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Chapter 11

Association Between
Variables

11.4 Correlation

11.4.1 Introduction

The measures of association examined so far in this chapter are useful for
describing the nature of association between two variables which are mea-
sured at no more than the nominal scale of measurement. All of these
measures, φ, C, Cramer’s xV and λ, can also be used to describe association
between variables that are measured at the ordinal, interval or ratio level
of measurement. But where variables are measured at these higher levels,
it is preferable to employ measures of association which use the information
contained in these higher levels of measurement. These higher level scales
either rank values of the variable, or permit the researcher to measure the
distance between values of the variable. The association between rankings of
two variables, or the association of distances between values of the variable
provides a more detailed idea of the nature of association between variables
than do the measures examined so far in this chapter.

While there are many measures of association for variables which are
measured at the ordinal or higher level of measurement, correlation is the
most commonly used approach. This section shows how to calculate and in-
terpret correlation coefficients for ordinal and interval level scales. Methods
of correlation summarize the relationship between two variables in a single
number called the correlation coefficient. The correlation coefficient is
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usually given the symbol r and it ranges from -1 to +1. A correlation co-
efficient quite close to 0, but either positive or negative, implies little or no
relationship between the two variables. A correlation coefficient close to plus
1 means a positive relationship between the two variables, with increases
in one of the variables being associated with increases in the other variable.
A correlation coefficient close to -1 indicates a negative relationship be-
tween two variables, with an increase in one of the variables being associated
with a decrease in the other variable.

A correlation coefficient can be produced for ordinal, interval or ratio
level variables, but has little meaning for variables which are measured on
a scale which is no more than nominal. For ordinal scales, the correlation
coefficient which is usually calculated is Spearman’s rho. For interval or
ratio level scales, the most commonly used correlation coefficient is Pear-
son’s r, ordinarily referred to as simply the correlation coefficient or
r. The latter is discussed first, with Spearman’s rho being introduced in
Section 11.4.6.

11.4.2 Correlation Coefficient

The correlation coefficient, r, is a summary measure that describes the ex-
tent of the statistical relationship between two interval or ratio level vari-
ables. The correlation coefficient is scaled so that it is always between -1
and +1. When r is close to 0 this means that there is little relationship
between the variables and the farther away from 0 r is, in either the positive
or negative direction, the greater the relationship between the two variables.

The two variables are often given the symbols X and Y . In order to
illustrate how the two variables are related, the values of X and Y are
pictured by drawing the scatter diagram, graphing combinations of the
two variables. The scatter diagram is given first, and then the method of
determining Pearson’s r is presented. In presenting the following examples,
relatively small sample sizes are given. Later, data from larger samples are
given.

Scatter Diagram A scatter diagram is a diagram that shows the values of
two variables X and Y , along with the way in which these two variables relate
to each other. The values of variable X are given along the horizontal axis,
with the values of the variable Y given on the vertical axis. For purposes
of drawing a scatter diagram, and determining the correlation coefficient, it
does not matter which of the two variables is the X variable, and which is Y .
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Later, when the regression model is used, one of the variables is defined as an
independent variable, and the other is defined as a dependent variable. In
regression, the independent variable X is considered to have some effect or
influence on the dependent variable Y . Correlation methods are symmetric
with respect to the two variables, with no indication of causation or direction
of influence being part of the statistical consideration.

A scatter diagram is given in the following example. The same example
is later used to determine the correlation coefficient.

Example 11.4.1 Years of Education and Age of Entry to Labour
Force

Table 11.1 gives the number of years of formal education (X) and the age
of entry into the labour force (Y ), for 12 males from the Regina Labour Force
Survey. Both variables are measured in years, a ratio level of measurement
and the highest level of measurement. All of the males are aged 30 or over, so
that most of these males are likely to have completed their formal education.

Respondent Years of Age of Entry into
Number Education, X Labour Force, Y

1 10 16
2 12 17
3 15 18
4 8 15
5 20 18
6 17 22
7 12 19
8 15 22
9 12 18
10 10 15
11 8 18
12 10 16

Table 11.1: Years of Education and Age of Entry into Labour Force for 12
Regina Males

Since most males enter the labour force soon after they leave formal
schooling, a close relationship between these two variables is expected. By
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looking through the table, it can be seen that those respondents who ob-
tained more years of schooling generally entered the labour force at an older
age. The mean years of schooling is X̄ = 12.4 years and the mean age of
entry into the labour force is Ȳ = 17.8, a difference of 5.4 years. This dif-
ference roughly reflects the age of entry into formal schooling, that is, age
five or six. It can be seen though that the relationship between years of
schooling and age of entry into the labour force is not perfect. Respondent
11, for example, has only 8 years of schooling but did not enter the labour
force until age 18. In contrast, respondent 5 has 20 years of schooling, but
entered the labour force at age 18. The scatter diagram provides a quick
way of examining the relationship between X and Y .
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Figure 11.1: Scatter Diagram of Years of Education and Age of Entry into
Labour Force
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Figure 11.1 gives the scatter diagram for the data in Table 11.1. Years of
education is plotted along the horizontal, and is given the symbol X. Age of
entry into the labour force is plotted on the vertical axis as variable Y . Each
respondent is represented by an asterik in Figure 11.1. Respondent 1 has 10
years of education and entered the labour force at age 16, and is represented
by one of the two closely spaced asteriks at X = 10 and Y = 16. Respondent
2 has X = 12 and Y = 17, and the asterik representing this respondent lies
to the right and slightly above the asterik for the first respondent. Each of
the other respondents is similarly represented by one of the asteriks.

By examining the scatter diagram, the relationship between X and Y can
be seen at a glance. It can be seen that larger values of X are associated with
larger values of Y . That is, as the number of years of education increases,
the age of entry into the labour force generally is greater. Respondent 5,
represented by the asterik farthest to the right, with 20 years of education,
but entering the labour force at age 18, is an exception. The other points
generally lie along a line that goes from the lower left to the upper right of
the diagram. This indicates a generally positive relationship between X and
Y , so that more years of education is associated with an older age of entry
into the labour force.

The scatter diagram provides a quick view of the relationship between
two variables. In Table 11.1, the nature of the relationship may be a little
difficult to see, given the variation in values of each of the variables. By
putting all of the combinations of observed values of the variables as points
on a scatter diagram, the way in which two variables are related can often
be clearly pictured. The scatter diagram is a useful first approach to ex-
amining how two variables are related. Where there are many observations,
the scatter diagram may be time consuming to draw, and may be difficult
to read. But where there are relatively few observations, the scatter dia-
gram is a very useful first step in examining the relationship between two
variables. Most statistical software programs contain a plotting procedure
which provides a scatter diagram for two variables, and it can be worthwhile
to examine this scatter diagram before obtaining the value of the correlation
coefficient.

When scatter diagrams are fairly similar to each other, it is difficult to
compare these diagrams in order to determine which relationship is stronger.
For these purposes, the correlation coefficient is used. The correlation coeffi-
cient is a measure of association that provides a single number summarizing
this relationship.
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11.4.3 Pearson’s r

The Pearson product-moment correlation coefficient, better known as the
correlation coefficient, or as r, is the most widely used correlation coeffi-
cient. Values of r for pairs of variables are commonly reported in research
reports and journals as a means of summarizing the extent of the relationship
between two variables. Pearson’s r summarizes the relationship between two
variables that have a straight line or linear relationship with each other.
If the two variables have a straight line relationship in the positive direction,
then r will be positive and considerably above 0. If the linear relationship
is in the negative direction, so that increases in one variable, are associated
with decreases in the other, then r < 0. The possible values of r range from
-1 to +1, with values close to 0 signifying little relationship between the
two variables. Exactly how different from 0 the value of r must be before
providing evidence of a relationship can be determined on the basis of an
hypothesis test. It will also be seen in Section 11.4.7 that the size of r can
differ rather considerably depending on what type of data is being examined.

