 11.5.7,
this assumption is almost always violated. One of the reasons for this
is that annual observations constitute an arbitrary unit of time. Social
and economic variables do not stop having their effect on December
31, to start completely anew on January 1. Factors that are measured
over time tend to have an influence that extends across time in a
manner that is not neatly divided into units such as days, months or
years. This means that influences on Y that occur in one time period
are likely to be felt in the next time period as well. If some of these
factors are included in ε, then this makes the values of ε for one time
period correlated with those of other time periods.

The above list gives only a few examples of the way in which the as-
sumptions concerning the construction or testing of a regression line might
be violated. Economists have spent considerable time and effort examin-
ing the consequences of violation of these assumptions, and the subject of
econometrics is largely devoted to dealing with these.
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Summary. In spite of these problems, the regression model has proven
very useful for examining the structure of the relationship between two vari-
ables. If done with care, this model can also prove very useful for purposes
of prediction. By adding more explanatory variables, and constructing mul-
tivariate regressions, the model can often illustrate many aspects of socioe-
conomic structure and behaviour which might not otherwise be apparent.

11.6 Conclusion

This chapter has examined the relationship between two variables in several
different ways. Before summarizing these, a few comments concerning the
way in which analysis of these relationships can be extended are made.

Multivariate Models. The main defect of the bivariate models is that
the effect of variables that have not been included in the models cannot
easily be considered. In addition, where two or more variables interact to
cause an effect on one or more dependent variables, bivariate models may
be unable to explain this, or may mislead a researcher concerning the true
relationships among variables. One way of dealing with these problems is
to create multivariate models, where the effect of all relevant variables is
considered.

When dealing with many variables, all of which are measured at no
more than the nominal level, a multivariate model produces tables of 3, 4,
5 or more dimensions. These are very difficult to analyze, although some
researchers use loglinear models to examine these. The other difficulty of
these models is that even where relationships among variables are found, it
may be difficult to describe them in an understandable manner.

Where the variables have at least an ordinal level of measurement, re-
searchers generally move well beyond cross classification tables, and are able
to examine the correlation among the rankings of members of a population
on several variables. The same is possible with variables that have interval
or ratio scales. For variables having these latter scales, the correlation coeffi-
cients measure the manner in which distances between values of the variable
are related. Using these correlation coefficients, it is possible to construct
various types of multivariate models. Factor analysis is one of the most
common of these. In factor analysis, a researcher takes a large number of
variables, and attempts to group these variables into common types of vari-
ables, or factors. Cluster analysis is another multivariate method that
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can be used. Cluster analysis can be used to group variables together, but
is more commonly be used to provide clusters of cases that are reasonably
similar to each other.

If all the variables have interval or ratio level scales, then multivariate
regression models are commonly used. One advantage of a regression model
over factor or cluster analysis is that the regression model can be used to
obtain an estimate of the actual amount of change in a dependent variable
that occurs as a result of a change in an independent variable. Where the
model includes several independent variables, both the individual and the
combined effect of these on the dependent variable can be estimated. For
example, in the example of the female labour force participation rate, it is
possible to obtain a model that examines the effect of both increased wages,
and declining economic status, on female labour force participation rates.

It is also possible to produce simultaneous equation estimates, where
variables may be simultaneously independent and dependent variables. In
the labour force participation example, the increased entry of females into
the labour force helps improve the economic status of families. Thus the
relative economic status of young families cannot be regarded as a variable
that is completely independent of other labour force variables. The two are
simultaneously determined.

Multivariate models go considerably beyond what can be introduced in
an introductory textbook. The methods introduced in this chapter provide
a way of beginning to examine the relationship between two variables. Once
you understand these basic principles, it should be possible to begin working
with multivariate models. These are likely to be encountered in a second
course in statistics.

Summary. This chapter examines measures of association, a means of
providing a summary statistic to explain the relationship between two or
more variables. In this chapter, only the two variable, or bivariate model,
was discussed.

The first methods used in the chapter allow a researcher to examine the
relationship among any two variables. The chi square based measures of
association and the proportional reduction in error methods begin with a
cross classification table. Since a cross classification table can be produced
for variables that have no more than a nominal scale of measurement, these
first measures can always be used.

When the variables are measured with a least ordinal scales, then the
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different values of the variable can be ranked. This ranking information can
be used to determine correlation coefficients. These coefficients provide more
information concerning the nature of the relationship between variables, and
if they can legitimately be calculated, are to be preferred to the first set of
measures.

Finally, if the variables have at least an interval level of measurement,
then the method of regression may be more appropriate. The regression
model requires that the researcher has some idea of the direction of causa-
tion or of influence. If this is known, then the regression model provides
considerably more information than the earlier methods. A regression line
allows the researcher to tell the influence of a change in the values for one
variable on another variable. The line can be used to determine this rela-
tionship as well as predict values for the independent variable.

All of the measures in this chapter are widely used. In Sociology, Psy-
chology and Political Science, many of the scales used to measure variables
have only a nominal or ordinal level of measurement. If this is the case, then
regression models are less commonly used. Where all the variables are mea-
sured using interval and ratio level scales, then the more powerful methods
of regression can be used. In Economics and Administration, many of the
variables are measured in monetary units, and this allows researchers there
to concentrate on regression models.
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