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Chapter 8

Estimation

8.1 Introduction

Estimation uses data from a sample to estimate characteristics of a popula-
tion. Inferential statistics is comprised of estimation and hypothesis testing,
so that estimation is one of the main parts of inferential statistics. Estima-
tion provides researchers with a means of making either a point or an interval
estimate of a population characteristic. Sampling error was introduced in
Chapter 7, showing how inferences concerning the difference between the
sample mean and population mean could be obtained. From sampling er-
ror, it is only a short step to providing an interval estimate of a population
parameter. To each interval estimate, a certain probability is attached, in
much the same way that each level of sampling error has a probability. The
method of estimation can be used to provide an estimate of a population
mean, a population proportion, or some other summary measure of a pop-
ulation.

Interval estimates are often referred to as confidence intervals, based
on the probability, or degree of confidence, associated with the interval.
Suppose large random samples are drawn from a population, and a sample
mean is obtained from each sample. Around each sample mean an interval
can be constructed, with the sample mean being at the centre of each in-
terval. For example, a 95% confidence interval for a population mean can
be constructed using the methods of this chapter. The meaning of the 95%
confidence interval is that 95 out of 100 random samples from a population
yield interval estimates which contain the true population mean.

The method of estimation can be further extended to to providing es-
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timates of the sample size required in order to achieve a given degree of
accuracy when estimating a population parameter. Again, this accuracy
will have a certain probabilty attached to it. In this chapter this method of
determining sample size will be provided for random sampling only.

Chapter Outline. An introduction to the nature of estimation is con-
tained in the next section. This is followed in Section 3 by a discussion of
the method of estimating a sample mean using a large random sample. The
method of estimation of a population parameter for a small random sample
is discussed next. Estimation using a small sample size requires use of the
t-distribution, and this distribution is introduced in Section 4. Section 5
shows how interval estimates of population proportions can be determined.
The method of determining the required sample size in order to provide an
estimate of the population mean or population proportion is contained in
Section 5. These are the sample sizes necessary to provide estimates having
a specified accuracy and probability.

8.2 Point and Interval Estimates

Estimation is a method of providing the researcher with an idea of the size
of a summary measure concerning a population. The summary measure
can be any parameter concerning a population. Since much statistical work
concerns the common measures of central tendency and variation discussed
in Chapter 5, these are the measures which the researcher is usually con-
cerned with estimating. In Chapter 11, the method of estimation is extended
to provide estimates of the nature of the relationship among two or more
variables.

Estimates of population parameters can be either point estimates or in-
terval estimates. A point estimate is a single number, or a statistic, which
provides an estimate of a population parameter. For example, the Gallup
opinion poll found that the percentage of Canadian adults who supported
the Conservative Party in August, 1992 was 21%. This sample value of 21%
is a point estimate of the true percentage of all Canadian adults who sup-
ported the Conservative Party in August, 1992. In Chapter 7, a random
sample of 601 Regina labour force members was given as an example. This
sample found that the mean gross monthly pay of these 601 respondents was
$2,205 per month. This sample mean is a point estimate of the true mean
gross monthly pay of all Regina labour force members.
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Point
Measure Parameter Estimate

Mean µ X̄

Variance σ2 s2

Standard Deviation σ s

Proportion p p̂

Table 8.1: Parameters and Point Estimates

Ordinarily a point estimate is the statistic which corresponds to the pop-
ulation parameter. That is, the sample mean is used as a point estimate of
the true mean, the sample proportion is a point estimate of the true propor-
tion, and so on. Table 8.1 gives the commonly used population parameters
and their respective point estimates.

It is possible that a point estimate of a population parameter will be a
number other than the corresponding statistic of Table 8.1. For example,
if the distribution of a variable is close to symmetric, the sample median
might be used to provide an estimate of the population mean. It may
be that information for determining the median is available, but the data
necessary to calculate the mean is not available. Such a situation is not the
most desirable, because the sample mean is generally regarded as a better
estimator of the population mean than is the sample median. But where
such situations emerge, it may be necessary to use point estimates different
from those given in Table 8.1.