The Pearson correlation coefficient r can be defined as follows. Suppose
that there are two variables X and Y , each having n values X1, X2, . . . , Xn

and Y1, Y2, . . . , Yn respectively. Let the mean of X be X̄ and the mean of Y
be Ȳ . Pearson’s r is

r =
∑

(Xi − X̄)(Yi − Ȳ )√∑
(Xi − X̄)2

∑
(Yi − Ȳ )2

where the summation proceeds across all n possible values of X and Y . A
method of computing r is presented next, with an example. Following this,
there is some discussion of the meaning and interpretation of the correlation
coefficient.

Calculating r. The above expression can be used to determine the cor-
relation coefficient r. The following procedure, however, provides a more
compact method of determining the correlation coefficient, as well as the
regression line of Section 11.5, along with tests of hypotheses for both of
these. Since all of these are often calculated at the same time, the following
procedure is computationally more straightforward and less time consuming
than using the above definition of r.

Beginning with the n values of the variables X and Y , sum these values
to obtain

∑
X and

∑
Y . Compute the squares of each of the X values,

and the squares of each of the Y values. Then calculate the sums of each of
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these,
∑

X2 and
∑

Y 2. Further, compute the products of each pair of the
X and Y values, and the sum of these,

∑
XY .

From the values n,
∑

X,
∑

Y ,
∑

X2,
∑

Y 2 and∑
XY , compute:

SXX =
∑

X2 − (
∑

X)2

n

SY Y =
∑

Y 2 − (
∑

Y )2

n

SXY =
∑

XY − (
∑

X)(
∑

Y )
n

Once these expressions have been calculated, they can be used to obtain
both the correlation coefficient and the regression line. The correlation
coefficient can be shown to be equal to

r =
SXY√

SXXSY Y
.

This method of determining the correlation coefficient is used to deter-
mine the correlation coefficient for the data in Table 11.1.

Example 11.4.2 Correlation Coefficient for Relationship between
Years of Education and Age of Entry into the Labour Force

In Example 11.4.1, a scatter diagram showing the relationship between
years of formal education and age of entry into the labour force was given.
From the scatter diagram, it could be seen that the two variables were
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positively related, with respondents having more years of education generally
entering the labour force at an older age. The relationship was not perfect
though, and the correlation coefficient provides a means of summarizing the
extent of the relationship between the two variables.

X Y X2 Y 2 XY

10 16 100 256 160
12 17 144 289 204
15 18 225 324 270
8 15 64 225 120

20 18 400 324 360
17 22 289 484 374
12 19 144 361 228
15 22 225 484 330
12 18 144 324 216
10 15 100 225 150
8 18 64 324 144

10 16 100 256 160

149 214 1,999 3,876 2,716

Table 11.2: Calculations for r

Table 11.2 begins the calculation of the correlation coefficient. The 12
values of X and Y are given in the first two columns. The third column
contains the squares of each of the X values in the first column, and the
sum of the third column is

∑
X2 = 1, 999. The fourth column contains the

sum of the squares of the Y values of the second column, and the sum of the
fourth column is

∑
Y 2 = 3, 876. The final column of the table contains the

products of the X values of the first column and the Y values of the second
column. For example, the first entry is 10× 16 = 160. The sum of the fifth
column is

∑
XY = 2, 716.

From Table 11.2, ∑
X = 149

∑
Y = 214

∑
X2 = 1, 999
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∑
Y 2 = 3, 876

∑
XY = 2, 716

These values can now be used to determine SXX , SY Y and SXY as follows.

SXX =
∑

X2 − (
∑

X)2

n

= 1, 999− (149)2

12

= 1, 999− 22, 201
12

= 1, 999− 1, 850.0833
= 148.9167

SY Y =
∑

Y 2 − (
∑

Y )2

n

= 3, 876− (214)2

12

= 3, 876− 45, 769
12

= 3, 876− 3, 816.3333
= 59.6667

SXY =
∑

XY − (
∑

X)(
∑

Y )
n

= 2, 716− (149)(214)
12

= 2, 716− 31, 886
12

= 2, 716− 2, 657.1667
= 58.8333

Based on these values,

r =
SXY√

SXXSY Y
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=
58.8333√

148.9167× 59.6667

=
58.8333
94.2622

= 0.6241

The correlation coefficient between years of formal education and age of
entry into the labour force is r = 0.624. This indicates a relatively large
positive relationship between the two variables. A perfect positive relation-
ship would yield a correlation of 1 and no relationship at all between X
and Y would give a correlation coefficient of 0. The relationship here is
then a relatively large one, above 0.5, but considerably less than a perfect
association between the two variables.

Note that several decimals have been carried through much of the calcu-
lation. In order to obtain a reasonably accurate estimate of the correlation
coefficient, it is best to carry 3 or 4 significant figures through the calcu-
lations. Then the correlation coefficient can be rounded at the end of the
calculations.

Interpretation of r. The above example shows how r can be calculated.
If you have not examined correlation coefficients before, it may be difficult
to know what is a large and what is a small correlation. The discussion that
follows is intended to assist in interpreting the value of r.

The possible values for the correlation coefficient r are shown in fig-
ure 11.2. It can be seen there that the possible values range from -1 to +1.
A correlation coefficient close to -1 indicates that the values of X and Y are
strongly negatively associated. That is, for larger values of X, it is generally
found that the values of Y are smaller. Alternatively stated, if r is close to
-1, as X increases, Y generally decreases.

When r is close to 0, either on the positive or the negative side, then
there is little or no association between X and Y . Exactly how different
from 0 the correlation coefficient must be, before there is considered to
be association, depends on the type of data being examined, and on the
strength of association. Later in this section there is a test of significance
for the correlation coefficient.
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r = −1 r = +1r = 0

Negative
Association

Positive
Association

Small or No
Association

Figure 11.2: Scale for Correlation Coefficient r

When the correlation coefficient is above 0, then this provides evidence
of a positive relationship between X and Y . That is, if r > 0, larger values
of X are associated with larger values of Y . If r is close to 1, this indicates
a large positive relationship between the two variables.

Figure 11.3 gives scatter diagrams for six different sets of data, along with
the correlation coefficient that corresponds to each of the scatter diagrams.
By examining these diagrams, it should be possible to obtain some idea
of the nature of association and the size of the correlation coefficient that
corresponds to each of these. Each of these is discussed briefly here.

Diagram 1 of Figure 11.3 shows almost a perfect positive relationship.
The correlation coefficient of r = 0.998 is almost equal to 1. By looking at
the scatter of points, it can be seen that all of the points are very close to
being along a straight line. Successively larger values of X are associated
with larger values of Y , and these points lie close to a line that goes from
the bottom left to the top right of the diagram.

Diagram 2 shows a large negative relationship, with r = −0.817. As X
increases, Y generally decreases, although there are a considerable number
of exceptions. A researcher examining this scatter of points would ordinarily
conclude that X and Y have a fairly strong negative association with each
other.

Diagram 3, with r = 0.487, indicates a generally positive association
between X and Y , but the relationship is far from being a perfect association.
In particular, for many of the values of X it appears that Y values may be
either low or high. But as X increases, Y generally increases as well.

Diagram 4 shows little relationship between X and Y on the left part
of the diagram. But on the right, as X increases, Y also increases. This
produces a small positive association between X and Y . This is not a large
relationship, but is sufficient to make r = 0.278.

