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Chapter 9

Hypothesis Testing

9.1 Introduction

Hypothesis testing is a formal method of using data from a sample to test a
specific hypothesis concerning a population. In this chapter, various state-
ments or hypotheses are made concerning the mean or proportion of a pop-
ulation. Data is obtained from a random sample of the population, and a
statistic is computed from this data. Based on this statistic, the statement
concerning the mean or proportion will be rejected if the sample statistic is
quite different from the population parameter. If the sample statistic is close
to the value hypothesized in the statement, it is likely that this statement
will not be rejected, but will be adopted as a working hypothesis.

As an example of this procedure, suppose that an economic downturn has
occurred in the economy, and this appears to be associated with an increase
in poverty. A researcher is studying a large city which has been affected
by this recession in the economy. Community groups and trade unionists
are fairly sure that the recession has caused an increase in poverty in the
city. The researcher wishes to determine whether the community groups
and trade unionists are correct or not, and determine the extent to which
poverty has increased in this city. Based on the results of this research, the
researcher intends to make some suggestions concerning how poverty might
be reduced or alleviated.

The above statements concerning poverty and an increase in poverty are
fairly general statements. One of the tasks of the researcher is to deter-
mine the meaning of poverty, measure the extent of poverty, and determine
whether or not there has been an increase in poverty. Some of these issues

553



INTRODUCTION 554

involve definitional problems of the type introduced in Chapter 2. Once
poverty has been fairly clearly defined, the researcher must find a way of
testing whether the statements that poverty has increased are correct or
not. This is where sampling and hypothesis testing can be useful. If the
researcher is able to conduct a random sample of the population in the city,
and is able to ask appropriate questions concerning family and individual
incomes, resources and needs, then some answers concerning whether or
not poverty has increased can be provided by the researcher. Two possible
examples of hypothesis tests of the type used in this chapter might be as
follows.

1. The researcher might attempt to determine the mean income of res-
idents of the city, and see how much this has changed. In order to
make a claim that there has been a decline, there needs to be some
benchmark against which a change can be tested. Since the Census
gathers information on income every 5 or 10 years, this could be the
benchmark figure used by the researcher. The hypothesis that the re-
searcher might test is that the mean income of residents of the city
has not declined since the last Census was conducted. Data concerning
incomes of city residents is obtained from a random sample, and these
incomes would be corrected for price changes over the period since the
last Census. If the mean income of the people surveyed in the sample
is a lot less than the mean income of all city residents based on the last
Census, then the researcher can reject the hypothesis that there has
been no decline in the mean income of city residents. In contrast, if the
random sample shows a very small decline in mean income since the
Census, the researcher may not have sufficient evidence to conclude
that incomes have declined for all city residents.

This hypothesis test is referred to as a test of a population mean. Since
this hypothesis tests whether the mean income has declined or not, the
researcher might be criticized on the grounds that this is not a direct
measure of poverty. For example, if the researcher concludes that the
mean income has not declined in the city, that may be because the
well off have experienced an increase in income at the same time as
the less well off have had declining incomes.

2. A more direct test of poverty could be provided by testing whether
or not the proportion of the city population that is below the poverty
line has increased. Again, the Census would provide a benchmark
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measure of the proportion of the population which was in poverty at
an earlier date. Suppose that the Census had shown that 0.15, or
15%, of the city population had poverty level incomes at the time
of the Census. The researcher could hypothesize that there was no
decline in the proportion of the population with poverty level incomes
since the time the Census had been conducted.

The random sample of the city population would provide sample data
which could be used to test whether or not poverty had increased.
Suppose that in the sample, there were 0.25, or 25%, of the city pop-
ulation now in poverty. This is a much larger proportion of the pop-
ulation than the 0.15, or 15%, previously in poverty. If the sample
size for this sample is reasonably large, an hypothesis test using this
sample would likely provide sufficient evidence to show that the inci-
dence of poverty in the city had increased. In constrast, suppose that
the sample showed that there were 0.17. or 17%, of the population in
poverty. Given this data, it is likely that the method of sampling and
conducting an hypothesis test would not provide sufficient evidence
to conclude that there had been an increase in the proportion of the
population in poverty.

The procedures just described seem fairly logical, and consistent with
how we confirm or deny statements in ordinary life. The short general de-
scription just provided shows though, that the method of hypothesis testing
is quite formal. The specific statements, which are either confirmed or de-
nied on the basis of data from the sample, are of a particular type. In the
above examples, the hypotheses to be tested were that there was no change
in the mean income, or no change in the proportion of the population in
poverty.

When conducting an hypothesis test, the sampling distribution of the
sample statistic must be used, in order to determine how large a difference
between the sample statistic and the hypothesized value of the parameter
must be in order to either confirm or deny the hypothesis. In addition, each
conclusion from an hypothesis test has a certain probability of being either
correct or not. There are various types of error which can emerge in an
hypothesis test, and each conclusion has a probability of being incorrect.
This probability is called the level of significance, and an hypothesis test
is sometimes called a significance test. It is necessary to develop some un-
derstanding of each of these concepts and procedures in order to be able to
conduct an hypothesis test.
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In addition to tests concerning particular population parameters, this
chapter introduces tests concerning two different populations. Random sam-
ples from each of two different populations can be used to test whether the
means or the proportions for the populations differ. While the hypothesis
tests for two populations are conceptually similar to those for one pop-
ulation, introducing a second population increases the complexity of the
formulas.

In the above example, suppose that the researcher had no earlier Census
results to rely on, but did have information from an earlier sample of the
population. Suppose the earlier sample had shown that 14% of the popula-
tion was in poverty, and the researcher finds that there are now 17% of the
population in poverty. The researcher would need to conduct a test for the
difference between two percentages, or two proportions (0.14 and 0.17), in
order to test whether this increase in sample percentages was sufficient to
conclude that the incidence of poverty had increased for the population as
a whole.

The method of hypothesis testing outlined in this chapter is widely used
in statistical work. In inferential statistics, hypothesis testing is more ex-
tensively used than is interval estimation. There are many different types
of hypothesis tests, of which only a very few are introduced in this chapter,
with more in Chapters 10 and 11. There are many other hypothesis tests,
beyond what can be introduced in an introductory textbook. All of these
tests use the same principles as the tests developed here. If you develop
a good understanding of the method of testing a mean, a proportion, and
the difference between two means or proportions, you will be able to under-
stand other types of hypothesis testing as well. As a result, this chapter is
important for understanding inferential statistics.

Chapter Outline. This chapter begins with the test of a population
mean, for a large random sample. The principles of hypothesis testing are
introduced throughout the following section. The first time through the fol-
lowing section, you may have difficulty understanding the manner in which
an hypothesis test is conducted, and how the test is to be interpreted. As
a result, it may be worthwhile to come back to Section 9.2 several times,
to review the various aspects of hypothesis testing. Section 9.3 presents
hypotheses tests for the mean when the sample size is small, so that the t
distribution must be used. In Section 9.4, an hypothesis test for a propor-
tion will be given. You will see that this is essentially the same method as
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that used in Section 9.2 for the mean, but with p̂ replacing X̄. In Section
9.5 a test for the difference between two proportions is discussed. In Section
9.6, tests for the difference between two population means are examined, for
both large and small sample sizes. The formulas for conducting these tests
are given, and in addition, in Section 9.7 there are results from computer
programs to test for the difference between two means. A test for the equal-
ity of two variances is also given in Section 9.7. A short discussion of how
results from hypothesis tests can be reported when doing research is given
in Section 9.9. The last test in the chapter, in Section 9.10, is the paired t
test for dependent samples.

Section 9.2.9 shows the similarity between hypothesis testing and interval
estimation. Looked at in one way, there is really only one type of inferential
statistics, the conclusions may be stated either in the form of an hypothesis
test, or in the form of an interval estimate.

9.2 Hypothesis Test for a Mean

This section shows how an hypothesis test for a mean, when the sample size
is large, can be conducted. Since this is the first time hypothesis testing
has been discussed in this textbook, the various principles of hypothesis
testing will be introduced by showing how a test for the mean is conducted.
As a result, this section is quite long, containing both actual tests for the
mean, and a more general discussion of the principles of hypothesis testing.
Testing is introduced in this manner because hypothesis testing is more
easily understood by example than on the basis of a theoretical presentation.
Once you follow a few examples, then the principles of testing can be applied
to other types of hypothesis test. If you find this presentation confusing, go
to Example 9.2.1 after you have read part of the way through this section.
Example 9.2.1 goes directly through a test, without a full discussion of
peripheral points. Then you can return to the more general discussion, and
the issues involved in hypothesis testing should become clearer.

9.2.1 Steps in Hypothesis Testing

Hypothesis testing has a set of procedures which are used for each test.
These procedures are rather formal, and are much the same for each type
of hypothesis test. This section outlines these, and if you are able to follow
this set of procedures when encountering a new hypothesis test, then you
should have little difficulty carrying out the test. The following description
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is built around the test of a mean, but the steps outlined here are general
procedures, and each hypothesis test uses these same steps. The following
description is given in words, and a diagrammatic presentation of hypothesis
testing follows later in Section 9.2.2.

Formulating the Hypotheses. Hypothesis testing begins by stating two
hypotheses. If the test is concerned with the value of the population mean,
then these hypotheses are statements concerning the value of the population
mean. These statements may be based on a hunch, or they may be claims
made by another researcher, or by someone else. In any case, someone has
made a claim, and this claim must be tested by using some data.

The claim is called an hypothesis, and each hypothesis test has two hy-
potheses, the null hypothesis and the the alternative hypothesis. The
null hypothesis is a specific claim. In the test of a mean, the null hypothesis
is a claim that the population mean equals some specific value. The alter-
native hypothesis, sometimes referred to as a research hypothesis, is a
more general statement. For the test of a mean, the alternative hypothesis
states that the population mean is not equal to the value claimed in the null
hypothesis, or that the mean is either greater than, or less than, claimed in
the null hypothesis. Each hypothesis test is conducted assuming that the
null hypothesis is true. At the end of the test, the conclusion is either to
reject the null hypothesis, or not to reject the null hypothesis.

1. Null and Alternative Hypotheses. The null hypothesis is given the
symbol H0, and the research or alternative hypothesis is given the symbol
H1. Suppose that a claim is made that the mean of a population is M .
Suppose that µ is the true, but unknown, mean of a population. The null
and alternative hypotheses could take the following form.

H0 : µ = M

H1 : µ 6= M

There are other possible forms for the test, but this is the most common
and easily understood form. The null hypothesis H0 states that the true
mean of the population is equal to the hypothesized value M . The alter-
native or research hypothesis, is that the population mean is not equal to
M .
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As a general rule, the null hypothesis is always an equality, and the
alternative hypothesis is an inequality. When conducting an hypothesis
test, the null hypothesis is always assumed to be true, and the assumption
adopted when conducting the test is that this equality holds. In the test
of a population mean, the assumption of the null hypothesis is that the
population mean is, in fact, equal to the hypothesized value M . At the
conclusion of the test, the null hypothesis H0 is either rejected or it is not
rejected. If the sample mean differs quite considerably from the hypothesized
value M , there may be sufficient evidence to reject the claim that µ = M .
The other possibility is that the sample mean is relatively close to M and
then there is not sufficient evidence from the sample data to reject the null
hypothesis.

2. The Test Statistic. Once the null and research hypotheses have been
stated, the next step in hypothesis testing is to obtain a statistic which can
be used to test the claim. The same statistics or point estimates as were
used in estimation, are used for hypothesis testing. In the above hypotheses
concerning µ, the test statistic is the sample mean X̄. This sample mean
is obtained from a random sample of members of the population. In an
hypothesis test concerning p, the proportion of a population having a par-
ticular characteristic, the test statistic is p̂, the proportion of the sample
having that same characteristic.

3. Distribution of the Test Statistic. Once the test statistic has been
determined, it is necessary to know how the test statistic behaves when there
are repeated random samples from the population. That is, the sampling
distribution of the test statistic must be obtained.

In the case of the sample mean X̄, if a random sample of reasonably large
sample size has been obtained, then the Central Limit Theorem describes
the distribution of the sample mean. That is, when n is large,

X̄ is Nor
(

µ,
σ√
n

)

where µ is the true population mean, σ is the true standard deviation of
the population and n is the size of the random sample. This distribution
describes how X̄ behaves when repeated random samples of the population
are drawn.

Since the null hypothesis is assumed to be true, and since the null hy-
pothesis states that µ = M , the sampling distribution for X̄ is assumed to
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be centred at µ = M . The standard deviation of the sampling distribution
of X̄ is σ/

√
n. The value of σ, the standard deviation of the population from

which the sample is drawn is usually unknown, so that the sample standard
deviation s is used as an estimate of σ. Thus, if the null hypothesis is as-
sumed to be correct, the sampling distribution of X̄ which is used to test
the hypotheses is

X̄ is Nor
(

M,
s√
n

)
.

The idea behind hypothesis testing is to obtain the sample mean X̄, and
to determine how close X̄ is to µ. If X̄ is quite a distant from µ, then the
null hypothesis H0 is rejected and the alternative hypothesis H1 is accepted.
On the other hand, if X̄ is relatively close to the hypothesized mean µ = M ,
then this null hypothesis H0 is not rejected. The question that emerges from
this is what constitutes a large distance from µ and what is a small distance
from µ. This decision is made on the basis of the level of significance of
the hypothesis test.

4. Level of Significance of the Test. The level of significance of an
hypothesis test is much like a confidence level, except that the significance
level is a small number. Common levels of significance are 0.10, 0.05 or
0.01. These significance levels are given as probabilities, or proportions,
rather than as percentages. In the test of the hypotheses that µ = M or
that µ 6= M , the 0.10 significance level is equivalent to the 90% confidence
level, the 0.05 level to the 95% confidence level, and so on.

The significance level can be expressed as an area under the normal
curve, with the area equal in size to the given level of significance. This area
is in the extreme part of the distribution. Take the 0.10 significance level,
and let this be the extreme 0.10 of the area under the sampling distribution
of X̄. The region of rejection of the null hypothesis will be the extreme 0.10
of the area under the sampling distribution, in either of the two tails of this
distribution.