Statisticians have devised various properties of estimators in order to
determine which are the best estimators for each population parameter. In
random sampling, the point estimates of Table 8.1 are generally regarded as
the best estimates of the corresponding population parameters.

When reporting summary measures of populations, point estimates may
be the only data provided. In the popular media, reports of characteristics
of populations are unlikely to give more than means or proportions. These
are often sufficient to provide a good description of the main characteristics
of a population. However, where these characteristics are obtained from
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samples, each statistic has some sampling error associated with it. That is,
each random sample of a population yields a slightly different set of cases
in the sample, and this produces a different sample mean or proportion in
each sample. This sampling distribution is used to construct an interval
estimate. The interval estimate constructed gives the researcher an idea of
how variable these statistics from samples are, and where the value of the
population seems likely to lie.

An interval estimate, or a confidence interval, is an interval con-
structed around the point estimate, or the statistic. This interval is based
on the sampling distribution of the statistic. Each interval has a probability,
or a confidence level, associated with it. Since the sampling distribution
assumes that random samples of a population have been obtained, these
confidence intervals are also based on the assumption of random sampling
from the population. The interval estimate is interpreted as meaning that
there is a certain confidence level, or probability, that these intervals contain
the true value of the population parameter.

A description of, and rationale for, the construction of an interval esti-
mate for the mean is given in the following section. The interpretation of
what this interval estimate means is also provided. The examples of interval
estimates should help you understand how this method can be used to make
statements concerning the population parameters.

Note: In the following discussion, the terms interval estimate and con-
fidence interval are used interchangeably. Each interval has a particular
confidence level attached to it, so that the interval may be referred to as
a confidence interval. This confidence interval could more fully be called a
confidence interval estimate.

8.3 Interval Estimate of the Mean.

An interval estimate of the population mean begins by taking a random
sample of the population for which the mean is to be estimated. Suppose the
characteristic of the population which is being investigated is measured by
variable X, and the true mean and standard deviation of X in the population
are µ and σ respectively. Neither µ nor σ are known, and the shape of the
distribution of the variable X is also unknown. This is why the researcher
must obtain a sample, and attempt to provide estimates of characteristics
of a population.
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A random sample of size n gives the researcher a set of randomly selected
values of the variable, X1, X2, X3, · · · , Xn. From these n values, the sample
mean X̄ can be computed as

X̄ =
∑n

i=1 Xi

n
=

X1 + X2 + X3 + · · ·+ Xn

n
.

In addition, the sample standard deviation can be computed as

s =

√∑
(Xi − X̄)2

n− 1
.

Since each random sample which is drawn from this population produces a
different set of Xis, each random sample has a different X̄ associated with
it. Each of the sample means X̄ can be regarded as a point estimate of the
true populatin mean µ. The Central Limit Theorem of Chapter 7, showed
that if the sample sizes of these random samples are reasonably large, then

X̄ is Nor (µ,
σ√
n

).

That is, the standard deviation of the sample means is σ/
√

n, and the sam-
pling distribution of X̄ is a normal distribution. This distribution formed the
basis for the discussion of sampling error earlier, and this same distribution
is now used to present interval estimates.

The idea of a confidence interval estimate of the population mean µ is to
construct an interval around the sample mean X̄. The interval is constructed
so that it is wide enough that there is reasonable confidence that this interval
does contain the true mean µ. The level of confidence is ordinarily quite a
high level, such as 90%, 95% or 99%. For this introductory discussion, the
95% confidence level, the most commonly used confidence level, will often
be used as an example.