Diagram 5 provides little or no evidence of a systematic relationship be-
tween X and Y . While the scatter of points in the diagram may not be
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random, it is difficult to determine any positive or negative relationship be-
tween X and Y . The size of the correlation coefficient is r = −0.061, slightly
below 0. But r is close enough to 0 that on the basis of this correlation, a
researcher would ordinarily conclude that there is no relationship between
X and Y .

Finally, diagram 6 shows a modest negative association between X and
Y . The correlation coefficient is r = −0.374, evidence of a negative as-
sociation between X and Y , but with nowhere near a perfectly negative
association. The two points on the left, and the two or three points on
the bottom right are what produces the negative association. The bulk of
the points in the centre of the diagram appear to be more or less randomly
scattered.

From these diagrams it should be possible to obtain some idea of the
nature of association in a scatter diagram and the correlation coefficient.
When examining a relationship between two variables, where there are rela-
tively few data points, or where the data has been entered into a computer
program, it is often useful to obtain the plot of the scatter diagram. The
correlation coefficient summarizes the association, and this along with the
association visible in the plot of the scatter diagram can give considerable
information concerning the relationship between two variables.

Explanation of the Formula for r. The formulas presented above are
those which are used to determine r. While the calculation is relatively
straightforward, although tedious, no explanation for the formula has been
given. Here an intuitive explanation of the formula is provided.

Recall that the original formula for determining the correlation coeffi-
cient r for the association between two variables X and Y is

r =
∑

(Xi − X̄)(Yi − Ȳ )√∑
(Xi − X̄)2

∑
(Yi − Ȳ )2

.

The denominator of this formula involves the sums of the squares of the
deviations of each value of X and Y about their respective means. These
summations under the square root sign in the denominator are the same
expressions as were used when calculating the variance and the standard
deviation in Chapter 5. The expression

∑
(Xi− X̄)2 can be called the vari-

ation in X. This differs from the variance in that it is not divided by n−1.
Similarly,

∑
(Yi− Ȳ )2 is the variation in Y . The denominator of the expres-

sion for r is the square root of the products of these two variations. It can
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be shown mathematically that this denominator, along with the expression
in the numerator scales the correlation coefficient so that it has limits of -1
and +1.

The numerator of the expression for r is
∑

(Xi − X̄)(Yi − Ȳ )

and this is called the covariation of X and Y . In order to understand
how the covariation of X and Y behaves, Figure 11.4 may be helpful. This
scatter diagram is similar to the scatter diagram of Figure 11.1, with some
points shifted in order to illustrate covariation more clearly.
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P1 = (X1, Y1)

P2 = (X2, Y2)
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Q2 Q1

Figure 11.4: Covariation of X and Y

Covariation examines the product of the individual differences of each
of X and Y about their respective means. The mean X̄ for X is given
by the dashed vertical line in the middle of the diagram. The horizontal
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distance between each observation and the dashed line represents Xi − X̄,
the amount by which Xi differs from X̄, sometimes called the deviation
about the mean. The dashed horizontal line represents Ȳ , the mean of
the observed Y values. The vertical distance between each asterik and the
dashed line represents Yj − Ȳ . If the two dashed lines are used as the new
axes, then the horizontal and vertical distances of each observed value about
these new axes represent the deviations about the respective mean of each
variable. The products of these two deviations then represent the elements
in the expression for the covariation of X and Y . These new axes also divide
the diagram into four quadrants, Q1, Q2, Q3 and Q4.

First examine a point P1 in the first quadrant. Let this point have value
X1 for the X variable, and Y1 for the Y variable. This point has positive
deviations about each mean. That is, both X and Y are greater than their
respective means, so that X1− X̄ and Y1− Ȳ are both positive in value. For
point P1, the product (X1−X̄)(Y1−Ȳ ) is positive, and this point contributes
positively to the covariation in the numerator of r.

A different picture emerges for point P2, with values X2 for X and Y2 for
Y . For points in the fourth quadrant such as P2, the horizontal deviation
about the mean is positive, but the vertical deviation about the mean is
negative. That is, all points in Q2 have X values exceeding the mean X̄, but
have Y values which are less than the mean Ȳ . This means that X2−X̄ > 0
and Y2 − Ȳ < 0 and the resulting product (X2 − X̄)(Y2 − Ȳ ) is less than
0. All the points in Q4 produce negative entries for the covariation in the
numerator of the expression for r.

Points in each of the second and third quadrants could be analyzed in a
similar manner. For the four quadrants associated with X̄ and Ȳ as the axes
(the dashed lines), the respective entries in the expression for the covariation
of X and Y are as follows.

Quadrant Entry in Covariation

Q1 (X − X̄)(Y − Ȳ ) > 0
Q2 (X − X̄)(Y − Ȳ ) < 0
Q3 (X − X̄)(Y − Ȳ ) > 0
Q4 (X − X̄)(Y − Ȳ ) < 0

Now consider what happens when there is a scatter diagram which ex-
presses a generally positive association, as in Figure 11.4. Again using the
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mean of X and the mean of Y as the new axes, and with a positive associa-
tion between X and Y , most of the points in the scatter diagram are in the
first and third quadrants. While there will be some points in the second and
fourth quadrants, with a positive relationship between X and Y , these will
be relatively few in number. As a result, for a positive association, most of
the entries in the covariation term will be positive, with only a few negative
entries. This produces a positive covariation, and a correlation coefficient
above 0. The denominator of the expression for r divides the covariation by
terms which express the variation in X and Y . Together these produce a
value for r which cannot exceed +1.

Also note that the greater the greater the positive association between X
and Y , the more likely the points are to lie in the first and third quadrants.
As the relationship between X and Y becomes less clear, the points in the
scatter diagram could lie in any of the four quadrants. In this latter case,
the positive and negative entries would cancel out, producing a covariation,
and correlation coefficient, close to 0.

When the relationship becomes negative, there are more points in the
second and fourth quadrants, and fewer in the first and third quadrants.
This produces more negative and fewer positive entries in the covariation
expression, and results in a value of r that is less than 0. Again the denom-
inator of the expression for r contains terms which express the variation in
X and Y , resulting in a value for r which cannot be less than −1.

What the preceding explanation shows is that the scatter diagram can be
used to illustrate the nature of association between X and Y as expressed
in the correlation coefficient. While the exact formula for the correlation
coefficient is based on mathematical considerations, the various terms in the
expression for r should make some sense. Computationally though, a more
straightforward way to compute r in the manner shown in Example 11.4.2.

11.4.4 Test of Significance for r

When computing a correlation coefficient, it is also useful to test the cor-
relation coefficient for significance. This provides the researcher with some
idea of how large a correlation coefficient must be before considering it to
demonstrate that there really is a relationship between two variables. It
may be that two variables are related by chance, and an hypothesis test for
r allows the researcher to decide whether the observed r could have emerged
by chance or not.

In order to test the correlation coefficient for statistical significance, it
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is necessary to define the true correlation coefficient that would be observed
if all population values were obtained. This true correlation coefficient is
usually given the Greek symbol ρ or rho. This is pronounced ‘row’ as in
‘row of corn’ in English.

The null hypothesis is that there is no relationship between the two
variables X and Y . That is, if ρ is the true correlation coefficient for the
two variables X and Y , when all population values are observed, then the
null hypothesis is

H0 : ρ = 0.

The alternative hypothesis could be any one of three forms, with ρ 6= 0,
ρ < 0 or ρ > 0. If the researcher has no idea whether or how two variables
are related, then the two tailed alternative hypothesis

H1 : ρ 6= 0

would be used. If the researcher suspects, or has knowledge, that the two
variables are negatively related, then

H1 : ρ < 0

would be used. If the test is to determine whether the observed value of the
statistic is enough greater than 0 to prove a positive relationship, then the
null hypothesis is

H1 : ρ > 0.