The alternative hypothesis is µ 6= M . This hypothesis is accepted only
if the value of X̄ is considerably greater than M , or if X̄ is considerably
less than M . The decision concerning what is large and what is small is
based on the significance level. If the level of significance is 0.10, then the
null hypothesis is rejected if X̄ is in the extreme 0.10 of the area under the
sampling distribution of X̄. If the value of X̄ obtained from the sample
is not in the extreme 0.10 area of the sampling distribution, then the null
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hypothesis H0 is not rejected.

Notation

For hypothesis testing, the α notation is helpful, and
more straightforward than in the case of interval esti-
mation. The symbol α is the first letter of the Greek
alphabet, and is written and pronounced as ‘alpha.’
The level of significance is given the symbol α. If
the significance level is 0.10, then α = 0.10; if the
significance level is 0.05, then α = 0.05.

5. Critical Values and Critical Rejection. The region of rejection of
the null hypothesis is called the critical region for the hypothesis test. The
critical region is sometimes referred to as the region of rejection of H0,
and the two terms are synonymous. The critical region is the extreme part
of the sampling distribution, equal in area to the significance level α. If the
sample yields a sample mean X̄ which falls in the critical region, then the
null hypothesis is rejected. If the sample mean does not lie in the region of
rejection of H0, then the null hypothesis is not rejected.

The region of rejection of the null hypothesis is a set of Z values which
are consistent with (a) the sampling distribution, with (b) the null and
alternative hypothesis, and with (c) the level of significance. For the test of
a sample mean, the distribution of X̄ is normal, so the region of rejection
will be an area associated with the normal curve. The null hypothesis is
H0 and the alternative hypothesis is H1 : µ 6= M . A region of rejection
consistent with the alternative hypothesis is the set of values of X̄ which are
either a lot less than µ or a lot greater than µ. If the level of significance
adopted in the test is α = 0.10, then the critical region for testing H0 has
an area equal to 0.10. The region of rejection is all those values of Z in
the extreme 0.10 of the normal distribution. This region is at both ends of
the distribution, either at the extreme left end of the distribution, or at the
extreme right end of the distribution.

If the total area of α = 0.10 is to be split between the two ends of the
distribution, this means that there is 0.10/2 = 0.05 of the area in each tail
of the distribution. Looking down column B of the table of the normal
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distribution gives an area of 0.05 when Z is midway between 1.64 and 1.65.
The Z value of 1.645 is usually used in this case. This value of Z which
begins the critical region is called the critical value of Z. For this test,
the critical values of Z are -1.645 and +1.645, and the critical region is all
Z values which exceed these critical values in magnitude.

In summary, for the α = 0.10 level of signficance, the region of rejection
of H0, or the critical region, is all values of X̄ which are farther than Z =
−1.645 on the left of centre, or farther than Z = +1.645 on the right of
centre. More generally, the Z value associated with each α is determined
from the normal table. The Z value is called the critical value for the
hypothesis test. This is then used to define the region of rejection of H0 in
the tails of the sampling distribution.

6. Conclusion of the Test. The final step in conducting the test is
to determine whether the sample mean is in the region of rejection or not.
The random sample gives the values of X̄, s and n. Since the sampling
distribution for X̄ in the test is

X̄ is Nor
(

µ,
σ√
n

)
,

the Z value associated with the sample mean can be determined.
Recall that a Z value is a standardized value, and represents a number of

standard deviations in the standardized normal distribution. It is obtained
by subtracting the mean from the variable, and dividing this difference by
the standard deviation. In general

Z =
Variable−Mean of Variable

Standard Deviation of Variable

and this produces a Z value with mean 0 and standard deviation 1. For the
test of a mean, the variable is X̄, and the mean of X̄ is µ. Since µ has been
hypothesized to equal M , the mean of X̄ is M for purposes of conducting
the test. The standard deviation of X̄ is σ/

√
n, and this gives the Z value

for the sample mean as

Z =
X̄ − µ

σ/
√

n
.

For the sample mean X̄, this tells how many standard deviations from the
hypothesized mean µ the sample mean is.

Since σ is usually unknown, the sample standard deviation s is used as
an estimate of σ. The estimate of the standard deviation of X̄ is s/

√
n and
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this is used in determining Z. Since µ has been hypothesized to equal M ,
and the test is carried out assuming that the null hypothesis is true, the Z
associated with the sample mean X̄ is approximated by

Z =
X̄ −M

s/
√

n
.

If this Z is larger in magnitude than the critical value of Z, then the null
hypothesis is rejected. If this Z is not in the critical region, then the null
hypothesis is not rejected. In the case of the 0.10 level of significance, where
the critical values are -1.645 and +1.645, if

Z < −1.645 or Z > 1.645

the null hypothesis H0 is rejected, and the alternative hypothesis is accepted.
This decision is made at the α = 0.10 level of significance. On the other
hand, if

−1.645 < Z < 1.645

then the null hypothesis is not rejected at the α = 0.10 level of significance.
This completes the test. If X̄ is far enough from µ to be in the critical

region, then the hypothesized mean does not represent the mean of the
population. If X̄ from the sample is closer to µ, so that it is not in the
region of rejection, then the null hypothesis concerning the value of the true
mean is not rejected.

Each of these conclusions is made with a certain probability, so that
the conclusion may be in error. Most conclusions from hypothesis tests are
correct conclusions. But each test has associated with it a chance that the
conclusion is incorrect. If the null hypothesis is rejected, then there is a
chance, equal in size to the significance level, α, that that this conclusion is
incorrect. If the null hypothesis is not rejected, the probability of error is
not so easily determined, although some comments concerning this type of
error are provided later in this section.

An example of an hypothesis test is now presented. Following this ex-
ample, there is further discussion of the principles of hypothesis testing.

Example 9.2.1 Study Hours of Undergraduates

Suppose that a group of students claims that undergraduates study an
average of 20 hours per week. A survey of 494 undergraduate students at the
University of Regina, conducted by a student in Sociology 404 in the Winter
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1988 semester, was discussed in Example 8.3.1. This example showed that
the mean number of hours students spent studying per week was 18.8 hours
with a standard deviation of 13.1 hours. On the basis of this data, test the
claim made by the students. Use the α = 0.10 level of significance.

Solution. The first step in conducting an hypothesis test is to be clear
concerning which characteristic of the population is being investigated. The
group of students is making a claim concerning the true mean hours studied
per week for undergraduates. This true, but unknown, mean is the popula-
tion parameter being tested. Let µ be the true mean number of hours per
week studied for all undergraduate students. From the data for the sample
of 494 undergraduates, X̄ = 18.8 and this is less than the 20 hours per week
that students claim. Based on this sample mean, it would be tempting to
conclude that the claim was incorrect. The problem with jumping to this
conclusion at this point is that this is a random sample, and the sample
mean is subject to sampling error. A different random sample would yield
a different sample mean. The question is whether this sample mean, along
with the sample standard deviation and sample size provides sufficient evi-
dence to deny the students’ claim that the mean hours per week studied is
20.

Since the question is whether the claim can be supported or not, the
claim could be proven incorrect if X̄ is either a lot greater than 20, or a lot
less than 20. That is, the alternative hypothesis is that the mean hours per
week studied is not equal to 20. The null hypothesis is that the mean hours
studied per week equals 20. The hypotheses can be written as follows:

H0 : µ = 20

H1 : µ 6= 20

Since the hypotheses concern the population mean, the test statistic
which is used in this test is the sample mean X̄. Since n = 494 is much larger
than 30, the Central Limit Theorem holds and the sampling distribution of
X̄ is

X̄ is Nor

(
µ,

σ√
n

)
.

A significance level of α = 0.10 has been specified, so that the region
of rejection of H0 is the extreme 0.10 of the area under the normal curve.
Since this area is split between the two tails of the distribution, there is
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0.10/2 = 0.05 of the area in each tail of the distribution. Using column B of
the normal table in Appendix H, an area of 0.05 in one tail of the distribution
is associated with Z = 1.645. For the α = 0.10 level of significance, these
are the critical values of Z the region of rejection is all Z values of less than
−1.645 or greater than +1.645.

Based on the sample data, n = 494, X̄ = 18.8 and s = 13.1. Since σ, the
true standard deviation of study hours for all undergraduates, is unknown
but n is large, s can be used as an estimate of σ. The Z value is X̄ minus
µ, divided by s/

√
n. Since µ = 20 is the null hypothesis, the Z value for the

sample mean is

Z =
X̄ − µ

s/
√

n

=
18.8− 20

13.115/
√

494

=
−1.2

13.1/22.226

=
−1.178
0.589

= −2.04

Since Z = −2.04 < −1.645 this Z value and the sample mean are in the
region of rejection of H0. As a result, the null hypothesis H0, stating that the
mean hours per week studied equals 20, can be rejected. The claim made
by the group of students can be rejected at the 0.10 level of significance.
The alternative hypothesis H1 that the true mean hours per week studied
by undergraduates is not equal to 20 is the hypothesis which is accepted as
a result of this test.

Additional Notes on this Test. Note that H0 can fairly clearly be re-
jected since the Z value of -2.04 is considerably less than -1.645 and falls well
inside the region of rejection of the null hypothesis H0. This is the manner
in which hypothesis testing works. A strict criterion concerning rejection or
nonrejection of the null hypothesis is adopted. Once the significance level
is adopted, and the sample obtained, then the region of rejection of H0 is
strictly defined. If X̄ falls in the region of rejection, then H0 is rejected.

There are several possible errors that could emerge as a result of making
this conclusion. Some of these will be discussed in more detail later, but it
is worth observing the possible errors associated with this test at this point.
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In terms of errors ordinarily associated with hypothesis testing as a
method of making inferences, there is a chance that the claim made by
the group of students is correct, even though the test has led to rejection
of this hypothesis. When rejecting a null hypothesis, there is always some
chance that the null hypothesis really is correct. This is referred to as Type
I error, the error of rejecting the null hypothesis when it is actually true.
(Type I error is discussed in Section 9.2.4). The chance of this type of error
is the level of significance. The hypothesis test begins by assuming that
µ = 20. If this is really the case, there is a 0.10 chance that a random
sample from a population with µ = 20 could yield a sample mean X̄ that
lies more than 1.645 standard deviations from centre. Yet the rule which
has been adopted for the test is that any time that X̄ is farther than 1.645
standard deviations from centre, the null hypothesis is rejected. This means
that 0.10, or 10%, of the random samples from a population where µ = 20
will yield sample means which are in the critical region. But each time a
sample mean is in the critical region, the hypothesis H0 : µ = 20 will be
rejected. There is thus chance of 0.10 that the null hypothesis will be re-
jected even though this hypothesis is correct. Each hypothesis test has the
potential of this type of error built into it. Note that ordinarily this error is
not actually made, but where the significance level is α, the probability is α
that this error has occurred if the decision is to reject the null hypothesis.

The other sources of possible error in the conclusion stem from the nature
of the sample. The sample was not random, students may not accurately
report the number of hours they spend studying, and so on.

Finally note the similarity of this result to the interval estimate of Exam-
ple 8.3.1. The mean of X̄ = 18.8 hours was associated with a 90% interval
estimate of (17.8, 19.8) hours studied per week. Since this interval estimate
does not include the hypothesized value of 20 hours per week, this interval
estimate is consistent with the conclusion that the true mean is not equal
to 20 hours per week. If the interval had included 20 hours, then it would
seem that 20 hours per week could be the true mean.

The conclusion of both the hypothesis test and the interval estimate
is that the mean hours studied per week by all undergraduate students is
not equal to 20 hours per week. The interval estimate was made with 90%
confidence, and the hypothesis test with 0.10 significance. These are equal
levels, the 90% of the area for the confidence level being in the middle of the
normal curve, with 10% in the tails. This 10% in the tails equals the 0.10
area in the tails of the distribution associated with the 0.10 significance level
for the hypothesis test. In Section 9.2.3, you will see that this test is called
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a two tailed test, in that both tails of the distribution are part of the region
of rejection. Later, in Section 9.2.9 the similarity of hypothesis testing and
interval estimation will be discussed.

9.2.2 Diagrammatic Presentation of Hypothesis Testing

It may be easier to understand hypothesis testing if the sampling distribution
is given in a diagram. A test of hypothesis for a sample mean is presented
diagramatically in this section. The first diagram shows how the hypothesis
test of Example 9.2.1 can be pictured. After this, the complete α notation
involved in hypothesis testing is provided. In later sections, diagrammatic
presentations for tests other than the population mean are provided.

Figure 9.1: Test of Study Hours for Students

Begin with a variable X which has an unknown mean of µ and unknown
standard deviation σ. Let a random sample with a large sample size n be
selected from this population. Then the Central Limit Theorem can be
used to show that the sample mean X̄ has a normally distributed sampling
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distribution with mean µ and standard deviation σX̄ = σ/
√

n. This result is
true, regardless of the nature of the distribution of X. The only assumptions
required are that the sample be random, and that n be reasonably large. If
these are true,

X̄ is Nor
(

µ,
σ√
n

)
.

This is pictured in Figure 9.1, with the normal sampling distribution
for X̄ shown. The values of X̄ are shown along the horizontal axis of with
µ being the mean of this distribution. The height of the normal curve
represents the probability of occurrence for the different values of X̄.

In Example 9.2.1 the claim was made that µ, the mean of the population,
is µ = 20. This is the null hypothesis H0. Since the test is carried out under
the assumption that the null hypothesis is true, the normal distribution for
X̄ is shown centred at µ = 20. The standard deviation of the sampling
distribution of X̄ is not easily pictured in the diagram, but is shown on the
upper right of the diagram as being equal to σX̄ = 0.589.

Since the alternative hypothesis is that µ 6= 20, the null hypothesis is
rejected if the Z value is in either the upper or lower tail of the distribution.
For the 0.10 level of significance, the region of rejection of H0 is all Z values
of less than -1.645 or greater than 1.645. This is shown at the bottom of
the diagram. As can be seen there, the null hypothesis, H0, is not rejected
if X̄ gives a Z value between -1.645 and 1.645.

From Example 9.2.1, the sample mean is 18.8, and this is equivalent to
Z = −2.04. This value of Z is less than -1.645, and thus is in the region of
rejection of H0. The conclusion is that the null hypothesis can be rejected
and the alternative hypothesis accepted, at the 0.10 level of significance.