In this chapter, the confidence level will be given the symbol C, or C%,
so that this explanation will be based on C = 95%. The meaning of a
confidence level is that C% of the random samples will yield intervals such
that µ is within the interval. This means that occasionally a random sample
will be selected such that the interval associated with the sample mean from
this sample does not contain µ. But if C% of the intervals contain µ, then
only (100 − C)% of of the intervals do not contain µ. In the case of a
C = 95% confidence level, only 100 − 95 = 5% of the random samples will
have intervals which do not contain µ.
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The confidence level is really a probability. That is, if many random
samples are selected from a population with mean µ, the probability is
C/100 that a interval contains the population mean µ. In the case of the 95%
interval estimate, the probability is 95/100 = 0.95 that a random sample of
the population yields an interval which contains µ. The probability is only
1 − 0.95 = 0.05 that a random sample is selected which yields an interval
which does not contain µ. This is why the confidence level is set at quite a
high level. By selecting a high confidence level, the probability is quite large
that a sample will be selected which does contain the true mean µ.

The normal distribution for X̄ is used to determine the size of the inter-
val. For C = 95% confidence, 95% of the area under the normal distribution
lies within 1.96 standard deviations of the mean. That is, the middle 95%
of the area under the normal curve is equivalent to an area of 0.95 in the
centre, or 0.95/2 = 0.475 on each side of the centre of the normal curve.
From column A of Appendix A, this area is associated with Z = 1.96. Since
the distribution is symmetric, going out 1.96 standard deviations on each
side of centre gives the middle 0.95 or 95% of the area under the normal
curve, that is, Z = 1.96 is the Z value associated with the 95% confidence
level.

Now imagine an interval is constructed around X̄, going out 1.96 stan-
dard deviations on each side of X̄. Since the standard deviation of X̄ is

σX̄ =
σ√
n

a distance of 1.96 standard deviations on either side of X̄ is

±1.96
σ√
n

.

The interval estimate around X̄ is thus

X̄ ± 1.96
σ√
n

or expressed in interval form this is
(

X̄ − 1.96
σ√
n

, X̄ + 1.96
σ√
n

)

The 95% confidence interval estimate of µ is thus X̄ plus or minus 1.96 times
σX̄ , the standard deviation of X̄.
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This interval, from
X̄ − 1.96

σ√
n

to
X̄ + 1.96

σ√
n

has a probability of 0.95 of containing µ. The proof of this is given in
Section 8.3.3. The method of constructing and interpreting this interval is
discussed in the following paragraphs.

Figure 8.1 provides a diagrammatic illustration of the 95% interval esti-
mate of the mean. Two diagrams are presented in order to avoid cluttering
a single diagram. The diagram at the top of the page gives the sampling
distribution of the sample mean, and shows the area associated with the con-
fidence level of 95%. The area under the normal curve between Z = −1.96
and Z = +1.96 is 0.95, or 95% of the area under the normal curve. Since
the standard deviation of X̄ is

σX̄ =
σ√
n

a distance of 1.96 standard deviations on either side of the mean is equivalent
to a distance of 1.96(σ/

√
n) on either side of µ, in units of X̄.

Now suppose a random sample of size n is taken from the population.
Also suppose that the particular value of X̄ which occurs is X̄1 in the di-
agram at the bottom of the page. Remember that µ is unknown, and µ is
shown on the diagram only to illustrate the manner in which the interval
does provide an estimate of the true population mean. As can be seen in
the diagram at the bottom, X̄1 is close to µ but not exactly equal to µ. The
method of interval estimation is to begin with X̄1 and construct an interval
around X̄1. The 95% interval goes out from X̄1 a distance of 1.96 × σX̄

on either side. This is the interval constructed around X̄1 which has the
same width as the interval in the top diagram. For the 95% confidence in-
terval, this is the interval associated with an area of 0.95 in the middle of
the distribution. From the diagram, and this explanation, the interval from
X̄1 − 1.96σX̄ to X̄1 + 1.96σX̄ in the distribution of X̄ can be seen to be
the same width as the interval between Z = −1.96 and Z = +1.96 in the
standardized normal distribution.

Based on these diagrams, it can be seen that interval estimation for the
mean begins by selecting the confidence level. The Z value which corre-
sponds to this confidence level is then determined. The sample mean is
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obtained from the random sample. The interval estimate is an interval cen-
tred at the sample mean, going out from this mean Z times the standard
deviation of the sample mean. This interval has probability equal to the
confidence level of containing the true mean.