The test statistic for the hypothesis test is the sample or observed corre-
lation coefficient r. As various samples are drawn, each of sample size n, the
values of r vary from sample to sample. The sampling distribution of r is
approximated by a t distribution with n−2 degrees for freedom. The reason
why there are n− 2 degrees of freedom will become more more apparent in
Section 11.5. The standard deviation of r can be shown to be approximated
by √

1− r2

n− 2
For the null hypothesis

H0 : ρ = 0

the standardized t statistic can be written

t =
r − ρ√

1−r2

n−2

= r

√
n− 2
1− r2
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and there are n− 2 degrees of freedom for this statistic. The data of Exam-
ple 11.4.2 is used to illustrate how the test can be carried out.

Example 11.4.3 Test for Significance of Relationship between Years
of Schooling and Age of Entry into the Labour Force

For the data in Table 11.2, r = 0.6241 and there were n = 12 obser-
vations. Let ρ be the true correlation between years of formal schooling
and age of entry into the labour force for all males. The null hypothesis is
that there is no relationship between these two variables and the research
hypothesis is that the two variables are positively related. These hypotheses
are

H0 : ρ = 0

H1 : ρ > 0

The test statistic is r and the standardized t statistic for r is

t = r

√
n− 2
1− r2

where there are n− 2 degrees of freedom. Choosing the 0.05 level of signif-
icance, for a one tailed test, with n − 2 = 12 − 2 = 10 degrees of freedom,
t = 1.813. The region of rejection for H0 is all t values of 1.813 or larger.

Using the data, r = 0.6241, so that

t = r

√
n− 2
1− r2

= 0.6241

√
12− 2

1− 0.62412

= 0.6241
√

10
0.6104992

= 0.6241
√

16.3800381
= 0.6241× 4.047226
= 2.526 > 1.813

The correlation coefficient and the corresponding t value is in the region
of rejection of H0. The null hypothesis of no relationship between years
of schooling and age of entry into the labour force can be rejected. The
alternative hypothesis that there is a positive relationship between years of
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schooling and age of entry into the labour force can be accepted. While the
correlation coefficient is not real close to 1, it is enough greater than 0 to
reject the hypothesis of no relationship. There is a probability of less than
0.05 that r = 0.6241, with n = 12, could occur if there is no relationship
between the two variables.

11.4.5 Correlation and Causation

When two variables have a large positive or negative correlation with each
other, there is often a tendency to regard the two variables as causally
related. That is, if X and Y have a large positive correlation coefficient,
then a researcher may consider this as proof that X causes Y , or that Y
causes X, or that the two variables are connected in some more complex
causal way. In doing this, the researcher must exercise considerable caution.

For the data in Example 11.4.2, a researcher might claim that males
decide how many years of formal schooling they wish to take, and the age
of entry into the labour force is a result of this. That is, after schooling
is completed, these males entered the labour force. While this may be the
case, and the reasonably large correlation coefficient of r = 0.624 supports
this claim, the nature of causation may be quite different. For example,
it may be that teenage males find they can get a job, or are forced by
economic circumstances to leave school and look for a job. This decision
may occur first, and the number of years of formal schooling that these males
receive is a result of their decision to enter the labour force. The correlation
coefficient by itself does not allow the researcher to decide which of these
two circumstances is closer to the truth. Both explanations are reasonable
ones, and the statistically significant positive correlation coefficient could be
used to support either explanation.

An example of a large negative correlation, which may or may not indi-
cate causation, follows.

Example 11.4.4 Correlation between Crude Birth Rate and Fe-
male Labour Force Participation Rate

From the 1950s through the 1970s, two socioeconomic variables showed
a dramatic shift in Canada. The birth rate fell rapidly over this period,
by the mid 1970s declining to almost one half the level it had been in the
early to mid 1950s. At the same time the labour force participation rate of
females rose very rapidly, and continued to rise through to the 1990s. From
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the early 1950s to the mid 1970s, the percentage of women in the labour
force doubled.

Suppose that a researcher examining these variables hypothesizes that
the decline in the birth rate meant that women in Canada had less need to
care for children, and as a result entered the labour force. According to the
researcher, this led to an increase in the female labour force participation
rate. Using the data in the first two columns of Table 11.3, draw the scatter
diagram, calculate the correlation coefficient, and comment on the claim of
the researcher.

The data for this example comes from the following sources. The crude
birth rate is the number of births per one thousand population. It is de-
termined by taking the annual number of births in Canada, dividing this
by the mid year Canadian population and multiplied by 1000. This data
comes from M. C. Urquhart and K. A. H. Buckley, Historical Statistics of
Canada, second edition, Ottawa, 1983, catalogue number 11-516, Series B4.
The female labour force participation rate is the percentage of women aged
25 and over who are members of the labour force, as defined in Chapter 2.
These data were obtained by averaging the monthly figures reported in Sea-
sonally Adjusted Labour Force Statistics, January 1953-December
1972, Ottawa, 1973, Statistics Canada catalogue number 71-201 and His-
torical Labour Force Statistics - Actual Data, Seasonal Factors,
Seasonally Adujsted Data, Ottawa, 1975, Statistics Canada catalogue
number 71-201.
Solution. The scatter diagram showing the relationship between X and Y
is given in Figure 11.5. By examining this figure, it appears that the two
variables have a strong negative relationship with each other. For most of
the years, the birth rate declines while the female labour force participation
rate increases. A quick look at the table and the scatter diagram appears
to support the contention of the researcher. The calculations required to
determine the correlation coefficient are contained in the fourth through
sixth columns of Table 11.3.
The following summations are obtained from Table 11.3:

∑
X = 497.4

∑
Y = 601.6

∑
X2 = 11, 779.82

∑
Y 2 = 17, 134.30
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Labour
Crude Force
Birth Participation
Rate Rate

Year X Y X2 Y 2 XY

1953 28.1 18.5 789.61 342.25 519.85
1954 28.5 18.9 812.25 357.21 538.65
1955 28.2 19.4 795.24 376.36 547.08
1956 28.0 20.4 784.00 416.16 571.20
1957 28.2 21.8 795.24 475.24 614.76
1958 27.5 22.5 756.25 506.25 618.75
1959 27.4 23.2 750.76 538.24 635.68
1960 26.8 24.5 718.24 600.25 656.60
1961 26.1 25.5 681.21 650.25 665.55
1962 25.3 26.0 640.09 676.00 657.80
1963 24.6 26.8 605.16 718.24 659.28
1964 23.5 27.8 552.25 772.84 653.30
1965 21.3 28.6 453.69 817.96 609.18
1966 19.4 29.8 376.36 888.04 578.12
1967 18.2 30.9 331.24 954.81 562.38
1968 17.6 31.4 309.76 985.96 552.64
1969 17.6 32.3 309.76 1043.29 568.48
1970 17.5 32.9 306.25 1082.41 575.75
1971 16.8 33.8 282.24 1142.44 567.84
1972 15.9 34.4 252.81 1183.36 546.96
1973 15.5 35.7 240.25 1274.49 553.35
1974 15.4 36.5 237.16 1332.25 562.10

Total 497.4 601.6 11,779.82 17,134.30 13,015.30

Table 11.3: Calculations for Correlation between Birth Rate and Female
Labour Force Participation Rate
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30.0+
- *

Y - * * * * *
- * *
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- *
-
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- *
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- *
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- * *

15.0+ *
-
+---------+---------+---------+---------+---------+------
17.5 21.0 24.5 28.0 31.5 35.0 X

Figure 11.5: Scatter Diagram of Crude Birth Rate (X) and Female Labour
Force Participation Rate, Age 25 and over, Canada, 1953-1974

∑
XY = 13, 015.30

These values in are now used to determine SXX , SY Y and SXY .