The General Case. The general case, along with all the notation nec-
essary for illustrating hypothesis testing, is given in Figure 9.2. Suppose
that the researcher is testing an hypothesis concerning the true mean µ for
a population. Someone claims that µ = M , and the researcher wishes to
test this claim. Since nothing further is known concerning the population
mean, the alternative hypothesis H1 is that the true mean µ does not equal
M . This can be summarized in the hypotheses:

H0 : µ = M

H1 : µ 6= M
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An hypothesis test begins by assuming that the null hypothesis is true.
If µ = M , then the sampling distribution of X̄ is centred at µ = M . Note
that this is only an assumption, made for purposes of conducting the test.
At the conclusion of the test, this claim that µ = M is either rejected or is
not rejected.

Figure 9.2: Test of a Mean, Large Sample Size

The alternative hypothesis H1, that µ is not equal to M , can be accepted
if the mean from the sample is either a lot greater than M or a lot less
than M . On the other hand, if X̄ from the sample is close to M , the null
hypothesis is not rejected. This divides the set of possible values of X̄ into
two groups. The values of X̄ far from µ = M , in the tails of the distribution,
are considered to be the values which lead to rejection of H0, and acceptance
of H1. But if the value of X̄ is one of those values which is not in one of
the tails of the distribution, then the claim H0 that the sample mean is M
is not rejected.

The decision concerning how to divide the values of X̄ into two groups



HYPOTHESIS TEST FOR A MEAN 570

is made on the basis of the significance level chosen. The significance level
is α, and is equal to the area in the tails of the distribution. In Figure 9.2, a
significance level of α has been selected, and the shaded area in the diagram
represents this area α. Since α is to be split between the two tails of the
distribution, the area in each tail is α/2 of the area under the curve. The
remaining area of 1− α is the area in the middle of the normal curve.

In order to denote where the area in each tail of the distribution begins,
it is necessary to provide some notation for the standardized Z values as-
sociated with different points along the horizontal axis. Let Zα/2 be the Z
value such that α/2 of the area under the normal curve lies beyond Zα/2.
For this test, Zα/2 is the critical Z value for the right half of the critical
region. On the right, Zα/2 represents the Z value at which an area of α/2
in the right tail begins. Stated another way, there is α/2 of the area which
is more than Zα/2 standard deviations above the centre of the distribution.
Similarly, to the left of centre, the critical Z value is −Zα/2, the distance to
the left of centre that one must go so that only α/2 of the area is less than
this. The area under the curve between −Zα/2 and +Zα/2 is 1− α.

The critical region and the decision rule concerning rejection or nonrejec-
tion of the null hypothesis can now be illustrated. The region of rejection
of H0, or the critical region, is the set of values of X̄ which give Z values
which lie below Z = −Zα/2 or which lie above Z = +Zα/2. Note that this
region of rejection of H0 is a disjointed region, being composed of the
lower α/2 and the upper α/2 proportions of the possible values of X̄. This
can also be considered the region of acceptance of H1, because rejection of
H0 generally mean acceptance of the alternative hypothesis.

The region of nonrejection of H0 is the large set of possible values of
X̄ in the middle of the distribution. This is associated with the 1−α of the
values between Z = −Zα/2 and Z = +Zα/2. Ordinarily this is referred to
only as the region of nonrejection of the null hypothesis, and not the region
of acceptance of the null hypothesis. As will be shown in Section 9.2.6, a
null hypothesis is not often accepted, even when it is not rejected.

The final step in conducting an hypothesis test is to determine where
the sample mean lies. As noted earlier, this requires calculating the Z value
associated with the sample mean. This is determined by calculating

Z =
X̄ − µ

σ/
√

n

Since µ has been hypothesized to equal M , and since s is usually used to
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provide an estimate of σ, the Z value in practice is

Z =
X̄ −M

s/
√

n
.

If this value is in the region of rejection of the null hypothesis, then this
hypothesis is rejected. If X̄ is not in the region of rejection of the null
hypothesis, then this hypothesis is not rejected.

The decision rules concerning rejection or nonrejection of H0 can be
summarized as follows:

Decision Rule for Hypothesis Testing

Compute the Z value for the sample mean

Z =
X̄ −M

s/
√

n
.

If Z < −Zα/2, then reject H0 and accept H1.

If Z > +Zα/2, then reject H0 and accept H1.

If −Zα/2 < Z < +Zα/2 then do not reject H0.

The respective areas are illustrated in Figure 9.2 and are labelled as
regions of rejection or nonrejection of H0.

This diagrammatic presentation outlines the method of hypothesis test-
ing for what is refered to as a two tailed test of the mean. In the
following section, the test refered to as a one tailed test of a mean, is pre-
sented. For the latter, the diagram will be altered somewhat, although the
basic principles of testing stay the same. The diagram of Figure 9.2 should
seem quite similar to the diagrams for interval estimation. It will be seen
later, in Section 9.2.9 that the two tailed test of the mean just discussed
produces identical conclusions as do the confidence interval estimates.
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9.2.3 One and Two Tailed Tests

The hypothesis tests discussed so far have been two tailed tests, tests. In
these tests, if X̄ is in either the right or in the left tail of the sampling
distribution, the null hypothesis is rejected. Similarly, confidence intervals
are always constructed so that they are of equal distance on each side of the
sample mean. Another type of hypothesis test is a one directional or a one
tailed test. This type of test begins with a one directional inequality for the
alternative hypothesis. In a one tailed test, in order to be consistent with
the alternative hypothesis, the region of rejection of the null hypothesis is
in only one tail of the distribution. Otherwise, the principles of this test are
the same as those introduced earlier, but with a specific direction specified
for the mean as part of the test.

An hypothesis test for a mean begins with a null hypothesis which is the
same as for the tests introduced earlier. Suppose though that the researcher
has some evidence, or some suspicion, that the mean falls short of, or ex-
ceeds, the value specified in the claim. Then a one directional alternative
hypothesis might be used.

To illustrate the method used in a one tailed test, suppose a researcher
suspects that µ, the mean of a population, is less than the value M . Then
the null hypothesis would still be

H0 : µ = M

but the alternative hypothesis would be

H1 : µ < M

As before, X̄ would be the test statistic and, if the sample size is large,

X̄ is Nor
(

µ,
σ√
n

)
.

If significance level α is selected, the only difference from the earlier tests
is that all of the area α is placed in the tail of the distribution specified by
the alternative hypothesis. The region of rejection of the null hypothesis is
entirely in the left tail of the distribution. The null hypothesis is rejected and
the alternative hypothesis accepted if the sample mean lies in the extreme
left tail of the sampling distribution.

The critical region is all Z values less than the critical value of Zα, where
Zα is the Z such that the proportion of the area under the curve less than



HYPOTHESIS TEST FOR A MEAN 573

Zα is α. Note that in a one tailed test, the area of α is not split into two, and
it lies entirely in one tail of the distribution. For example, if the significance
level is α = 0.05, the critical Z value is Z = −1.645. That is, Z = −1.645
is the Z so that there is exactly 0.05 of the area under the normal curve to
the left of this. For α = 0.10, a one tailed test that µ < M has a critical
region of Z < −1.28.

If the alternative hypothesis is in the positive direction, then the region
of rejection of H0 is in the right tail of the distribution. That is, if α = 0.05,
and the alternative hypothesis is

H1 : µ > M

the null hypothesis is rejected if X̄ is sufficiently large so that Z > 1.645.

Figure 9.3: Diagrammatic Representation of a One Tailed Test
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Figure 9.3 presents a one tailed test diagramatically. The hypotheses in
this figure are

H0 : µ = M

H1 : µ < M

and the significance level is α. All of the significance level of α is placed in
the left tail of the distribution. The shaded area represents the region of
rejection of H0 and it has area equal to α. This region of rejection is all the
Z values less than −Zα. If the Z value associated with the sample is greater
than −Zα/2, than the null hypothesis that µ = M is not rejected.

The following example uses the survey of undergraduate study hours
presented in Example 9.2.1 to conduct a one tailed test.

Example 9.2.2 Study Hours of Students

The example of the weekly hours that undergraduates spend studying
could have been given as a one tailed test. The sample values stay the same
as in Example 9.2.1 but the claims might have been presented indicating a
direction.

Suppose, as before, that a group of students claims that undergraduates
study an average of 20 hours per week. Suppose, in addition, that another
group of students views 20 hours as an overestimate of the average study
time, and argues that students study less than 20 hours per week. Using
the α = 0.05 level of significance, test these claims.

Solution. Again let µ be the true mean of the hours per week that all
undergraduates spend studying. The null hypothesis is a always a specific
claim, that µ equals a particular value. Of the two claims, the claim that
the average is 20 is the specific claim that is tested, so that it becomes the
null hypothesis. The alternative hypothesis suggests that students do not
study 20 hour per week, on average. The alternative claim is no longer that
the mean does not equal 20, but now the alternative claim is that the mean
is less than 20. The null and research hypotheses for this test are

H0 : µ = 20

H1 : µ < 20

The test statistic is the sample mean X̄ and, as before, the sample size is
large so that X̄ is normally distributed with mean µ and a standard deviation
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estimated to be s/
√

n. The significance level is α = 0.05, and since the
alternative hypothesis is that µ < 20, this area is entirely in the left tail of
the distribution. Looking at column B of the normal table of Appendix H,
an area of 0.05 in one tail of the distribution is given by Z = 1.645. Since
this area is in the left tail, the critical region for rejecting H0 is the area
given by

Z < Zα = Z0.05 = −1.645.

Since the sample data remains the same as in Example 9.2.1, the sample
mean X̄ of 18.8 hours per week is associated with Z = −1.996 < −1.645.
This Z, and the sample mean X̄ = 18.8, are in the region of rejection of
H0. The conclusion of the test is to reject the null hypothesis and accept
the research hypothesis. At the 0.05 level of significance, the sample data
supports the claim that the mean number of hours studied per week by
undergraduate students is less than 20 hours per week.

The reason a one tailed test was used in this case was that some suspicion
concerning the direction of the inequality is suggested. Earlier, in Exam-
ple 9.2.1, no indication of whether students study more than 20 hours or less
than 20 hours was given. In that example, the two tailed test was most ap-
propriate, especially if the researcher had no previous suspicion concerning
the direction of the inequality.

Example 9.2.3 Survey of Numerical Abilities of Canadians

In 1989, Statistics Canada conducted a Canada wide survey of literacy
levels of Canadians. As part of this survey, numeracy or the numerical
abilities of respondents was also measured. This question asks you to ex-
amine some of the data concerning numeracy. Numeracy was measured on
a three point scale with 1 being the lowest level of numeracy and 3 being
the highest. Those respondents who were at level 1 could recognize or lo-
cate and recognize numbers in a short text. Those at level 2 could perform
simple operations such as addition and subtraction. Those at level 3 could
perform sequences of numerical operations which would allow them to carry
on everyday needs. (For a fuller description of the methods used and results
from this study, see Statistics Canada, Adult Literacy in Canada, cata-
logue number 89-525E). Using the 3 point scale of numeracy, the mean level
of numeracy for all Canadians was 2.378.

In Saskatchewan, 374 randomly selected respondents were surveyed and
the distribution of their numeracy levels is given in Table 9.1. At the 0.05
level of significance, can you conclude that the mean numeracy level of all
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Numeracy Number of
Level Respondents

1 58
2 92
3 224

Table 9.1: Numeracy level of 374 Saskatchewan Adults

Saskatchewan adults exceeds the mean numeracy level for Canadian adults
as a whole? If the significance level is reduced to 0.01, does this change your
conclusion?

Solution. The question asks you to use this data to determine whether
the mean level of numeracy for all adults in Saskatchewan exceeds the mean
level of 2.378 that is given for all Canadians. The true mean numeracy
level for all those in Saskatchewan is not known, so let µ represent this true
mean numeracy level for Saskatchewan. The null hypothesis is an equality,
and it is hypothesized here that the true mean for Saskatchewan equals the
Canadian mean of 2.378. The question also asks whether the Saskatchewan
mean exceeds the Canadian mean. Given the direction of this question,
this test should be conducted as a one tailed test. The null and research
hypotheses are:

H0 : µ = 2.378

H1 : µ > 2.378

The test statistic is the sample mean, and since the Saskatchewan sample
of n = 374 is large, the sample mean

X̄ is Nor

(
µ,

σ√
n

)
.

The significance level is α = 0.05, and since the test is a one tailed test, in
the right tail of the distribution, the region of rejection of H0 is the upper
0.05 of the normal distribution. The critical value for the test is the familiar
Z = 1.645. The region of rejection of H0 is Z > +1.645. If Z < +1.645,
then there is not strong enough evidence to reject the null hypothesis.
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Figure 9.4 gives a diagrammatic presentation of this test. The population
mean is hypothesized to equal µ = 2.378, and the standard deviation of the
sampling distribution, σX̄ equals 0.0386. The critical region for the first test
is the shaded area representing the upper 0.05 of the possible values for X̄ in
the right tail of the distribution. This begins at Z = 1.645. For the second
test, the shaded area is the dark area in the upper 0.01 of the distribution,
beginning at Z = 2.33.

Figure 9.4: Test of Mean Level of Numeracy in Saskatchewan

At this point it is necessary to use the sample data in Table 9.1 to
determine the mean and standard deviation of the sample data. This can
then be used to determine the Z value associated with the sample mean.

Table 9.2 and the following formulas give the calculations for determining
the mean and standard deviation. From Table 9.2, n = 374,

∑
X = 914,

and
∑

X2 = 2, 442. The mean numeracy level for the Saskatchewan sample
is

X̄ =
∑

X

n
=

914
374

= 2.444
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X f fX fX2

1 58 58 58
2 92 184 368
3 224 672 2,016

Total 374 914 2,442

Table 9.2: Numeracy level of 374 Saskatchewan Adults

and the standard deviation is

s =

√
1

n− 1

[∑
X2 − (

∑
X)2

n

]

=

√
1

373

[
2, 442− (914)2

374

]

=
√

1
373

[2, 442− 2, 233.7]

=
√

0.559
= 0.747

Given this mean and standard deviaton the Z value associated with the
sample mean of X̄ = 0.2.44 can be computed using

Z =
X̄ −M

s/
√

n

Z =
2.444− 2.378
0.747/

√
374

=
0.066
0.0386

= 1.71.