Confidence Limits. When estimating the population mean, the limits
on the interval are X̄1 − 1.96σX̄ and X̄1 + 1.96σX̄ . The first of these values
X̄1−1.96σX̄ is sometimes called the lower confidence limit of the estimate
and X̄1 +1.96×σX̄ is termed the upper confidence limit of the estimate.
Together these two values are called the confidence limits of the interval
estimate.

In order to illustrate how an interval estimate is constructed, an example
is given next. Following this example, more of the principles of interval
estimation are discussed.

Example 8.3.1 Study Patterns of University of Regina Students

A survey of 494 undergraduate students at the University of Regina, con-
ducted by a student in Sociology 404 in the Winter 1988 semester, showed
that the mean number of hours students spent studying per week was 18.8
hours with a standard deviation of 13.1 hours. Assume that the survey is a
random sample of all University of Regina undergraduate students. Obtain
the 90 per cent and the 99 per cent interval estimate for the mean number of
hours studied per week for all University of Regina undergraduate students.
Solution. In order to determine this interval, let µ be the true mean number
of hours studied per week for all University of Regina undergraduate stu-
dents. Let σ be the true standard deviation of the number of hours per week
studied by all University of Regina undergraduates. Since µ is unknown, the
sample mean X̄ is used as a point estimate of µ, and X̄ = 18.8 hours per
week is the best estimate of the mean weekly study time of undergraduates.

Since n = 494 is a large random sample of University of Regina students,
X̄ is normally distributed with mean µ and standard deviation σ/

√
n. Since

σ is unknown, s = 13.1 is used as an estimate of σ, again since n is large.
For the 90 per cent interval estimate, the appropriate Z value is 1.645 since
an area of 90% in the middle of the normal distribution is associated with
Z = 1.645. That is, if 90% or 0.90 of the area is in the middle, there is
0.90/2 = 0.45 of the area on each side of centre. From column A of the
normal table in Appendix A, an area of 0.45 on one side of centre is midway
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between Z = 1.64 and Z = 1.65, so that a Z of 1.645 is used here. The
interval estimate is then:

X̄ ± Z
s√
n

= 18.8± 1.645× 13.1√
494

18.8± (1.645)(0.589) = 18.8± 0.970

The 90 per cent interval estimate is thus (17.8, 19.8) if all the values are
rounded to the nearest one tenth of an hour. Using the survey result, we
can be relatively certain that the true mean is somewhere between 17.8 and
19.8 study hours per week.

For the 99 per cent interval estimate, there is 99% or 0.99 of the area
in the middle of the normal distribution, so that there is 0.99/2 = 0.495 on
each side of centre. From column A of the normal table, the appropriate Z
value is 2.575. The interval estimate is then:

X̄ ± Z
s√
n

= 18.8± 2.575× 13.1√
494

18.8± (2.575)(0.589) = 18.8± 1.52

The 99 per cent interval estimate is thus (17.3, 20.3) if the values are rounded
to the nearest 0.1 hour.

Note that this 99% interval is somewhat wider than the 90% interval
because it is necessary to go farther from X̄ in order to be 99% confident
that the interval contains µ. The meaning of these interval will become
clearer in the following sections, but what can be said is that the probability
is 0.90 that X̄ ± 1.0 contains µ. In terms of the sampling error of Chapter
7, the probability is 0.90 that the sampling error of the mean in this sample
does not exceed 1.0 hours per week. That is, a random sample of 494
undergraduates has a probability of 0.90 of yielding a sample mean which
differs by less than 1.0 hours per week from the true mean. In addition,
the probability is 0.99 that the estimate of the true mean is incorrect by no
more than 1.5 hours per week.

Meaning of the Interval. The method of confidence intervals ensures
that C% of the random samples taken from a population will yield interval
estimates which contain the true mean. In Figure 8.1, 95% of the random
samples will yield sample means between µ− 1.96σX̄ and µ + 1.96σX̄ . Each
sample mean within this range will produce an interval estimate such that
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the interval contains µ. Thus 95% of the intervals constructed in this manner
contain µ.