SXX =
∑

X2 − (
∑

X)2

n

= 11, 779.82− (497.4)2

22

= 11, 779.82− 247, 406.76
22

= 11, 779.82− 11, 245.76
= 534.058182

SY Y =
∑

Y 2 − (
∑

Y )2

n
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= 17, 134.30− (601.6)2

22

= 17, 134.30− 361, 922.56
22

= 17, 134.30− 16, 451.02546
= 683.274545

SXY =
∑

XY − (
∑

X)(
∑

Y )
n

= 13, 015.30− (497.40)(601.60)
22

= 13, 015.30− 299, 235.84
22

= 13, 015.30− 13, 601.62909
= −586.329091

Based on these values,

r =
SXY√

SXXSY Y

=
−586.329091√

534.058182× 683.274545

=
−586.329091
604.0764532

= −0.970621

The correlation coefficient relating X and Y is r = −0.971. This appears
to show a very large negative association between the crude birth rate and
the female labour force participation rate. Before concluding that this is
the case, the statistical significance of the correlation coefficient should be
checked.

Let ρ represent the true relationship between the birth rate and the
female labour force participation rate over many years. If there two variables
are negatively related, as hypothesized, then ρ < 0. The null and research
hypotheses are

H0 : ρ = 0

H1 : ρ < 0
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The test statistic is r and the standardized t statistic for r is

t = r

√
n− 2
1− r2

where there are n − 2 degrees of freedom. Choosing the 0.001 level of sig-
nificance, for a one tailed test, with n− 2 = 22− 2 = 20 degrees of freedom,
t = 3.850. The region of rejection for H0 is all t values to the left of
t = −3.850.

Using the data, r = 0.971, so that

t = r

√
n− 2
1− r2

= −0.971

√
22− 2

1− 0.9712

= −0.971

√
20

1− 0.9428

= −0.971
√

349.901
= −0.971× 18.706
= −18.163 < −3.850

The correlation coefficient and the corresponding t value is in the region
of rejection of H0. The null hypothesis of no relationship between the birth
rate and the female labour force participation rate can be rejected. The
alternative hypothesis that there is a negative relationship between the crude
birth rate and the labour force participation rate can be accepted.

The results appear to very stronly support the contention of the re-
searcher. However, there is one serious mistake in concluding that the re-
searcher is entirely correct. There is clearly a large negative association
between the birth rate and the female labour force participation rate over
these years. Of that there is little doubt, and given r = −0.971 when n = 22,
the probability of obtaining a correlation this large under the assumption of
no association is well under 0.001.

But the researcher has also claimed that the direction of the causation
has been that the reduced birth rate led to the increase in the female
labour force participation rate. The correlation coefficient says nothing con-
cerning the direction of causation and it may be that the direction of cau-
sation is the reverse of that claimed by the researcher. It may be a more
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reasonable explanation to argue that over these years, women were able to
find jobs, and this led to their entry into the labour force. This may have led
many women to postpone having children, or reduce the number of births.
The correlation coefficient would support this explanation just as well as the
first explanation hypothesized.

Another possibility is that some other variable or variables have changed
over these years, simultaneously affecting both the birth rate and the female
labour force participation rate. For example, there was a growth in the
number of jobs and in wages over these years. In addition, there was a
financial squeeze on many families. These could have led more women to
search for jobs, and at the same time may have led to a reduction in the birth
rate. Another explanation could be that social and attitudinal changes were
occurring over this time, making childbearing a less attractive activity for
women, and making labour force participation more attractive. It is likely
that some combination of all of these explanations would be necessary to
explain what happened over these years. The correlation coefficient supports
all of these explanations, but does not really allow the researcher to decide
which of these explanations is the most reasonable.

Summary. The above example show that considerable care must be taken
before concluding that a correlation proves a causal connection between two
variables. While a statistically significant correlation can be used to support
an explanation, without further evidence the correlation coefficient itself
cannot prove the claim. More evidence concerning the behaviour of related
variables, and an understanding of the manner in which the two variables
really are connected must also be provided.

11.4.6 Spearman’s rho

The Pearson correlation coefficient just examined can be used for interval or
ratio level scales. When a variable is measured at no more than the ordinal
level, the researcher must decide whether to treat the ordinal scale as if it has
an interval level scale, or to use a correlation coefficient designed for an ordi-
nal level scale. There are various types of correlation coefficients which have
been constructed to allow a researcher to examine the relationship between
two variables each of which have at least an ordinal level of measurement.
Some of these are gamma (the Greek letter γ), various statistics referred to
as tau (the Greek letter τ) and Spearman’s rho. The latter is the simplest
to calculate without a computer, and is the only ordinal level correlation
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coefficient presented in this textbook. Many other introductory textbooks
present gamma and the various types of tau.

Spearman’s rho is given the symbol rs, with r used to denote that it
is a correlation coefficient, and the subscript s to denote that it is named
after the statistician Spearman. The true Spearman correlation coefficient
is called rho sub s, that is, ρs. The Greek letter ρ is used to denote that ρs

is the parameter, with the statistic rs being calculated from the data.
If a scale is ordinal, it is possible to rank the different values of the

variable, but the differences between these ranks may not be meaningful. In
order to compute Spearman’s rho for two variables whose values have been
ranked, the numberical difference in the respective ranks are used. Suppose
that there are two variables X and Y . For each case that is observed,
the rank of the case for each of the variables X and Y is determined by
ordering the values from low to high, or from high to low. For each case i,
the difference in the rank on variables X and on variable Y is determined,
and given the symbol Di. These differences are squared, and then added
producing a summation

∑
D2

i . If there are n cases, the Spearman rank
correlation between X and Y is defined as

rs = 1− 6
∑

D2
i

n(n2 − 1)
.

This produces a correlation coefficient which has a maximum value of 1,
indicating a perfect positive association between the ranks, and a minimum
value of -1, indicating a perfect negative association between ranks. A value
of 0 indicates no association between the ranks for the observed values of X
and Y .

The hypothesis test for the Spearman correlation coefficient is basically
the same as the test for the Pearson correlation coefficient. The standard
deviation of rs is approximated by

√
1− r2

s

n− 2
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and when n is 10 or more, rs is approximated by a t distribution with n− 2
degrees of freedom. When the null hypothesis is

H0 : ρs = 0

the standardized t statistic can be written

t = rs

√
n− 2
1− r2

s

.

Example 11.4.5 Rank Correlation for Various Social Indicators
among 10 Countries

Ten countries were randomly selected from the list of 129 countries in the
Country Data Set of Appendix B. The countries are compared with respect
to their gross national product per capita, an indicator of the average income
level of each country. Researchers have found that people in countries with
higher income levels tend to live longer than do people in countries with
lower income levels. In addition, birth rates tend to be higher in countries
with lower incomes, with birth rates declining as countries become better off
economically. Table 11.4 also gives the mean life expectation at birth (LE)
for the 10 countries, and the crude birth rate for each country. In columns
2 through 4 of the table, this data is contained in its interval form, as given
in Appendix B. The countries are then ranked for each of the three social
indicators, in columns 5 through 7. Use this data to determine the Spearman
rank correlation of GNP with (i) life expectation, and (ii) the birth rate. Test
to determine whether the correlation of ranks is statistically significant at
the 0.05 level of significance.