Using the data from the Saskatchewan sample, Z = 1.71 > 1.645 and the null
hypothesis can be rejected, at the 0.05 level of significance. In Figure 9.4,
the value of Z = 1.71 can be seen to lie just to the right of 1.645, so that X̄
is in the critical region for the α = 0.05 level of significance. At this level,
the alternative hypothesis that the mean numeracy level for Saskatchewan
exceeds the Canadian mean can be accepted.

For the 0.01 level of significance, all that changes is the region of rejec-
tion. This significance level is a much more demanding one, requiring that
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stronger evidence be presented in order to reject the null hypothesis. For
α = 0.01 and a one tailed test in the positive direction, Zα = Z0.01 = 2.33.
The region of rejection of H0 is all Z values of 2.33 or more. If Z < 2.33, then
there is insufficient evidence to reject H0 at the 0.01 level of significance.

The data from the sample does not change, and earlier it was shown that
X̄ = 2.444 was associated with Z = 1.71. As can be seen in Figure 9.4, this
value is less than 2.33, and is not in the region of rejection of H0. At the
0.01 level of significance, the conclusion is that the Saskatchewan mean level
of numeracy does not exceed the Canadian mean level of numeracy.

Additional Comments of this Test.
The first problem that might be noted with this test is that the numeracy

scale is not an interval level scale, but is only an ordinal scale. In spite of
this, the mean and standard deviation can be calculated, and the test carried
out. But the results should be interpreted with caution. The conclusion that
the mean level of numeracy is greater for Saskatchewan than for Canada as
a whole should be interpreted very cautiously. Given the mean, standard
deviation, and sample size, the conclusion is correct at the 0.05 level, for a
one tailed test. But if a scale which measured numeracy at the interval level
was available, then these statistics might have quite different values.

Another problem related to this is the nature of the Survey itself. The
Survey is being treated as if it were a random sample of Saskatchewan adults.
It is unlikely that it is a random sample, but is likely based on some modifi-
cation of random sampling. If this is so, then the standard deviation s/

√
n

may not accurately represent the variability in the sample mean. This could
introduce additional error into the conclusion.

The differing conclusions associated with the different significance levels
must also be considered. Ignoring the above problems, and assuming the
data is acceptable as analyzed here, the Saskatchewan mean level of numer-
acy has been shown to exceed the mean Canadian level when the 0.05 level
of significance has been used. But at the 0.01 level of significance, the con-
clusion that the Saskatchewan and the Canadian mean are identical could
not be rejected.

Different conclusions at different significance levels are part of the prob-
lem of interpreting hypothesis tests, and of choosing a significance level for
the test. A significance level which is quite large is associated with a large
area in the region of rejection. This means that the Z is not so large, and
the sample mean need not differ all that much from the hypothesized mean
in order to reject the null hypothesis. In this example, if α = 0.05, then
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the Z associated with the sample need only exceed 1.645 in order that H0

is rejected. But when the significance level is reduced to α = 0.01, there
must be a larger Z, in order to reject H0. In this example, the sample mean
would have had to differ from the hypothesized mean by over 2.33 standard
deviations before the null hypothesis could have been rejected at the 0.01
level of significance.

Which of these levels of signficance should be used in this example is
not entirely clear. The 0.05 level of significance is the most common, but
some research issues require a more demanding significance level. Since the
numeracy level is not a matter of life and death, or of physical health, the
0.05 level of significance for this test is probably adequate. While there are
the other problems associated with this data, in terms of the test itself, this
conclusion provides evidence that the mean Saskatchewan numeracy level
exceeds the mean Canadian level. In Section 9.2.5, the choice of levels of
significance is discussed.

9.2.4 Types of Error

When conducting an hypothesis test, there is always the possibility of one
of two types of error. These errors are referred to as Type I Error and
Type II Error. These types of error may seem confusing at first, but
as you carry out hypothesis tests, you will find that these types of error
illustrate the meaning of the tests. The types of error are defined first, and
then followed by a discussion and examples.

Suppose that at the end of an hypothesis test, the Z value is in the critical
region for the test and the conclusion is that the null hypothesis can been
rejected. While this will usually be the correct conclusion, it may be that
the null hypothesis is true and the decision to reject the null hypothesis
is not the correct conclusion. When the null hypothesis is rejected, even
though it should not be, this is Type I error.
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Type I Error

Type I Error is the error of rejecting the null hypoth-
esis H0 when the null hypothesis is true.

The probability of committing Type I error is α, the
significance level. Type I error is sometimes called α
error.

At the end of an hypothesis test, the conclusion may be that there is
insufficient evidence to reject the null hypothesis. Yet it may be that the
the null hypothesis H0 is not true, and it should have been rejected. When
this happens, Type II error has been committed.

Type II Error

Type II Error is the error of failing to reject the null
hypothesis H0 when the null hypothesis is false.

The probability of committing Type II error is β.
Type II error is sometimes referred to as β error.

The symbol β is the second letter of the Greek alphabet, and is written
and pronounced ‘beta’. The probability of Type I error is α, and this equals
the significance level selected. In contrast, β, the probability of Type II
error, cannot usually be determined. While some statements can be made
concerning β, its exact level is usually unknown.

Explanation of Types of Error. These two types of error can be ex-
plained as follows. A test of a mean with significance level α and

H0 : µ = M
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H1 : µ 6= M

will be used to explain and illustrate these types of error. For this test, the
critical region is all Z values less than −Zα/2 or greater than Zα/2. If

Z =
Z −M

s/
√

n

is in the critical region, then H0 is rejected, and H1 accepted. If Z is not in
the critical region, then H0 is not rejected.

The hypothesis test proceeds assuming that the null hypothesis is true.
If X̄ is more than Zα/2 standard deviations from µ = M , then the null
hypothesis is rejected. This is usually the correct conclusion, because the
sample mean is so far from the hypothesized mean, that the hypothesis
µ = M is not likely to be correct.

Suppose now that the null hypothesis is true, and that µ = M . If this is
the case, most of the random samples selected would not have means that
fall into the critical region. But just by chance, there would be some of the
more unusual random samples which yield means which are in the region
of rejection of the null hypothesis. According to the construction of the
normal sampling distribution of X̄, there would be a proportion α of the
random samples which have these unusual sample means. But each time
a sample mean which lies in the region of rejection of H0 occurs, the null
hypothesis H0 is rejected. Thus, in α% of these samples, the null hypothesis
is rejected, even though it is true. This is the origin of the statement that
the probability is α that Type I error occurs.

The probability of Type I error can be written as a conditional proba-
bility:

P (Type I Error) = P (Rejecting H0/H0 is true) = α.

That is, if the null hypothesis is true, the conditional probability is α that
the null hypothesis is rejected. There is thus a maximum probability of α
of making Type I error. The consequence of Type I error will be discussed
after explaining Type II error.

Type II error can occur when the null hypothesis is not rejected. This
occurs when the sample mean is relatively close to the hypothesized mean,
so that Z is not in the region of rejection of H0. If the null hypothesis is
correct, or is very close to being correct, then this is the proper conclusion.
But suppose that that the sample mean is quite different from the value
µ = M , hypothesized in H0. By chance, perhaps because the sample size is
small, or because an atypical sample has been selected, suppose that the Z
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value from the sample is not large enough to be in the region of rejection of
H0. What has happened then is that the sample mean appears to come from
a population with mean µ = M , when in fact it comes from a population
with a mean different than M . The method of hypothesis testing has been
unable to separate the true mean of the population from the hypothesized
mean. It seems as if the null hypothesis is true, even though the true mean
is not equal to this hypothesized value. This is Type II error.

Type II error can be written as a conditional probability. This is

P (Type II Error) = P (Failing to Reject H0/H0 is not true) = β.

If the null hypothesis is not true, the conditional probability is β that the
null hypothesis is not rejected. There is thus a probability of β of making
Type II error.

Actual Situation
Decision Taken H0 True H0 Not True

Reject H0 Type I Error Correct Decision

Do Not Reject H0 Correct Decision Type II Error

Table 9.3: Types of Error in Hypothesis Testing

Table 9.3 summarizes the possible decisions and the types of error ass-
sociated with hypothesis testing. Note that there are correct decisions in
two cases, but that when rejecting the null hypothesis, there can be Type I
error. When not rejecting the null hypothesis, there can be Type II error.

Consequences of Types of Error. The situation in Table 9.3 seems
symmetrical with respect to the two types of error. But hypothesis testing
is ordinarily constructed so that the negative consequences of Type I error
are more serious than those for Type II error. In most hypothesis tests, the
researcher wishes to keep Type I error to quite a low level.

In order to understand why this should be the case, consider the claim of
the group of students in Example 9.2.1. The claim of this group of students
was that the mean study hours for all undergraduates was 20 hours per
week. The method adopted in hypothesis testing is to construct the test so
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that it is relatively difficult for the researcher to reject the null hypothesis.
If the null hypothesis is rejected, then this rejection is quite solidly based.

With H0 : µ = 20, and the α = 0.10 level of significance, the region of
rejection was all Z values which lie more than 1.645 standard deviations from
µ = 20. This means that the researcher must find a sample mean which lies
farther than 1.645 standard deviations from the hypothesized mean before
the null hypothesis can be rejected. But note that there is a chance of Type
I error, that µ = 20 and the sample just happens to be a group of students
whose sample mean X̄ is more than 1.645 standard deviations from center.
While this is unlikely, it could happen in 0.10, or 10%, of the random samples
selected from the population.

Now consider how Type II error could occur. Suppose that a random
sample of 494 students is taken, and the sample mean is X̄ = 19.5 hours per
week. Then

Z =
X̄ − µ

s/
√

n
=

19.5− 20
13.1/

√
494

=
0.5

0.589
= −0.85

and this Z is closer to the mean than 1.645 standard deviations. The null
hypothesis is not rejected and the conclusion is that µ = 20 is the mean hours
studied per week for undergraduates. But suppose that undergraduates
study only an average of 19 hours per week on average so that the true
mean is µ = 19. In this case, the hypothesis H0 : µ = 20 has not been
rejected, but this value for µ is incorrect. Type II error has occurred.

Whenever the null hypothesis is not rejected, it is almost inevitable that
there is Type II error, although exactly how incorrect such a conclusion
really is, may not be all that clear. The researcher may say that this is not
a very serious error. All that has happened is that the claim of µ = 20 is off
by a bit, and the researcher was unable to distinguish whether the true mean
is 19 hours or the hypothesized value of 20 hours. While the null hypothesis
may not be exactly correct, it is not all that incorrect either, and perhaps
it makes little difference if µ = 19 or µ = 20.

In contrast, the conclusion to reject H0 results in a more definitive state-
ment, one that concludes that µ = 20 is not correct. Based on this con-
clusion, the researcher may write something like ‘The null hypothesis that
µ = 20 is rejected at the 0.10 level of significance.’ The researcher has made
a fairly definite statement that the true mean is not 20. In contrast, when
the conclusion of the test is that the null hypothesis is not rejected, the re-
searcher may not really conclude that µ = 20. He or she may say something
like ‘The research results do not give a sample mean of exactly 20 hours,
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but the sample mean is not different enough from 20 to reject the claim that
the mean is 20.’ The researcher may not believe that µ = 20 is exactly true,
but concludes that the true mean is close to 20. The differences between the
hypothesized mean of 20, and the unknown true mean, may be relatively
small or inconsequential.

If the conclusion to not reject the null hypothesis has more serious con-
sequences to it, then the researcher can always change the significance level.
By increasing the significance level, the researcher can make it somewhat
easier to reject the null hypothesis.

The levels of the two types of error vary inversely, so that a reduction
in Type II error increases the possibility of Type I error. Recall that Type
I error is equal to the significance level. If the researcher wishes to reduce
Type I error, then a smaller significance level is chosen. The consequence of
this though, is that a higher level of Type II error could occur. When the
significance level is reduced, this means that a larger Z is required in order
to reject the null hypothesis. But a larger Z increases the set of values of
Z which could lead to nonrejection of H0, making it more difficult to reject
H0.

In order to see this, consider the one tailed test of numeracy levels in
Example 9.2.3. When the significance level was 0.05, the region of rejection
of H0 was all Z values exceeding 1.645. When the significance level was
reduced to 0.01, the region of rejection was Z > 2.33. The latter test is
more demanding in that a larger Z is required in order to reject the null
hypothesis. The sample mean of Z = 1.71 was sufficiently large to reject
the null hypothesis at the 0.05 level of significance. But at the 0.01 level
of significance, this Z was not large enough to conclude that the mean
numeracy level in Saskatchewan was greater than the Canadian level. It
is very likely that the mean numeracy level for Saskatchewan is somewhat
different that the Canadian average, but this cannot be proved at the 0.01
level of significance. Thus the requirement that Type I error be reduced by
lowering α has considerably increased the chance of Type II error.

Types of Error for a Pedestrian. The different consequences of Types
I and II error can be illustrated by a practical example, the decision a per-
son takes when deciding when to cross a street where there is a considerable
volume of traffic. It is unlikely that the person contemplating crossing the
street consciously considers the situation in the terms described here. Im-
plicitly though, each of us makes decisions in many aspects of daily life, and
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the considerations we take when making these decisions can be cast in an
hypothesis testing model.

Suppose a person contemplates crossing the street at a busy intersection.
The null and research hypothesis might be

H0 : It is unsafe to cross the street.

H1 : It is safe to cross the street.

Notice the manner in which the hypotheses have been constructed. The
assumption adopted at the beginning is that it is unsafe to cross the street.
The pedestrian wishes to make sure that if the street is to be crossed, then it
should be safe. The level of Type I error is to be a low number here, so that
if a decision to reject H0 is made, there is minimal error in this decision.
The assumptions, decisions, and types of error are summarized in Table 9.4.

The pedestrian begins with the assumption that it is not safe to cross the
street. Only if there is sufficient evidence to reject this hypothesis, does the
pedestrian take the decision to cross the street. In doing this, the pedestrian
gathers evidence by looking each way, and at a certain point decides that
the there is so little traffic that it is safe to cross. If the pedestrian is careful,
then a correct decision is made, and the conclusion to cross the street is the
correct decision, since it really is safe to cross. But it is possible that an
error has been made. The pedestrian may not notice a car coming, or may
misjudge the speed of a car, or the time it will take to cross. If it is not
safe to cross the street, but the pedestrian has decided to cross, an incorrect
decision is made. This is Type I error.

