Sociology 405/805

Revised January 13, 2004

Measures of association in 2×2 tables using cross-products

For a table with two rows and two columns, there are three common measures of association using cross-products. These are the odds ratio α , Yule's Q, and the Pearson correlation coefficient, r. This handout introduces these three measures of association.

Using the notation of Table 1. In this table, n_{ij} represents the number of cases that are found in row *i* and column *j*. The marginal row totals are represented by n_{i+} , the marginal column totals by n_{+j} , and the grand total by n_{++} or simply by *n*. There are several measures of association which can be based on the **cross-products**, $n_{11}n_{22}$ and $n_{21}n_{12}$, and the relationship between these cross products. A good introduction and guide to these is contained in H. T. Reynolds, *Analysis of Nominal Data*, Sage Quantitative Applications in the Social Sciences Series, No. 7 (HA 33 R48, on reserve). Also see Albert M. Liebetrau, *Measures of Association*, Sage Quantitative Applications in the Social Sciences Series, No. 32 (HA 31.3 L53 1983).

	Σ		
Υ	1	2	Totals
1	n_{11}	n_{12}	n_{1+}
2	n_{21}	n_{22}	n_{2+}
Totals	n_{+1}	n_{+2}	$n_{++} = n$

Table 1: General Format and Notation for a 2×2 Table

1. The Odds Ratio α . The odds or cross-product ratio can be written as

$$\hat{\alpha} = \frac{\frac{n_{11}}{n_{21}}}{\frac{n_{12}}{n_{22}}} = \frac{n_{11}n_{22}}{n_{21}n_{12}}.$$

For α , the minimum value is 0 when either or both n_{11} or n_{22} equals 0. The maximum value is $+\infty$ when either or both n_{21} or n_{12} equals 0.

One or other of these situations occurs when there is either perfect or complete association.

When there is no relationship between X and Y so that

$$\frac{n_{11}}{n_{21}} = \frac{n_{12}}{n_{22}}$$

then $\hat{\alpha} = 1$.

2. Yule's Q.

$$Q = \frac{n_{11}n_{22} - n_{12}n_{21}}{n_{11}n_{22} + n_{12}n_{21}} \tag{1}$$

In the case of no association or relationship, that is, $n_{11}/n_{21} = n_{12}/n_{22}$, then $n_{11}n_{22} = n_{12}n_{21}$ and Q = 0. Q = 1 if either n_{12} or n_{21} or both equal zero, that is, in the case of either complete or perfect association. Also

$$Q = \frac{\alpha - 1}{\alpha + 1}$$

and for a 2×2 table, $Q = \gamma$ (gamma).

3. **Pearson** r. For a 2×2 table, the Pearson coefficient of correlation, r, is given by the following:

$$r = \frac{n_{11}n_{22} - n_{12}n_{21}}{\sqrt{n_{1+}n_{2+}n_{+1}n_{+2}}}$$

For a 2 × 2 table, $r = V = \phi$ and $r^2 = \phi^2$.