Solution. The first step in computing the Spearman rank correlation co-
efficient is to determine the rankings for each country with respect to each
of the social indicators. GNP is ranked from high to low, so that France,
with the highest GNP, is ranked first. The country with the second highest
GNP is Ireland, so it is ranked 2, with Argentina having the next largest
GNP, so that it is ranked third. Similarly, each of the countries is ranked in
order. Sierra Leone, with a GNP per capita of only $240, comes 10th.

Next, the countries are ranked with respect to their level of life expec-
tation. Again, the country with the highest life expectation is ranked first.
This is France, with a life expectation of 76 years. Tied for second, with life
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Life Rank on:
Country GNP Expectation CBR GNP LE CBR

Algeria 2360 65 34 4 6 4
India 340 59 31 9 9 7
Mongolia 780 62 36 8 8 2.5
El Salvador 940 64 36 7 7 2.5
Equador 1120 66 32 6 5 5.5
Malaysia 1940 74 32 5 2.5 5.5
Ireland 7750 74 18 2 2.5 9
Argentina 2520 71 21 3 4 8
France 16090 76 14 1 1 10
Sierra Leone 240 47 48 10 10 1

Table 11.4: Social Indicators for 10 Countries, Actual Value and Rank

expectation of 74 years, are Ireland and Malaysia. Where cases are tied, the
ranks which would otherwise occur are averaged. With two countries tied
for second place, Malayasia could be second and Ireland third, or Ireland
second and Malaysia third. The ranks of 2 and 3 are tied, producing a mean
rank of 2.5 for each of these countries. The next highest life expectation is
71, for Argentina, so it is ranked 4. The other countries are ranked in the
same manner. Again, the poorest country, Sierra Leone, also has the lowest
life expectation among the 10 countries.

For the birth rates, again the ranking is from high to low, in order to
be consistent. Sierra Leone, with a CBR of 48 ranks first with respect to
birth rate. Two countries are again tied for second or third, Mongolia and
El Salvador, each having a birth rate of 36. These are given the average of
ranks 2 and 3, or 2.5. Ranked fourth is Algeria with a birth rate of 34. Two
countries are again tied for 5 and 6. Each of Ecuador and Malayysia has a
birth rate of 32, so these two countries are each given a rank of 5.5. The
rest of the countries are ranked in a similar manner.

For the first part of this question, the ranks, differences of ranks, the
squares of these differences, and the sums of the squares are given in Ta-
ble 11.5. By examining the ranks of GNP and LE, it can be seen that there
is a high degree of similarity in the ranking of the 10 countries for the two so-
cial indicators. The value of rs will allow the relationship to be summarized
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in a single measure of association.

Rank on: Difference
Country GNP LE Di D2

i

Algeria 4 6 -2 4
India 9 9 0 0
Mongolia 8 8 0 0
El Salvador 7 7 0 0
Equador 6 5 1 1
Malaysia 5 2.5 2.5 6.25
Ireland 2 2.5 -0.5 0.25
Argentina 3 4 -1 1
France 1 1 0 0
Sierra Leone 10 10 0 0

Total 0 12.50

Table 11.5: Calculations for rs of GNP and Life Expectation

In Table 11.5, the ranks are subtracted from each other to produce the
differences Di. For example, Algeria ranks 4th on the GNP scale and 6th
on the life expectancy scale, for a difference of 4−6 = −2. The difference in
ranks for each of the other countries is similarly determined. Note that the
sum of the difference in the ranks is 0. The final column of Table 11.5 squares
these differences to produce the values D2

i . The sum of the final column is∑
D2

i = 12.50. The value of the Spearman rank correlation coefficient is

rs = 1− 6
∑

D2
i

n(n2 − 1)

= 1− 6× 12.50
10× (102 − 1)

= 1− 75
10× 99

= 1− 75
990

= 1− 0.076
= 0.924
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This confirms the suspicion that the ranks of the 10 countries on the scale
of GNP and life expectation are very similar. The maximum possible corre-
lation between ranks is +1, and +0.924 comes very close to this maximum
possible association.

An hypothesis test should be conducted, and the null and alternative
hypotheses would be

H0 : ρs = 0

H1 : ρs > 0

The null hypothesis states that there is no correlation between the ranking
of the countries on the GNP and life expectancy scales. The alternative
hypothesis states that the rankings are positively related. If the 0.001 level
of significance, and n − 2 = 10 − 2 = 8 degrees of freedom is used, the t
value is 4.500. The region of rejection of the null hypothesis is all t values
of 4.500 or more. The value of the standardized t statistic is

t = rs

√
n− 2
1− r2

s

= 0.924

√
10− 2

1− 0.9242

= 0.924
√

8
0.146224

= 0.924
√

54.71058
= 0.924× 7.39666
= 6.835

and this is greater than 4.500. The Spearman rank correlation coefficient is
well within the region of rejection of the null hypothesis. As a result, the hy-
pothesis of no association between the ranks of GNP and life expectancy can
be rejected, and the data provides evidence of a strong positive relationship
between these two variables.

For the second part of the question, the relationship between the rank-
ings of GNP and the crude birth rate are used. These were given first in
Table 11.4 and repeated in Table 11.6. In the latter table, the differences
between the ranks, the squares of these differences, and the sum of these
squares are given.

In Table 11.6, a quite different picture from the earlier table is presented.
Many of the countries that rank highest on the GNP scale are the countries
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Rank on: Difference
Country GNP CBR Di D2

i

Algeria 4 4 0 0
India 9 7 2 4
Mongolia 8 2.5 5.5 30.25
El Salvador 7 2.5 4.5 20.25
Equador 6 5.5 0.5 0.25
Malaysia 5 5.5 -0.5 0.25
Ireland 2 9 -7 49
Argentina 3 8 -5 25
France 1 10 -9 81
Sierra Leone 10 1 9 81

Total 0 291.00

Table 11.6: Calculations for rs of GNP and CBR

that have the lowest birth rates. For example, Sierra Leone, with the lowest
GNP has the highest birth rate. Based on the comparison of these rankings,
it appears that there is a fairly considerable negative relationship between
the rankings of the countries on the GNP and the birth rate scales.

Compare with the earlier table, the differences Di are much larger numer-
ically, and the squares of these differences are even larger. The sums of the
squares of the differences of the ranks in the final column is

∑
D2

i = 291.00.
It is this large value which produces a negative correlation coefficient here.
The value of the Spearman rank correlation coefficient is

rs = 1− 6
∑

D2
i

n(n2 − 1)

= 1− 6× 291
10× (102 − 1)

= 1− 1, 746
10× 99

= 1− 1, 746
990

= 1− 1.764
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= −0.764

The Spearman rank correlation coefficient is a fairly large negative number,
indicating a strong negative correlation between GNP and CBR. While the
relationship is certainly not a perfect negative correlation, the large numer-
ical value for rs indicates that among these 10 countries, higher values of
GNP are generally associated with lower values of the birth rate.

The null and alternative hypotheses are

H0 : ρs = 0

H1 : ρs < 0

The null hypothesis states that there is no correlation between the ranking of
the countries on the GNP and CBR scales. The alternative hypothesis states
that the rankings are negatively related. If the 0.01 level of significance, and
n − 2 = 10 − 2 = 8 degrees of freedom is used, the t value is -2.897. The
region of rejection of the null hypothesis is all t values to the left of -2.897.
The value of the standardized t statistic is

t = rs

√
n− 2
1− r2

s

= −0.764

√
10− 2

1− 0.7642

= −0.764

√
8

1− 0.583141

= −0.764
√

8
0.4168595

= −0.764
√

19.19112
= −0.764× 4.38077
= −3.347 < −2.897

and the null hypothesis of no relationship between the ranks of the countries
on GNP and CBR can be rejected. At the 0.01 level of significance, there
is evidence for a negative relationship between ranking of countries on the
GNP and CBR scales.