Actual Situation
Unsafe to Cross Safe to Cross

Decision Taken (H0 True) (H0 Not True)

Reject H0 and Cross Street Type I Error Correct Decision

Do Not Reject H0, Do not Cross Correct Decision Type II Error

Table 9.4: Types of Error Associated with Pedestrian Crossing a Street

If the pedestrian does not reject the null hypothesis, this means that the
pedestrian waits at the crossing. If it really is unsafe to cross, then this is
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the correct decision. But it may be that it was safe to cross, and yet the
pedestrian waits at the crossing longer than necessary. In this case, the null
hypothesis has not been rejected, even though it was incorrect. This is Type
II error.

The consequences of the two types of error can be seen to be quite
different. Committing Type I error by crossing the street when it is unsafe
is a dangerous decision, meaning that the pedestrian stands the risk of injury
or death. But if Type II error occurs, then this has the relatively minimal
consequence of resulting in waiting too long at the corner. The only negative
consequence of Type I error is that the pedestrian wastes time.

The situation with respect to hypothesis testing in the social sciences is
not as clear cut, nor does it have such different results, as this example. But
when conducting tests of hypotheses, most researchers decide what level of
Type I error they are willing to have, and then accept the consequences of
the Type II error associated with this. There are no hard and fast rules
concerning the proper level of significance to adopt in any given situation,
although some guidelines are provided in the next section.

Level of Risk. One consideration in deciding on the level of significance,
is the degree of risk the individual is willing to accept, and how the conse-
quences of the types of error are judged. In the example of a pedestrian, it
is possible to consider various types of approach that different people take
toward risk. A very cautious person is likely to adopt a very low level of
significance, making almost absolutely certain that the street is safe to cross
before deciding to cross. That is, the cautious person reduces the signifi-
cance level to a very low value, and thus reduces the chance of Type I error
to a minimal value. But in doing this, the cautious person may spend too
much time waiting at the corner. That is, reducing the level of Type I error
increases the Type II error. The consequence of the latter is that there may
be an overly long waiting time.

An individual who is willing to take more risks may be willing to take a
chance that the street is safe to cross, perhaps when it really is not all that
safe. That is, the risk taker is willing to live with a larger significance level,
and a higher level of Type I error. As a consequence, the risk taker spends
less time waiting. For the person in a hurry, the consequences of a long wait
in order to cross a street may have more negative aspects attached to them
than for the cautious person. As a result, the risk taker judges Type II
error as having more negative consequences than does the cautious person.
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Although the risk taker might not wish to contemplate the resulting higher
level of Type I error implicit in his or her decision, this consequence does
exist. That is, the risk taker has a greater chance of being hit by a vehicle
when taking chances in crossing a street.

Finally, the situation could also be described for a suicidal person. If an
individual wishes to get hit by a vehicle, then Type I error should be maxi-
mized, and Type II error minimized. This would ensure that this individual
takes decisions in such a way as to plan to get hit by a vehicle. This is not
ordinarily considered to be a rational way to make a decision. But it does
illustrate how a different set of goals can lead to quite a different way of
making a decision.

9.2.5 Choice of Significance Level

There are no hard and fast rule concerning the level of significance which
should be adopted for a particular hypothesis test. In Chapter 8, the same
situation occurred with confidence levels. Some guidelines were given there
concerning the choice of confidence levels. Many of the same guidelines
could be applied to hypothesis testing. These are summarized here.

1. The first rule to remember is that the level of significance should always
be reported. For hypothesis testing, you should also report whether
the test is a one tailed or a two tailed test.

2. If you are not sure which level to choose, for most social science prob-
lems the α = 0.05 level of significance can be used. It is the most
commonly used level and a level which is usually adequate for tests of
hypotheses in the social sciences.

3. If you wish to compare your results with those of other researchers,
then adopt the same level as they have used. If you later wish to
change the level, this can always be done. But as a first approach,
using the same significance level as others have used allows you to
compare research results.

4. If you wish to reduce the level of Type I error, then reduce the sig-
nificance level to a very low level, perhaps to α = 0.01, or even to
α = 0.001. Remember though that this implies a higher level of Type
II error. If the negative consequences of Type I error are not so neg-
ative, then it is preferable to provide a better balance of Types I and
II error by adopting a significance level such as 0.05 or 0.10.
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5. The last point suggests that some form of valuation could be placed
on the negative consequences of each type of error, and an optimal
solution to balancing these types of error could be obtained. This is
difficult in the social sciences, but is sometimes possible in decisions
in business or economics, and perhaps even in the political arena. If
monetary costs can be attached to the different types of error, then it
may be possible to evaluate the different costs expected with different
levels of significance. The significance level giving the lowest cost can
be chosen. In the example of the pedestrian, if time has an important
value, then the decision which minimizes the loss of time might be
made. In the sociology or psychology though, is difficult to imagine
exactly what could be minimized or maximized.

6. Where decisions involve matters of health and safety, or matters of
life and death, then the types of error should be adjusted so that the
negative consequences are minimized.

Imagine the sport of parachute jumping. Suppose the null hypothesis
is made that a parachute is unsafe, and only if it can be proven safe
would you be willing to use it to jump from an airplane. But since the
parchute is a mechanical device, there is always some chance that the
parachute cannot be proven 100% safe. Type I error here is the error of
concluding that the parachute is safe when, in fact, it is unsafe. What
level of Type I error would you be willing to accept before jumping?
Most of us would like a level of Type I error of under 0.01, that is, less
than 1 chance in 100 that the parachute would fail. But one failure
per 100 jumps would be too large a probability for most of us. Would
you be willing to jump if Type I error is reduced to 0.001? If not,
what about 0.0001? Of course, you could decide not to jump at all.
But those who do get involved in this sport are implicitly adopting
some level of Type I error, because the risk of the parachute failing
can never be reduced to exactly 0.

In the workplace, or dealing with issues of environmental health, we
also work with or accept various levels of Type I error for different
problems. We may not be aware of these, but they do exist. Pro-
ponents of nuclear energy may point to the very low probabilities of
Type I error associated with all the safety features built into nuclear
power generating stations. But even though the probabilities are very
low, the consequences of Type I error are extremely serious. A nuclear
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accident could destroy most life in the region of the accident. Thus
both the probabilities associated with the error, and the consequences
of that error need to be considered when making decisions.

It is sometimes difficult to decide what level of significance is best to
adopt. If you have any doubts, stick with the familiar levels such as 0.10,
0.05 and 0.01 that other researchers most commonly use. Another possibil-
ity is to report your conclusions for several different levels of significance.
It is even possible to avoid making a decision concerning the level of sig-
nificance. In Section 9.2.7, the method of determining the exact level of
significance associated with the sample statistic will be described. This al-
lows the reader to make his or her own decision concerning the implications
of this significance level.

9.2.6 Acceptance and Rejection

You may have noticed that the decision to accept the null hypothesis
has never been made in the discussion so far. The null hypothesis is adopted
as a working hypothesis for carrying out the test. If the statistic from the
sample is in the critical region, then the null hypothesis is rejected and the
research hypothesis is accepted. But when the statistic from the sample is
not in the critical region, then the conclusion is that the null hypothesis is
not rejected. When concluding the test, what might seem to be the next
logical step, that of accepting the null hypothesis, is not usually taken. The
conclusion is merely that the null hypothesis is not rejected.

The reason for this is built into the method of hypothesis testing. The
researcher wishes to reject claims which have been stated as null hypotheses.
By looking on Type I error as a more serious type of error than in Type II
error, and by selecting a small level of significance, strong conclusions from
research are provided when null hypotheses are rejected.

The decision to not reject a null hypothesis may leave the researcher in
a state of uncertainty, and this conclusion is not the most desirable to have.
If a researcher conducted a survey, and none of the sample data allow the
researcher to reject any of the null hypotheses made, then this research may
be regarded as producing little new in terms of findings. All this research
would be doing is confirming claims which had previously been made.

It is possible to reverse the direction of these types of error, selecting
a much larger significance level, or reversing the null and alternative hy-
potheses. This is not commonly done, although this may be required for
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some types of problems. For example, if the researcher wishes to prove that
the sample selected has almost exactly the same characteristics as the pop-
ulation from which the sample is drawn, then the hope is that the sample
statistic is very close to the value claimed in the null hypothesis.

For most hypothesis testing, the conventional method is to attempt to
reject H0, and to regard Type I error as being more serious than is Type
II error. If the researcher cannot reject the null hypothesis, the researcher
should not say that the null hypothesis is correct, or that the null hypoth-
esis has been proven. All that should be stated is that the evidence is
consistent with the null hypothesis. Alternatively, the researcher may say
that the evidence from the sample is not different enough from what has
been hypothesized to reject this null hypothesis. The researcher may still
not believe that the null hypothesis is correct, and may suggest that fur-
ther samples, studies, and research be conducted in order to obtain a more
decisive conclusion.

A few examples of hypothesis tests for a mean are given here. Following
this, a few more principles concerning hypothesis tests are discussed.

Example 9.2.4 Mean Income of Regina Families

According to the 1986 Census of Canada, the mean family income for
all Regina families was $41,894 in 1985. The Social Studies 203 Regina
Labour Force Survey also asked respondents to state their family income
and the summary statistics for the 834 respondents who provided data on
their family income was X̄ = $40, 088 and s = $23, 438. The data in this
Survey was obtained over the years 1986-1990. Based on the Survey data,
could you conclude that there has been a shift in the mean family income
in Regina from 1985 to the years from which the Survey data comes? (Use
α = 0.10). Comment on any possible errors there may be in the conclusion.

Solution. The question is whether the true mean income of Regina families
in the years 1986-90, µ, is equal to the 1985 level, or whether it has changed.
While the sample mean is below the 1985 level, the question concerning
whether the mean income has shifted or not does not give any hint of whether
the shift has been up or down, so that a two tailed test should be used.
A large shift in either the upward or downward directions would lead to
rejection of H0. This can be set up as an hypothesis test as follows:

H0 : µ = 41, 894
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H1 : µ 6= 41, 894

H1 states as a research hypothesis that the mean income has shifted, and
the null hypothesis H0 states that there has been no shift in mean income.
The test statistic is X̄ and since the sample size of n = 834 for the Regina
sample is reasonably large (greater than 30),

X̄ is Nor

(
µ,

σ√
n

)
.

For a significance level of α = 0.10 and with a two tailed test, the
critical region is all Z values of less than -1.645 or greater than +1.645. If
Z falls within the critical region, then the null hypothesis H0 is rejected. If
Z is outside the critical region, between -1.645 and +1.645, then the null
hypothesis is not rejected.

Based on the sample data, X̄ = 40, 088 and s = 23, 438. Since σ, the
true standard deviation of family income for Regina families, is unknown
but n is large, s can be used as an estimate of σ.

Z =
X̄ − µ

s/
√

n

=
40, 088− 41, 894

23, 438/
√

834

=
−1, 806

23, 438/28.8791

=
−1, 806
811.590

= −2.23

Since Z = −2.23 < −1.645, this Z value and the sample mean are in
the critical region. The conclusion is that at the α = 0.10 significance level,
the results are strong enough to reject the null hypothesis of no shift in the
mean income of Regina families. With 0.10 significance, the conclusion is
that the mean income has shifted.

Comments on the Conclusion. There are several possible errors that
might be involved in this conclusion. First, any time a null hypothesis is
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rejected, there is always the possibility of Type I error. That is, there is at
most an 0.10 chance that the null hypothesis of no shift in mean income is
correct, even though there was sufficient evidence to reject this hypothesis.

The other possible errors are errors connected with the sample. There are
many possible errors here. The sample may not be a random sample, so that
X̄ is not really Nor(µ, σ/

√
n). Further, there may be many nonsampling

errors such as incomplete coverage, wrong or misleading answers, and so on
that can occur in any survey. Finally, the data from the Regina Labour
Force Survey has been collected over 3-4 years, and during that time the
mean family income may have shifted. This makes the whole question a
bit ambiguous concerning what mean is really being measured. While the
statistical evidence supports a shift in family income, these nonsampling
errors make this conclusion somewhat uncertain. It would be best to have a
sample which is conducted at a single point in time in order to be confident
that the conclusion is well founded.

Example 9.2.5 Farm Size in Rural Municipality of Emerald

Example 7.2.2 provided interval estimates for farm size and flax yield in the
rural municipality of Emerald. Here some of this same data is used to test
hypotheses concerning farm size in this rural municipality. Test whether the
mean farm size in Emerald is equal to the mean Saskatchewan farm size of
419 hectares. Use the 0.05 level of significance. For the 47 farms sampled in
Emerald, X̄ = 492.1 and s = 440.5. Also test whether the mean cultivated
acreage for Emerald exceeds the Saskatchewan mean cultivated acreage of
781. For the 47 farms sampled in Emerald, X̄ = 1068.8 and s = 1029.7. Use
the 0.04 level of significance for the latter test.

Solution. The question is whether the true mean farm size for all farms
in the rural municipality of Emerald, µ, is equal to the mean farm size for
all Saskatchewan, or whether it is different. This implies that a tailed test
should be used here. This can be set up as an hypothesis test as follows:

H0 : µ = 419

H1 : µ 6= 419

H1 states as a research hypothesis that the mean farm size in Emer-
ald is different than the mean farm size for all Saskatchewan, and the null
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hypothesis H0 states that the mean farm size in Emerald is equal to the
Saskatchewan average. The test statistic is X̄ and since the sample size of
n = 47 for the sample is reasonably large (greater than 30),

X̄ is Nor

(
µ,

σ√
n

)
.

For a significance level of α = 0.05 and with a two tailed test, the region
of rejection is all Z values of less than -1.96 or greater than +1.96.

Based on the sample data, X̄ = 492.1 and s = 440.5. Since σ, the true
standard deviation for all farms is unknown, but n is large, s can be used as
an estimate of σ.

Z =
X̄ − µ

s/
√

n

=
492.1− 419
440.5/

√
47

=
73.1

440.5/6.856

=
73.1

64.2535

= 1.14

Since Z = 1.14 > −1.96 and Z = 1.14 < 1.96, this Z value and the sam-
ple mean are not in the critical region. The sample mean for Emerald does
exceed the average for all Saskatchewan. But at the α = 0.05 significance
level, the results are not strong enough to reject the null hypothesis that
the mean farm size for all Emerald farms is different from the Saskatchewan
average.

Note that there is the possibility of Type II error here, that the true mean
for Emerald may differ from the Saskatchewan mean, but that we cannot
conclude that these two differ. The two means probably do differ, but the
sample mean does not differ sufficiently from the hypothesized mean to make
this conclusion. A larger sample might also have helped in distinguishing
the farms of Emerald from Saskatachewan farms as a whole.

This test is much the same as the first test, except that this is a one
tailed test. Let µ be the mean cultivated acreage for all farms in the rural
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municipality of Emerald. The question is whether µ is equal to the mean
cultivated acreage for all Saskatchewan farms, or whether it is larger than
that for all Saskatchewan farms. This implies that a one tailed test should
be used here. The hypotheses are:

H0 : µ = 781

H1 : µ > 781

H1 states as a research hypothesis that the mean cultivated acreage in Emer-
ald is larger than the mean cultivated acreage for all Saskatchewan, and the
null hypothesis H0 states that the mean cultivated acreage in Emerald is
equal to the Saskatchewan average. The test statistic is X̄ and since the
sample size of n = 47 for the sample is reasonably large (greater than 30),

X̄ is Nor

(
µ,

σ√
n

)
.

For a significance level of α = 0.04 and with a one tailed test, the critical
region is all Z values greater than +1.75.

Based on the sample data, X̄ = 1068.8 and s = 1029.7. Since σ, the
true standard deviation for all possible samples, is unknown, but n is large,
s can be used as an estimate of σ.

Z =
X̄ − µ

s/
√

n

=
1068.8− 781
1029.7/

√
47

=
287.8

1029.7/6.856

=
287.8

150.1896

= 1.916

Since Z = 1.916 > 1.75, this Z value and the sample mean are in the
critical region for the test. At the α = 0.04 significance level, the results are
strong enough to reject the null hypothesis that the mean cultivated acreage
for all Emerald farms is no different from the Saskatchewan average. We can
accept the research hypothesis that the mean cultivated acreage for farms
in Emerald exceeds the Saskatchewan average.
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9.2.7 Exact Levels of Significance

There are two approaches to choosing the level of significance when test-
ing hypotheses, the traditional method and the method of determining the
exact significance level. The method outlined so far in this chapter is the
traditional method of picking the level of significance first, and determining
the critical region from this. The level of significance may be 0.10, 0.05,
0.01 or some other level. In this traditional approach, statisticians generally
suggest that the significance level be selected before examining the data.
Once the level of significance has been selected, if the statistic falls in the
critical region, the null hypothesis is rejected. If the statistic does not fall
into this region, then the null hypothesis is not rejected. This decision is a
clear cut one, either the null hypothesis is rejected, or it is not rejected, at
the given level of significance.

An alternative method is to be guided by the exact significance level
associated with the Z value from the data. That is, the test is conducted
as before, but without selecting a level of significance or a critical region.
The sampling distribution of the statistic is determined, and the Z value
obtained from the sample data. Then the exact significance associated with
this Z can be determined. The conclusion is then not necessarily a hard
and fast decision to reject or to not reject H0. Instead, it may be left to the
reader to decide whether the evidence is strong enough to reject H0.

The method of determining the exact level of signficance is to first obtain
the Z value of the sample statistic from the sample data. Let this be Zc.
Then the area in the tail of the distribution, αc that lies beyond Zc is
obtained from column B of the normal table. This area is referred to as the
exact probability in the case of a one tailed test. In the case of a two tailed
test, this area is doubled in order to determine the exact level of significance.

The exact level of significance is an area which represents the conditional
probability of Z values, assuming the null hypothesis is true. The hypothesis
test begins by assuming that the null hypothesis is true. If this is a one tailed
test in the positive direction, then the area under the normal curve that lies
beyond Zc represents the probability of obtaining a Z of that size or larger.
That is,

P

(
Z > Zc

H0 is true

)
= αc.

If this probability is a very small number, then the null hypothesis is rejected,
and the alternative hypothesis accepted. The reader can decide how low
this probability should be. If αc = 0.055, then at the α = 0.05 level of



HYPOTHESIS TEST FOR A MEAN 597

significance, the null hypothesis would not be rejected, because the Z value
is not quite in the region of rejection. But it is close to the region of rejection,
and may provide fairly strong evidence that the null hypothesis is not true.
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Figure 9.5: Exact Significance for Test of Numeracy Level

Example 9.2.6 Numeracy Levels

In Example 9.2.3, the null hypothesis was that the mean numeracy level
for Saskatchewan is 2.378, equal to the Canadian mean level. The sample
mean for n = 374 Saskatchewan adults was X̄ = 2.444. The Z value which
resulted from this was Z = 1.71. Examining column B of the normal table
of Appendix H, there is 0.0436 of the area under the normal curve that lies
to the right of Z = 1.71. Thus the exact significance level is 0.0436. The
result might be reported as follows, and is illustrated in Figure 9.5.

One tailed
n X̄ Z Significance

374 2.444 1.71 0.0436

The sample mean of X̄ = 2.444 can be seen to correspond to Z = 1.71
in Figure 9.5. To the right of Z = 0.0436 the shaded area is 0.0436 in size.
If the 0.05 level of significance is selected, this must include all the shaded
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area, and more. The null hypothesis could be rejected at any significance
level just above 0.0436.

If the researcher gives all of this information, then the reader can see
how much the sample mean differs from the hypothesized mean, what the
Z value is, and what the exact significance associated with that Z is. If
the traditional method had been used, all that would have been reported
may have been the sample mean and the conclusion that the null hypothesis
could be rejected at the 0.05 level of significance.

Example 9.2.7 Study Hours of Students

In Example 9.2.2 the null hypothesis was that the students study a mean
of 20 hours per week. This was a one tailed test with the alternative hy-
pothesis being that the study hours were less than 20 hours per week. The
sample mean was X̄ = 18.8 using a random sample of n = 494 undergradu-
ates. The Z value was -1.996, or rounded to 2 decimals Z = 2.00. The area
under the normal curve that lies farther from center than -2.00 is 0.0227.
This might be reported:

One tailed
n X̄ Z Significance

494 18.8 -2.00 0.0227

Again, more information is provided than if the researcher reported only
that the hypothesis had been rejected at the 0.05 level of significance. Given
the 0.0227 area to the left of Z = −2.00, it is clear that the null hypothesis
could have been rejected at the 0.03, or the 0.025 level, or any other level of
signficance down to just above 0.0227.

For a two tailed test, this method must be altered slightly, with the
probabilities given above being doubled. That is, the areas given so far
represent areas in one tail of the distribution, But if the test is a two direction
test, then the significance should be reported as the combined area in the
two tails that would lie outside the Z value. That is, if Zc is the Z value
determined from the sample, let αc/2 be the area farther from centre than
this. Then the area to the left of −Zc is αc/2 and the area to the right of
Zc is αc/2. The sum of these areas in the tails of the distribution is α. This
is illustrated in the following example.
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Example 9.2.8 Mean Farm Size in the Rural Municipality of Emer-
ald

The first hypothesis test in Example 9.2.5 examined whether the mean
farm size in the rural municipality of Emerald could be considered differ-
ent than the mean farm size in all of Saskatchewan. For that test, the null
hypothesis was that the mean farm size in Emerald was 419 and the alter-
native hypothesis was that the mean farm size was not 419. This was a
two tailed test, with no prior suspicion concerning the direction of the test.
The sample statistics from the sample of n = 47 farms are X̄ = 492.1 and
s = 440.5. The Z value computed from these statistics and the null hypoth-
esis is Z = 1.14. The exact significance associated with this test is the area
under the normal curve which lies more than 1.14 standard deviations from
the centre of the distribution. This is the area under the normal curve to
the right of Z = 1.14, plus the area under the normal curve that lies to the
left of Z = −1.14. From the normal table, there is 0.1271 of the area in the
tail of the normal distribution that lies to the right of Z = 1.14. Since the
normal curve is symmetric, the same area lies to the left of Z = −1.14. The
total area in the two tails of the distribution is 0.1271 + 0.1271 = 0.2542,
and this is the exact significance associated with a two tailed test for this
data.

This value can be interpreted as a probability as follows. If the null
hypothesis is true, the probability that the sample mean lies 1.14 standard
deviations or more from the hypothesized mean is 0.2542. A null hypothesis
is ordinarily rejected only if the probability of obtaining the sample mean is
quite low, assuming that the null hypothesis is true. In this case, 0.2542 is
not all that low, meaning that there is a considerable chance that a sample
mean of 492.1 could have been obtained even when the true mean is 419. As
a result, the null hypothesis would not ordinarily be rejected on the basis of
this sample.

9.2.8 Critical Region in Units of X.

The region of rejection of H0, or the critical region, for the test of signifi-
cance, has been identified by using Z values. It is sometimes useful to define
this critical region in units of the value of the variable being tested. This is
briefly explained in the next paragraph and two examples are given in this
section. Figure 9.6 presents the critical region in units of X diagramatically.
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Suppose the level of significance is α for the one tailed hypothesis test

H0 : µ = M

H1 : µ > M

The region of rejection of H0 is all Z values greater than Zα, since the null
hypothesis will be rejected only if Z > Zα in the right tail of the sampling
distribution of X̄. This critical region can easily be stated in terms of the
units of the variable X. This is based on the sampling distribution of X̄:

X̄ is Nor
(

µ,
σ√
n

)
.

The region of rejection begins at Zα standard deviations to the right of
centre. Since one standard deviation in the sampling distribution of X̄ is
σ/
√

n, then Zα standard deviations to the right of centre is

Zα
σ√
n

in units of the variable X. Thus the critical region begins at

µ + Zα
σ√
n

.

Since µ is hypthesized to equal M , and σ is estimated by s when n is large,
the critical region is all values of the sample mean X̄ exceeding

M + Zα
s√
n

.

For this test, the conclusions of the hypothesis test are to reject H0 if

X̄ > M + Zα
s√
n

and do not reject H0 if
X̄ < M + Zα

s√
n

.

If the test is a one tailed test that µ < M , then the critical region would
be all values of X̄ to the left of

M − Zα
s√
n

.
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If the test is a two tailed test, then the significance level α is split equally
between the two tails of the distribution, with α/2 of the area in each tail.
If the critical Z value is Zα/2, then the region of rejection of H0 would be
all values of X̄ less than

M − Zα/2
s√
n

or values of X̄ greater than

M + Zα/2
s√
n

.

In the following examples a one tailed test for numeracy level is given first,
and a two tailed test for the weekly study hours of students follows.

Example 9.2.9 Numeracy Levels

Examples 9.2.3 and 9.2.6 presented one tailed tests to determine whether
the mean Saskatchewan numeracy level exceeded the Canadian mean level.
The hypotheses were

H0 : µ = 2.378

H1 : µ > 2.378

and the level of significance was α = 0.05. From the sample, n = 374,
X̄ = 2.444 and s = 0.747. The region of rejection for a one tailed test
at 0.05 significance is all Z values greater than 1.645. With this data, the
standard deviation of the sampling distribution of X̄ is

s√
n

=
0.747√

374
=

0.747
19.339

= 0.0386.

A distance of 1.645 standard deviations above centre is

1.645
s√
n

= 1.645× 0.0386 = 0.0635

units of numeracy to the right of centre. Since the null hypothesis is that
µ = 2.378, the region of rejection begins at

µ + 1.645
s√
n

= 2.378 + 0.0635 = 2.442.

That is, sample mean of 2.442 or greater, on the numeracy scale, would lead
to rejection of the null hypothesis and acceptance of the research hypothesis.
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From this sample, X̄ = 2.444 > 2.442 so that the null hypothesis can be
rejected at the 0.05 level of significance. Note that this is the same conclusion
as that obtained in the previous examples.

Example 9.2.10 Study Hours of Students

Example 9.2.1 tested whether the study hours of students differed from
hypothesized value of M = 20 hours. The level of significance adopted was
0.10, and the alternative hypothesis was a two directional hypothesis. This
meant that the region of rejection of H0 was all Z values which lie in either
the upper 0.10/2 = 0.5 of the distribution, or the lowest 0.05 of the area
under the normal curve. An area of 0.05 in the tail of the normal curve is
associated with Z = 1.645.

Figure 9.6: Rejection Region for Study Hours in Hours per Week

Figure 9.6 gives the regions of rejection and of nonrejection of H0 in terms
of both Z and hours per week. The region of rejection is all Z values which
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are further than 1.645 from the centre of the distribution. This translates
into hours of study per week of less than 19.0 or greater than 21.0.

For the sample, n = 494, X̄ = 18.8 hours and s = 13.1 hours. Using this
data, the critical values are:

M − Z0.05
s√
n

and M + Z0.05
s√
n

20− 1.645
13.1√
494

and 20 + 1.645
13.1√
494

20− (1.645× 0.589) and 20 + (1.645× 0.589)

20− 0.97 and 20 + 0.97

19.03 and 20.97

The region of rejection of H0 is all sample means of less than 19.0 hours per
week or greater than 21.0 hours per week. The sample mean was X̄ = 18.8
and this is in the region of rejection of the null hypothesis. At the 0.10
level of significance, the null hypothesis is rejected, and this test shows that
students do not study 20 hours per week.

9.2.9 Hypothesis Tests and Interval Estimates

In Chapter 8, it was claimed that interval estimation is very similar to
hypothesis testing. This section will is devoted to showing that a two tailed
hypothesis test at the α level of significance is identical with the (1−α)100%
interval estimate. For example, a two tailed test of hypothesis at the 0.05
level gives essentially the same conclusions as can be obtained with the 95%
confidence level.

This can be seen using the method of the last section, and the diagram in
Figure 9.7. A null hypothesis begins by assuming that the sample mean takes
on a specific value, µ. If this is a two tailed test at the α level of significance,
then the critical values for the test are Zα/2 standard deviations on each side
of centre. Thus the region of rejection of H0 is all sample means X̄ greater
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Figure 9.7: Hypothesis Testing and Interval Estimation

than µ+Zα/2
σ√
n

or less than µ−Zα/2
σ√
n
. This is represented as the shaded

portion of Figure 9.7. If X̄ falls in the interval
(

µ− Zα/2
σ√
n

, µ + Zα/2
σ√
n

)

then the null hypothesis is not rejected.
The confidence intervals for µ are intervals constructed around X̄ plus

or minus the appropriate number of standard deviations. The α level of
significance is associated with an area of α/2 in each tail of the distribution,
leaving an area of 1−α in the centre. In percentages this is (1−α)100% of
the area under the curve. As can be seen in Figure 9.7, the Z value for the
confidence interval is the same as the Z value for the two tailed hypothesis
test. That is, the confidence interval estimates are

X̄ ± Zα/2
σ√
n

.
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It can be seen that the width of this interval is the same as the width of the
region of nonrejection of H0 in the middle of the distribution.