Before leaving this example, it is useful to note how the size of the
Spearman correlation of the ranks of the countries compare with the Pearson
correlation of the original values for GNP, life expectation and the birth rate.



827

Correlation Between:

GNP and LE 0.626
Rank of GNP and Rank of LE 0.924

GNP and CBR -0.782
Rank of GNP and Rank of CBR -0.764

Table 11.7: Pearson and Spearman Correlations

Table 11.7 gives the Pearson correlation between GNP and life expectancy
as 0.626, while the Spearman correlation between the ranks of these two vari-
ables for the 10 countries as 0.924. The large positive value for the Spearman
rank correlation coefficient shows that the ranks of the two variables are ex-
tremely closely related. The Pearson correlation also shows a fairly large
positive association between actual values of GNP and life expectancy, but
is not nearly so close to being a perfect association. In the case of the cor-
relation between GNP and the birth rate, the association is very similar in
the two cases. The rank and the Pearson correlation both produce large
negative correlation coefficients, of about the same size.

Summary. The Spearman rank correlation coefficient is a very useful, and
relatively easy, statistic to calculate. When at least one of the variables has
no more than an ordinal level of measurement, the Spearman correlation
is often used. If there are relatively few observed values of two interval or
ratio level variables, and you do not want to take the time to compute the
Pearson correlation coefficient, the Spearman correlation can be quickly and
easily calculated. It provides a rough estimate of the size of the correlation
between the two variables, often being within 0.1 of the value of the Pearson
correlation coefficient.

Where there are many observed values, the Spearman correlation coeffi-
cient is not usually calculated. Even with ordinal level variables, the Pearson
correlation coefficient is used when there are many values for the variable.
In addition, when there are many tied values of the variable, the Spearman
correlation coefficient may not be all that reliable. In that case, the Pearson
correlation coefficient is often used, or measures such as gamma and tau are
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calculated.
The Spearman correlation coefficient is most useful then for small data

sets. It is easy to calculate, with the ranks for the two variables being easy
to determine, and easy to interpret. For larger data sets, it is less useful.

11.4.7 Size of r for Various Types of Data

The size of the correlation coefficient depends on various factors, and if you
have not worked extensively with correlation coefficients, then it may be dif-
ficult to determine what is a large and what is a small correlation coefficient.
While a larger correlation always implies a stronger association between two
variables than does a smaller correlation, many other factors also affect the
size of the correlation coefficient. Survey data, with a wide variety of peo-
ple being surveyed, often yield relatively low correlation coefficients. The
great diversity of respondents in a large cross sectional survey of a popula-
tion may mean that variables are quite strongly related, but the correlation
coefficient may be no greater than 0.25 or 0.30. In contrast, data which
is measured across time may yield very high correlation coefficients. Many
pairs of labour force variables, for example, will yield correlation coefficients
of 0.9 or more. Correlation coefficients for aggregated data, like the social
indicators for 10 countries in Example 11.4.5, often lie between these two
extremes.

The following examples contain Pearson correlation coefficients for sev-
eral types of data. Within each type of data, a larger correlation means a
stronger relationship between the variables. But it will be seen that it can
be misleading to compare correlation coefficients for different types of data,
and conclude that those types with higher correlation coefficients necessarily
represent more important relationships between variables.

The sample size used to determine the correlation coefficient may have
little effect on the size of the correlation coefficient, but it does have an effect
on the level of significance of the coefficient. As the sample size increases, a
correlation coefficient of any given size becomes more significant statistically.
While this is generally true for all hypothesis tests, this can make it quite
misleading to compare the significance of two correlation coefficients with
different sample sizes.
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Example 11.4.6 Times Series Data - Large Correlation Coefficients

Appendix J contains the values of several social indicators for Canada
for the years 1966 through 1989. A quick glance through the values of
these variables in Table J.1 in Appendix J shows that many of the variables
are highly correlated with each other. The Pearson correlation coefficient for
each pair of these variables is given in Table 11.8. YP is the population aged
15-24, POP is the total population, H is the annual number of homicides,
SR is the suicide death rate of males aged 15-19 and DR is the divorce rate.

Year YP POP H SR

YP 0.526
POP 0.998 0.570

H 0.744 0.866 0.774
SR 0.904 0.784 0.923 0.885
DR 0.943 0.697 0.954 0.840 0.945

Table 11.8: Pearson Correlation Coefficients for Canadian Social Indicators,
1966-1989

The correlation coefficients for each pair of variables is given in Ta-
ble 11.8. For example, the correlation between the year (1966-1989) and
the young population (YP) is 0.526. The correlation between year and pop-
ulation is 0.998, and between year and the number of homicides is 0.744.
On the bottom right of Table 11.8, the correlation between the number of
homicides and the suicide rate is 0.885, while it is 0.840 with the divorce
rate. Finally, on the very bottom right, the correlation between the suicide
rate and the divorce rate is 0.945, almost a perfect correlation. What these
high correlations denote is that the two variables moved in a very similar
manner over these years. For example, the divorce rate rose most of these
years, and the suicide rate for young males also rose most years. Whether
these two variables are causally connected is another matter. Note that in
the first column, the correlation of the young male suicide rate and year is
0.904, and few people are likely to claim that these are causally related.

Also note that most of these correlation coefficients are very significant
statistically. For a one tailed test with n − 2 = 24 − 2 = 22 degrees of
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freedom, the t value is 3.505. Any correlation coefficient of 0.599 or more
allows the researcher to reject the null hypothesis of no association, at the
0.001 level of significance. All of the correlation coefficients in the table
avery significant at this level, with the exception of two near the upper left
of the table. These two are significant at the 0.005 level of significance, still
a very significant result statistically.

What these results show is that variables which move in the same di-
rection over time are often very highly correlated with each other. It is
not unusual to find correlation coefficients above 0.8 for two variables which
are measured over time. While this correlation could be used to support a
causal connection between the variables, it would be best for researchers to
point out how they could be causally related. The first column of Table 11.8
shows that high correlation coefficients for time series data can be obtained
without much effort, just by correlating each series with the year of the
observation. But all that the high correlation means is that the variable
increased over the years, and this is not an explanation of why the increase
occurred.

Example 11.4.7 Cross Sectional or Survey Data - Small Correla-
tion Coefficients

When the data from a large survey is obtained, many of the variables can
be shown to have a statistically significant correlation with each other, even
though the size of the correlation coefficients may seem small. If a survey
is attempting to represent the population of a large city, a province, or the
country as a whole, then there is great diversity among all the respondents
surveyed. There are respondents of all ages, religions, ethnicity, and edu-
cation, as well as a great diversity of social, economic and political views.
Because of this, the relationship between variables cannot be expected to
be nearly as complete as in the case of time series data. For much survey
data, a correlation coefficient of 0.5 or more may be regarded as very large.
Correlations no larger than 0.1 or 0.2 may be regarded by researchers as
worthy of note, and demonstrating some relationship among the variables.

As an example of the size of correlation coefficients among a variety of
socioeconomic and attitude variables, correlation coefficients from the 1985
Edmonton Area Study are given in Table 11.9. The Edmonton Area Study
is a survey of adults in Edmonton, and provides a picture of a cross section
of characteristics of all Edmonton adults. The first three variables in the
table are age of respondent (AGE), years of schooling of respondent (EDUC)
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and before tax household income of respondent (INCOME). The next four
variables are attitude questions which ask respondents whether they disagree
or agree with various explanations of unemployment. The questions asked
were

As you know, unemployment has been at a high level in this
country and province for several years. Different people have
different opinions about the causes of this high unemployment.
How much do you agree or disagree with the following opinions
about this?