This means that for any sample mean X̄ which lies in the centre of the
distribution, in the region where H0 is not rejected, has an interval which
is wide enough to contain the hypothesized mean µ. On the other hand,
if X̄ lies in the region of rejection of the null hypothesis, then the interval
constructed around X̄ will not contain µ. In this latter case, the sample
mean is so far from µ that even an interval of Zα/2 standard deviations on
each side of X̄ will not contain µ.

The above discussion shows that if X̄ is distant from the hypothesized
µ, in the region of rejection of H0, the null hypothesis is rejected and the
interval estimate does not contain µ. But if X̄ is close enough to µ so that
the null hypothesis is not rejected, then the interval estimate also contains
µ. Thus interval estimation produces essentially the same result as the
hypothesis test. This may become clearer in the following examples.

Example 9.2.11 Study Hours of Students

From Examples 9.2.1 and 9.2.10, the hypotheses for the mean study
hours of students are

H0 : µ = 20

H1 : µ 6= 20

Example 9.2.10 showed that for the 0.10 level of significance the critical
values for the region of rejection of H0 are 19.0 to 21.0. That is, 1.645
standard deviations on each side of µ = 20 is

µ± Zα/2
s√
n

20± 1.645
13.1√
494

20± 0.97

or rounded to the nearest tenth of an hour, this is

(19.0 , 21.0)
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The 90% confidence interval for any sample mean which falls between
19.0 and 21.0 would contain µ. The (1−α)100% = 90% interval estimate is

X̄ ± Zα/2
s√
n

X̄ ± 1.645
13.1√
494

X̄ ± 0.97

or X̄ plus or minus 1.0 hour. Any X̄ just under 21.0 hours, or just over
19.0 hours, would lead to an interval which contains µ = 20. For example, if
X̄ = 19.1, the interval would be (18.1, 20.1) and this contains µ = 20. But
any sample mean that lies below 19.0 hours, or above 21.0 hours, would not
contain the mean µ = 20. The sample of 494 undergraduates gave a sample
mean of X̄ = 18.8 hours. The 90% interval constructed around this sample
mean in Example 8.3.1 was (17.8, 19.8) and this does not contain µ = 20.
The confidence interval of Example 8.3.1 could have been used to reject the
null hypothesis that µ = 20, at the 0.10 level of signficance, since 20 hours
was outside the limits of the 90% interval estimate.

The similarity of interval estimates and hypothesis test does not extend
to one tailed tests of significance. In a one tailed test, all of the α level of
significance is placed in one tail of the distribution. In a two tailed test, the α
level of significance is split equally between the two tails of the distribution.
This is the same procedure that is used in the confidence interval estimates.
But confidence intervals are always symmetrical about the sample statistic,
so that there is nothing comparable to a one tailed test in the method of
interval estimates.

9.2.10 Summary

This section has provided an extended discussion of the principles of hypoth-
esis testing. For each part of the explanation, a test of a mean with a large
sample size has been used as the basis for these explanations. Each of these
principles can be more applied to other types of hypothesis test. While there
are other modifications of hypothesis testing which can be carried out, this
section has outlined most of the main principles used in test of hypotheses.

If you have difficulty following some of the tests in the following sections,
it may be worthwhile to review some of the principles of testing discussed in
this section. In subsequent sections it will be assumed that you have some
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familiarity with concepts such as types of error, exact significance levels,
and the difference between one and two tailed tests.

9.3 t Test for a Mean, Small n

In Section 8.4.1 of Chapter 8, interval estimates for the mean for a small
random sample were discussed. These interval estimates used the t distribu-
tion to describe the sampling distribution of X̄. The method of constructing
the interval estimates using the t distribution was identical with the method
used for a large sample size, except that the t value replaced the Z value.
This could be done because when the sample size is small, X̄ has a t dis-
tribution with mean µ, standard deviation s/

√
n and d = n − 1 degrees

of freedom. The assumption on which the t distribution is based is that
the population from which the sample is drawn is a normally distributed
population, and that the sample is random.

This same t distribution can be used to conduct tests of hypotheses
concerning population means for small sample sizes. Again the method is
the same as the methods just discussed for tests of the mean when the sample
size is large. A short description of the assumptions and method when
the sample size is small is contained in the following paragraphs. Several
examples of the t test for a mean in the case of small random samples follow
this discussion.

The t Test. There are many t tests which can be conducted, but the
test described in this section is a t test for a single mean when the sample
size is small. Suppose that a variable X measures a characteristic of a
population for which the true population mean and standard deviation,
µ and σ, respectively, are both unknown. In addition, suppose that the
population is a normally distributed population. Then,

X is Nor (µ, σ).

Further suppose that random samples of size n are drawn from this popu-
lation. Then the sampling distribution of the sample mean is

X̄ is td

(
µ,

s√
n

)
.

where d = n− 1 and s is the standard deviation of the sample.
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If the sample size n is small, then X̄ is usually described on the basis
of the t distribution. If n > 30, then the t values become so close to the
standardized normal values Z that the Central Limit Theorem can be used
to describe the sampling distribution of X̄.

The steps involved in conducting an hypothesis test using the t distribu-
tion are the same as adopted earlier for the test of a mean when the sample
size is large. The null hypothesis, H0, states that µ is equal to some specific
value. The alternative hypothesis could take the form of a two directional
inequality, or it could be a one directional inequality. Using the former, and
hypothesizing a value M for the mean,

H0 : µ = M

H1 : µ 6= M

The test statistic is X̄ and if the sample is a random sample from a normally
distributed population with unknown standard deviation,

X̄ is td

(
µ,

s√
n

)
.

where d = n− 1. A level of significance, α is selected and the t table can be
used to obtain the appropriate t value. Since this is a two tailed test, α is
split equally between the two tails. Let tα/2 be the t value from the t table
which defines the critical region for the test. The region of rejection of H0

is all t values from the sample which are farther from the centre than tα/2.
The data from the sample is then used to determine the t value. This t

value is a standardized value so that the t value can be constructed as

t =
Variable−Mean of Variable

Standard Deviation of Variable
and this produces a t value with mean 0 and standard deviation 1. For the
test of a mean, the variable is X̄, and the mean of X̄ is µ. Since µ has been
hypothesized to equal M , the mean of X̄ is M for purposes of conducting
the test. For the t distribution, the standard deviation of X̄ is s/

√
n. The

standardized t value for this t test is

t =
X̄ −M

s/
√

n

If this t value either exceeds tα/2 or is less than −tα/2, then the null hy-
pothesis is rejected and the alternative hypothesis accepted. If the t value
from the sample is between tα/2 and −tα/2, then the null hypothesis is not
rejected.



T TEST FOR A MEAN, SMALL N 610

Using the t table. The t table provides the critical t values for various
levels of significance for both a two tailed and a one tailed test. At the top
of the t table are various levels of confidence, and these are used when de-
termining the confidence intervals of Chapter 8. For a two tailed hypothesis
test, refer to the row labelled ‘2 Tailed.’ This is the row which gives the
two tailed signficance levels. For a two tailed test at the α = 0.05 level of
significance and 12 degrees of freedom, go to the column labelled 0.05 in
the ‘2 Tailed’ row, and go down that column until you reach 12 degrees of
freedom. You will see a value of 2.179. This is the t value so that there is a
total of 0.05 of the area in the two tails of the distribution which lie farther
than 2.179 standard deviations from centre. There is 0.05/2 = 0.025 of the
area to the right of t = 2.179 and another 0.025 of the area to the left of
t = −2.179.

In terms of the notation, if α = 0.05, then α/2 = 0.05/2 = 0.025 and
t0.025 = 2.179 for 12 degrees of freedom. Note that the probability that for
a t value with 12 degrees of freedom

P (t > 2.179) = 0.025

and
P (t < −2.179) = 0.025.

For a one tailed test, use the row in the t table labelled ‘1 Tailed’, where
the values are exactly one half the values in each ‘2 Tailed’ value. In the
1 tailed test, all of the α level of significance is placed in one tail of the
distribution, whereas this α is split equally between the two tails in the two
tailed test. Thus the t values for the one tailed test correspond to the t
values for the 2 tailed test at double the level of significance.

9.3.1 Examples of Hypotheses Tests, Small n

This section contains several examples of hypothesis test using the t distri-
bution when the sample size is small.

Example 9.3.1 Numeracy, a Small Sample

The literacy survey examined in several previous examples gave a mean
numeracy level of 2.378 for all Canadians. Recall that numeracy was mea-
sured on a 3 point scale with 1 being the lowest level of numeracy and 3 being
the highest level. Suppose that a small random sample of 10 Saskatchewan
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adults is selected, and their numeracy levels are 3, 3, 3, 3, 3, 3, 3, 2, 1 and
3. If you had only the data from this sample of size 10, could you con-
clude that the mean level of numeracy of all Saskatchewan adults exceeds
the mean Canadian numeracy level? (0.05 level of significance). Discuss any
possible errors in your conclusions.

Solution. Let µ be the true mean numeracy level for Saskatchewan. The
null and alternative hypotheses are

H0 : µ = 2.378

H1 : µ > 2.378

In words, the null hypothesis is that the true mean numeracy level for
Saskatchewan equals the Canadian mean level. Since the question asks
whether the mean level for Saskatchewan exceeds the mean level for Canada,
a one tailed alternative hypothesis in the positive direction is used.

The test statistic is X̄ and if the sample is a random sample from a
normally distributed population with unknown standard deviation,

X̄ is td

(
µ,

s√
n

)
.

where d = n − 1. The suitability of these assumptions is discussed later.
The level of significance specified is α = 0.05. The sample has size 10 so
that there are d = n − 1 = 10 − 1 = 9 degrees of freedom in the sampling
distribution of X̄. From the t table, for a one tailed test at the 0.05 level
of significance, and 9 degrees of freedom, the t value is 1.833. The region
of rejection of H0 is all t values of 1.833 or more. If the t value from the
sample is less than 1.833, then there is insufficient evidence to reject the null
hypothesis.

The next step is to obtain the mean, standard deviation, and t value
from the sample. Using the formulae for the mean and standard deviation
in Chapter 5, X̄ = 2.700 and the standard deviation s = 0.675. Thus the t
value for this sample is

t =
X̄ − µ

s/
√

n

=
2.700− 2.378
0.675/

√
10

=
0.322
0.213
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= 1.509 < 1.833

Since the t value from this sample of size 10 is not in the region of rejection of
H0, the null hypothesis cannot be rejected. At the 0.05 level of significance,
there is insufficient evidence to conclude that the mean level of numeracy in
Saskatchewan exceeds the mean level for Canada as a whole.

Figure 9.8: Test for Equality of Saskatchewan and Canadian Numeracy

Figure 9.8 shows diagramatically how the test could be conducted. The
X̄ value is given along the horizontal axis, and is hypothesized to equal
µ = 2.378. The standard deviation for this distribution is 0.213 units of
numeracy (on the 3 point scale). The vertical axis represents the probability
of occurrence of the different values of X̄. The t values which correspond
to each of the values of X̄ are also given below the horizontal axis, with
the regions of rejection and of nonrejection of H0 shown. The shaded area
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in the right tail of the t distribution has an area of α = 0.05. For the t
distribution with 9 degrees of freedom, this area begins at t = 1.833. It can
be seen in the diagram that the value of the t statistic is 1.509, and this is
not in the critical region. As a result, the null hypothesis that the mean
level of numeracy for Saskatchewan is no different that the Canadian mean
is not rejected.

Possible Errors in this Test.
One type of error which very likely does occur in this test is Type II error,

the error of failing to reject the null hypothesis when it is not true. The
conclusion of the test was that the null hypothesis cannot be rejected. This
means that the hypothesis that the mean numeracy level for Saskatchewan
is the same as for all Canada could not be rejected. It seems very unlikely
that the mean numeracy level for all Saskatchewan would be exactly equal
to the mean level for Canada. What the test shows is that this sample does
not present evidence strong enough to reject this hypothesis. As a result,
Type II error likely occurs here.

Another type of error is possible violation of the assumptions concerning
the use of the t distribution. If the sample is truly a random sample, then
the assumption of randomness is satisfied. But it seems very unlikely that
numeracy as measured on this scale is normally distributed. Table 9.1 gave
the distribution of numeracy ability for the sample of 374 Saskatchewan
adults, and it can be seen that this distribution is far from normal. As a
result, the assumption that the population from which the sample is drawn
is normal, is unlikely to be satisfied. This could contribute additional error
to the conclusion. However, since the conclusion was to not reject the null
hypothesis, this is a cautious conclusion. Violation of the normality assump-
tion is not likely to cause any particular problems here. If the decision had
been the stronger one, to reject the null hypothesis, then the violation of
normality might have made this an invalid conclusion.

The numeracy scale is no more than an ordinal level scale, but it is
treated here as if it was an interval level scale. The determination of the
mean and standard deviation, and the use of the t test assume that an
interval level scale is being used. Since the results have been interpreted
very cautiously, violation of this assumption is not likely to cause serious
difficulties.

Additional Comments. One solution to the problem of Type II error
would be to select a larger sample size. Recall Examples 9.2.3 and 9.2.6
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where the sample size was n = 374 and X̄ = 2.444. There X̄ did not differ
as much from the hypothesized mean of µ = 2.378 as it does in this example.
Yet the null hypothesis was rejected at the 0.05 level of significance.

Another possible solution would be to increase the level of significance.
Suppose that a significance level of α = 0.10 is adopted. At 9 degrees of
freedom, the critical region for this test is all t values of 1.383 or more. Since
t = 1.509 > 1.383, the null hypothesis could be rejected at the 0.10 level
of significance. In doing this, there may be Type I error, rejecting the null
hypothesis when it is not really incorrect. But the main error here is likely
to occur because the population is not a normal population. That is, if the
null hypothesis is rejected at the fairly large level of 0.10, this is not all that
certain a result at the best of times, with a 0.10 level of Type I error.

In conclusion, it seems best to stick with the weak conclusion that this
sample does not tell us much concerning whether the mean level of numeracy
differs between Saskatchewan and Canada as a whole. The sample certainly
suggests a higher numeracy level for Saskatchewan than for Canada, and
there is no evidence that the mean would be lower for Saskatchewan. But
the sample mean for this small sample size does not really differ enough
from the Canadian mean to conclude that Saskatchewan has a higher mean
numeracy level.

Example 9.3.2 Bayley Scores for a Comparison Group of Teen
Mothers

Appendix D, contains a data set from a pilot program conducted by
Saskatchewan Social Services. This program involved adolescent mothers,
with a program of support services being made available to a number of
these mothers. Another group of adolescent mothers who did not receive
the same support services was also studies, and constituted a comparison,
or control group. Bayley scores were obtained for the children of all these
mothers, both those who participated in the program, and the control group.
The Bayley score is a measure of the level of infant development and has
been standardized so that a mean score of 100 would be expected if a cross
section of all infants were tested.

Use the t test to test whether the infants of mothers in the control group
(Group 2 in Appendix D) have a mean Bayley score which differs from the
expected mean of 100. Use the 0.10 level of significance. Also test whether
the mean Bayley score for the infants of the mothers in the program exceeds
100.
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Solution. Let µ be the expected mean for the infants of mothers in the
Group 2, the control group, assuming that the children in this group rep-
resent a broad cross section of all children. The null hypothesis is that
µ = 100. Since no direction has been specified for the alternative hypoth-
esis, and since before the data is collected, the researcher does not even
know the sample mean score for these children, this is a two tailed test. The
hypotheses are

H0 : µ = 100

H1 : µ 6= 100

In the comparison group, the sample of mothers totalled n = 13. Assuming
that the distribution of Bayley scores is normal, the sample mean of a ran-
dom sample of children would have a t distribution with d = n−1 = 13−1 =
12 degrees of freedom. At the 0.10 level of significance for a two tailed test,
the critical t value is 1.782. A t value of less than −1.782 or greater than
+1.782 would provide evidence that the children in the comparison group
have a different mean level of Bayley score than do children generally. If
the t value is not in the critical region, then the children can be regarded as
representing a reasonable cross section of children.

From Appendix D, the statistics for the Bayley scores for the children in
Group 2 can be obtained. For this sample of 13 children, the mean Bayley
score is X̄ = 98.61 and the standard deviation is s = 5.39. The t value for
this data is

t =
X̄ − µ

s/
√

n

=
98.61− 100
5.39/

√
13

=
1.39
1.495

= 0.930

and this value is not in the critical region. The null hypothesis that the
mean Bayley score for these children differs from the overall average score
for all children cannot be rejected at the 0.10 level of significance. While
these children have a slightly lower than average Bayley score, the difference
is too small to argue that these children have a different mean than children
generally do.
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For the 28 children whose mothers participated in the project, the mean
Bayley score was 109.2 and the standard deviation of the score was 13.16.
As an exercise, you can show that the t value for this sample is sufficiently
large that the null hypothesis that the mean is 100 can be rejected at the
0.0005 level of significance with a one tailed test.

These results provide evidence that the program had some effect on
helping child development. The comparison group, which did not participate
in the program, can be regarded as a cross section of ordinary children,
with no higher or lower Bayley score than children in the population as a
whole. The children whose mothers participated in the project appear to
have achieved a somewhat greater level of development, based on the higher
than normal Bayley score.

Example 9.3.3 Attitude Survey - Small n

A random sample of 7 Regina adults is asked the question “Is the government
more on the side of business than labour in labour relations?” The responses
are coded on a 4 point scale with 1 being strongly agree, 2 being agree
somewhat, 3 being disagree somewhat and 4 being strongly disagree. The
responses of the 7 adults are 1, 1, 3, 1, 2, 2, and 1. Someone claims that
people in Regina are equally split between agree and disagree on this issue
and the mean response for all Regina adults would be 2.5. Use the sample
data to test whether the mean response differs from 2.5. Comment on the
conclusion.

Solution.
Let the true mean opinion level of all Regina adults be µ. In doing this,

the ordinal attitude scale is being treated as an interval level scale. The null
and research hypotheses are

H0 : µ = 2.5

H1 : µ 6= 2.5

The null hypothesis states that the true mean level of opinion is in the
middle of the scale. If people were equally split between agree and disagree,
then the mean would be 2.5. Since no direction is indicated concerning the
test, treat this as a two tailed test, and the alternative hypothesis is that µ
is not equal to 2.5.
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The test statistic is the sample mean, and if the sample is a random
sample from a normally distributed population, then

X̄ is td

(
µ,

s√
n

)
.

where d = n− 1. The level of significance is not stated in the question, but
is selected as α = 0.10 for this test. The sample has size 7 so that there are
d = n− 1 = 7− 1 = 6 degrees of freedom in the sampling distribution of X̄.
From the t table, for a two tailed test at the 0.10 level of significance, and
6 degrees of freedom, the t value is 1.943. The region of rejection of H0 is
all t values greater than 1.943 or less than -1.943. If the t value from the
sample is betweem -1.943 and +1.943, then there is insufficient evidence to
reject the null hypothesis.

The next step is to obtain the mean, standard deviation, and t value
from the sample. Using the formulae for the mean and standard deviation
in Chapter 5, X̄ = 1.571 and the standard deviation s = 0.787. The t value
for this sample is

t =
X̄ − µ

s/
√

n

=
1.571− 2.500

0.787/
√

7

=
−0.929
0.297

= −3.123 < −1.943

and the conclusion is that the null hypothesis is rejected. The sample mean
of 1.571 has a considerable distance from the hypothesized mean, being
well into the region of rejection of the null hypothesis. At the 0.05 level
of significance, the conclusion on the basis of this sample is that Regina
residents are not split between agree and disagree on this issue.

Comments. There is a possibility of Type I error in this conclusion. The
null hypothesis has been rejected, but there is a chance of 0.05 that with this
result, Regina adults are equally split between agree and disagree on this
issue. This seems unlikely since the t value is fairly large, but this is always
a possibility. The exact significance level cannot be determined from the t
table, but with 6 degrees of freedom, a t value of 3.123 is very close to the t
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value of 3.143 in the 0.02 column, for a two tailed test. Thus the probability
of obtaining a t value of which is more than 3.123 standard deviations from
centre is approximately 0.02. Since this is a fairly small probability, the
chance of Type I error seems fairly minimal.

The other types of error that could be associated with this conclusion
are that the sample may not be random and the distribution of the attitude
scale for the population may not be normal. In addition, the attitude scale
is being treated as an interval level scale even though it is only ordinal.
All of these should be remembered when interpreting the results of this
test. While the test of significance in itself is fairly conclusive, any of these
problems could make the results from the test misleading.

Example 9.3.4 Global Warming

Global warming and the greenhouse effect have become of serious concern
in recent years. Over the years from 1950 to 1980, global temperatures
appear to have fallen slightly. Over these years, the global temperature
varied considerably from year to year, with the average yearly temperatures
being distributed in a pattern that may not have been all that different from
a normal distribution of temperatures. The mean for these years was 15.0
degrees Celsius. Table 9.5 contains average temperature data for the 1980s.
This data is based on a diagram in The Economist of July 9, 1988, page
80.

Mean Temperature in
Year Degrees Celsius

1981 15.30
1982 15.36
1983 15.05
1984 15.34
1985 15.10
1986 15.07
1987 15.23
1988 15.40

Table 9.5: Mean Global Temperature in the 1980s

Based on the data in Table 9.5, conduct the following tests:
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1. If the data for only the years 1986, 1987 and 1988 was available, could
you conclude that mean global temperature has risen above its level
of 1950-80?

2. If you now use the temperature data for the 8 years in the 1980s for
which data is given, would your conclusion change?

3. Write a short comment on the results and possible errors in the results.

Solution. This problems differs a little from the previous examples because
the data is not a sample, but a complete set of values for the years shown.
This problem uses the t distribution more as a model of expected tempera-
ture variation, than as a sampling distribution. Some of the modifications
in the manner this is approached are discussed as the test is conducted, with
other part discussed later.

1. Let µ be the mean temperature assuming that weather conditions did
not change after 1980. If this is assumed, then for the years 1986-88,
µ would be 15.0 degrees. This is the null hypothesis. The alterna-
tive hypothesis is that the mean temperature has risen and the mean
temperature was greater in 1986-88 than it was from 1950-80. Let µ
be the mean temperature consistent with this alternative hypothesis,
that is, that µ > 15. The hypotheses to be tested are

H0 : µ = 15

H1 : µ > 15

The test statistic is the sample mean X̄ and

X̄ is td

(
µ,

s√
n

)
.

where d = n− 1. Whether assumptions for use of this distribution are
satisfied or not will be discussed in part (3). The level of significance
is not stated in the question but the α = 0.05 level will be used. The
sample is a sample of 3 years so that n = 3 and there are d = n− 1 =
3− 1 = 2 degrees of freedom in the sampling distribution of X̄. From
the t table, for a one tailed test at the 0.10 level of significance, and 2
degrees of freedom, the t value is 2.912. The region of rejection of H0

is all t values greater than 2.912.
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The next step is to obtain the mean, standard deviation, and t value
from the sample. Using the formulas for the mean and standard de-
viation in Chapter 5, for the 3 years 1986-88, X̄ = 15.233 and the
standard deviation s = 0.165. The t value for this sample is

t =
X̄ − µ

s/
√

n

=
15.223− 15.000

0.165/
√

3

=
0.223
0.0953

= 2.341 < 2.912

Based on this set of three years, and using a 0.05 level of significance
and a one tailed test, there is insufficient evidence to conclude that
there has been an increase in the mean temperature. The null hy-
pothesis that the conditions of 1950-80 have remained the same over
the 1986-88 years is not rejected.

2. If all the years 1981-88 are used as data points, then the sample mean
X̄ = 15.231, the sample standard deviation s = 0.140 and the sample
size is n = 8. The hypotheses stay the same although the null hypoth-
esis now is that climate conditions did not change in 1981-88 from the
conditions of 1950-80. The alternative hypothesis is that the climate
conditions did change to produce an increase in the mean temperature.

The rest of the test is identical in nature, except that the t value
changes. For a one tailed test with α = 0.05 and d = n−1 = 8−1 = 7
degrees of freedom, the t value becomes 1.895. The region of rejection
of H0 is all t values greater than t0.05 = 1.895. From the sample,

t =
X̄ − µ

s/
√

n

=
15.231− 15.000

0.140/
√

8

=
0.231
0.0495

= 4.667 > 1.895.
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and the null hypothesis can be rejected. The t value from the sample
is 4.667 standard deviations to the right of centre, considerably more
than the 1.895 required in order to reject the null hypothesis. At the
0.05 level of significance, the data from the years 1981-88 provides
fairly strong evidence for the alternative hypothesis that the mean
temperature has risen relative to the 1950-80 years.

With 7 degrees of freedom, a t value of 4.667 is close to the t value of
4.783 in the 0.001 column of the t table. I used the SHAZAM computer
program to determine the exact significance level associated with t =
4.667 for 7 degrees of freedom, and this was 0.00115, between 0.005
and 0.001, as indicated in the t table. This small probability provides
a strong indication that mean temperature has risen, assuming the
correctness of the model on which this test is based.

3. There are a considerable number of assumptions built into this test.
First, the types of error in hypothesis testing are both illustrated here.
In (1), the null hypothesis that climate conditions have not changed
could not be rejected, even though it appears that mean temperatures
were considerably greater over the year 1986-88. The sample of only 3
years was too small a sample size to be able to reject the null hypoth-
esis. It appears very likely that Type II error has been committed in
(1). Exactly what level of error is not clear, but after looking at (2),
it appears that H0 is not correct, so that the artificially low sample of
only 3 years in (1) produced Type II error.

In (2), there is a chance of Type I error occurring. That is, it may
be that the climate did not really change, there just happened to be a
string of 8 years of above average temperature, and these happened to
be enough above average that the null hypothesis could be rejected.
The chance of this is below 0.05, and may be as low as 0.00115, so it
seems unlikely that the null hypothesis is correct. But there is always
the small chance that it could be correct.

With respect to other errors, these are likely fairly minimal. Tem-
perature is a well constructed interval level scale, and meteorological
observations are quite accurate, so there would appear to be little
measurement error here. Where a problem might develop is in the
suitability of the model. This is discussed in the following.

Suitability of the t distribution. The t distribution requires random
sampling from a normal population in order that the sample means have
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a t distribution. Both the assumptions of random sampling and a normal
distribution are violated here. The sample is certainly not a random sample,
but is a set of consecutive observations. This is not a sample, and it is not
random. In addition, there may not be independence of successive observa-
tions. If climate conditions of one year carry over and influence the climate
conditions of the next year, then if one of these years has higher than nor-
mal temperature, the next year may also. Thus even if weather conditions
are unchanged, it may be no accident that all the temperatures are above
average. This could be followed by a string of below normal temperature
years. Further, this latter observation also makes the assumption of normal-
ity subject to question. The observations are not independent events, so a
normal distribution of temperatures from year to year may not be a correct
way of describing the population of temperatures.

Having recognized all these weaknesses of the test, it may still be worth-
while to use the model as a first, and rough, test for the null and alternative
hypotheses. Imagine first that there is little carryover of temperatures from
one year to the next, so that the temperatures of successive years are roughly
independent of each other. Although the temperatures of 1950-80 are not
given here, the distribution of yearly temperatures over this period may not
have been all that different than a normal distribution. If the model is one
of a normal distribution of yearly temperatures, the test provides an esti-
mate of the chance that there could be a string of 8 years of temperatures
this much above the mean. What the exact probability at the end of (2)
provides is is an estimate of this probability. That is, assuming unchanging
climate conditions after 1980, the probability of 8 observations of the sort
observed from 1981-88 is 0.00115. Since this is a very low probability, the as-
sumption of unchanged climate conditions does not seem appropriate. The
evidence appears to be that climate conditions had changed in a manner
that produced warmer temperatures after 1980.

Given the possible violation of assumptions, these probabilities may be
incorrect, and meteorologists could provide a better model than the rela-
tively simple t distribution used here. But this is a quick, although rough,
way of indicating that there may have been a shift in climate conditions.