Unemployment is high because immigrants have taken up all
available jobs. (IMMIGRANTS)

Unemployment is high because of the introduction of widespread
automation. (AUTOMATION)

Unemployment is high because trade unions have priced their
members out of a job. (UNIONS)

World wide recession and inflation cause high unemployment.
(RECESSION)

Many people don’t have jobs becuase they are sick or have phys-
ical handicaps. (SICK)

Each of the explanations of unemployment was given a seven point scale,
with 1 being strongly agree and 7 being strongly disagree.

By examining the correlation coefficients in Table 11.9, it can be seen
that none of these exceed a little over 0.3 numerically. The asteriks indi-
cate the level of statistical significance. With a sample size of n = 362,
several of the correlations are significant. For example, in the first column
AGE and the sickness and handicapped explanation have a correlation of
0.2488. This is a positive relationship, indication that those who are older
are more in agreement with this explanation, and younger people are more
in disagreement. This correlation coefficient is significant at the 0.001 level
of significance.

Education is correlated negatively with several explanations for unem-
ployment. The largest correlations are eduation with the immigrants and
the automation explanation. For immigrants, r = −0.3118, meaning that
“less educated respondents were more likely to agree that ... the presence of
immigrants were leading to high rates of unemployment.” This correlation
coefficient is statistically significant at the 0.001 level, as is the correlation



832

Variable AGE EDUC INC IMM AUTO UN REC

EDUC -.2808**
INC -.0316 .3009**

IMM .0371 -.3118** -.1530*
AUTO .0728 -.2080** -.1680** .3811**

UN .0906 -.0617 -.0706 .2019** .2164**
REC .1355* -.0391 -.0967 -.0124 .1493* .0730
SICK .2488** -.1009 -.1095 .1000 .2621** .0791 .1053

Number of cases: 362
1-tailed Signif: * - .01 ** - .001

Table 11.9: Correlation Coefficients for 8 Variables in Edmonton Area Study

of -0.2080 of education with the automation explanation. Again, those with
more education are less likely to agree that this is a reasonable explanation
of unemployment. The authors of the study note that in general, socioe-
conomic factors do not play an important role in explaining differences in
explantion, except for the immigration and automation explanations.

Note that the correlation among the various explanations are not all
that large numerically either. The largest correlation is 0.3811, and this is
the correlation between the immigration and automation explanation. That
is, those who agree that immigrants are responsible for unemployment also
tend to believe that automation is responsible for unemployment.

(The wording of the questions and the quote were taken from H. Krahn,
G. S. Lowe, T. F. Hartnagel and J. Tanner, “Explanations of Unemployment
in Canada, International Journal of Comparative Sociology, XXVIII,
3-4, 1987, pp. 228-236).

The above example shows that it may be difficult to find large correla-
tions among variables from survey data. There are too many other variables
that prevent a clear observation of the relationship among these variables.
In addition, for attitude and opinion variables, the responses and relation-
ships are not so clear cut. Attitudes and many socioeconomic variables are
not as clearly related as often claimed by researchers. Many attitudes are
similar for people of all different socioeconomic statuses, and differences in
attitudes do not always clearly relate to socioeconomic status variables at
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the level researchers are able to measure these. Given these deficiencies, the
correlation coefficients are often quite small, and researchers must attempt
to construct explanations of relationships, even for small correlations.

Example 11.4.8 Aggregrated Data - Medium Sized Correlation
Coefficients

When data have been aggregated, so that the observations refer not
to individuals, but to aggregates such as cities, provinces, countries, firms,
schools, or other groupings, there is a considerable averaging process. Each
of these units are aggregates of individual observations, so that the great
variability associated with individual cases is usually eliminated. When
comparing variables for cross sections of these aggregated units, the correla-
tion coefficients are often considerably greater than for relationships among
sets of individuals. On the other hand, these are not time series data, so that
the correlations do not reach the very high values that are often associated
with pairs of time series variables.

As an example of the medium sized correlations, Table 11.10 contains
correlation coefficients for several of the variables across the countries shown
in the Country Data Set of Appendix B. Some of the variables have not been
included because they show little correlation with the variables given here.
The literacy rate, LIT, was left out because there were so many countries for
which the literacy rate was not available. The data in Table 11.10 contain
correlation coefficients for only the 123 countries where data was available for
all the variables shown. The size, and statistical significance, of the Pearson
correlation coefficient for each pair of the following variables is given in the
table. (A more complete definition of these variables is given in Appendix
B.)

IMR Infant Mortality Rate
GNP Per Capita Gross National Product
LE Life Expectation in Years
CDR Crude Death Rate
CBR Crude Birth Rate
URB Per Cent of Population in Urban Areas
AGE Median Age of the Population

Note that most pairs of the variables have correlation coefficients be-
tween 0.4 and 0.9. There are no examples of variables with the almost
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IMR GNP LE CDR CBR URB

GNP -.3976**
LE -.6601** .6364**
CDR .8532** -.2148* -.6984**
CBR .5602** -.6610** -.9030** .4794**
URB -.5190** .6054** .7615** -.4995** -.6920**
AGE -.3276** .7761** .7202** -.1177 -.8815** .6018**

N of cases: 123

1-tailed Significance: * .01, ** .001

Table 11.10: Correlation Coefficients for Variables in Country Data Set

perfect association that can occur with time series variables. Yet the cor-
relation coefficients are considerably greater than in Example 11.4.7 where
correlations between variables obtained from individual data were obtained.
Also note that most of the correlation coefficients are statistically significant
at the 0.001 level. Only the correlation between the crude death rate and
median age is insignificant. The correlation coefficient between the death
rate and per capita GNP is -0.2148, and while this is small, it is still signif-
icant at the 0.01 level of significance.

The above examples show that there can be a considerable variety of cor-
relation coefficients, all statistically significant, but of quite different size. A
very small correlation coefficient should not necessarily be taken as evidence
that there is no relationship between two variables. The statistical signifi-
cance for the coefficient should always be determined, and if the correlation
coefficient is significant, then some attention should be paid to the relation-
ship. When comparing correlation coefficients from different data sets, it
may be misleading to compare these coefficients if the data sets are of quite
different types.

Summary. Correlation coefficients are one of the most widely used means
of determining whether a relationship exists between two variables. If one
of the variables has only a nominal scale of measurement, the correlation
coefficient is not usually meaningful. But when the variables have at least
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ordinal scales of measurement, correlation coefficients provide a useful way
of summarizing the relationship between two variables. It should be re-
membered that the correlation coefficient is a measure of association for a
straight line or linear relationship. Two variables may be related in some
nonlinear manner, and the Pearson correlation coefficient does not provide
a meaningful manner of describing these nonlinear relationships.

Correlation coefficients are widely used in research work, allowing the
researcher to summarize the relationship between two variables in a single
number. A large, or a statistically significant, correlation coefficient can
be taken as evidence that the two variables may be causally related. But
by itself a large or a statistically significant correlation cannot prove that
two variables are causally related. There is no substitute for determining
and understanding how variables are connected, and correlation coefficients
cannot indicate this.

In addition to describing relationships, correlation coefficients provide
the raw material for many types of multivariate statistical methods. Factor
analysis, multivariate regression models, cluster analysis, and other multi-
variate models can all be built on sets of correlation coefficients. While
these models are not examined in this textbook, they are likely to form the
content of a second course in statistical methods.