It is possible that a random sample from the population yields an interval
which does not contain µ. In the bottom part of Figure 8.1, sample mean
X̄2 lies a considerable distance from µ. If the interval

(X̄2 − 1.96σX̄ , X̄2 + 1.96σX̄)

is constructed, it can be seen that this interval will not contain µ. The value
of X̄2 is so distant from µ, that even an interval of 1.96 standard deviations
on either side of this sample mean does not contain µ. By examining the top
diagram though, it can be seen that this will not happen very often. Only
when X̄ < µ−1.96σX̄ or when X̄ > µ+1.96σX̄ will an interval of this width
not contain µ. From the diagram, it can be seen that this will happen only
in 5% of the random samples. 95% of the random samples are within these
limits of 1.96 standard deviations on each side of the mean. Only a total of
100− 95 = 5% of the sample means fall more than 1.96 standard deviations
from the true mean µ.

The meaning of the interval estimate should become clearer when the
situation in Figure 8.2 is examined. This figure uses a few of the random
samples drawn from the population of Regina Labour Force Survey Respon-
dents presented in Section ?? of Chapter 7. The true mean gross monthly
pay of this population of respondents is µ = $2, 352 and the standard devia-
tion is σ = $1, 485. The random samples selected from this population were
each of size n = 50. The theoretical sampling distribution of the sample
means X̄, based on the Central Limit Theorem, is

X̄ is Nor
(

µ,
σ√
n

)
.

Given the above mean and standard deviation of the population of Regina
Labour Force Survey Respondents, with a random sample of n = 50, the
sampling distribution of the sample mean is

X̄ is Nor ($2, 352 , $210)

as shown in Section 7.5. This normal distribution is given at the top of
Figure 8.2. In addition, the area under the normal curve associated with
the 95% confidence intervals is given. This is the area under the curve with
1.96 standard deviations of the mean, or between Z = 1.96 and Z = +1.96.
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Since the population standard deviation is σ = 1, 485 and n = 50, the
standard deviation of the sampling distribution of X̄ is

σX̄ =
σ√
n

=
1, 485√

50
= 210.

The bottom part of Figure 8.2 shows the interval estimates associated
with the first 8 random samples given in Table 7.5, and sample number 158.
The interval estimates of µ are constructed around X̄ plus or minus 1.96
standard deviations of X̄, that is

±1.96
σ√
n

= 1.96× 210 = 411.6

or $412 on each side of X̄.
The first random sample of n = 50 respondents gave a sample mean of

X̄1 = $2, 205. The interval estimate around X̄1 is thus

X̄1 ± 1.96
σ√
n

= 2, 205± (1.96× 210) = 2, 205± 412.

The 95% interval estimate associated with X̄1 = $2, 205 is thus 2, 205−412 =
1, 793 to 2, 205 + 412 = 2, 617 or $1,793 to $2,617.

The interval is usually reported with the lower confidence limit
first, and the upper confidence limit second, placed in brackets
with a comma between the limits.

Thus the 95% confidence interval for the mean using the sample mean
from the first sample is

($1, 793 , $2, 617).

This is the first interval pictured in the bottom section of the diagram. It
can be seen that this interval does contain µ, so that this interval is one of
the 95% of those which contain the true mean.

The second random sample in Table 7.5 yielded a sample mean of X̄2 =
$2, 641. The method of constructing the 95% confidence interval for this
sample mean is exactly the same as for the first sample mean. The distance
of 1.96 standard deviations on each side of the sample mean is ±412. The
interval for this sample is

X̄2 ± 412 = 2, 641± 412

or 2, 641 − 412 = 2, 229 to 2, 641 + 412 = 3, 053. For sample 2, the 95%
confidence interval is

($2, 229, $3, 053).
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The sample mean X̄2 is larger than the population mean, but once again the
interval contains µ. Random sample 2 is one of the 95% of random samples
which leads to an interval estimate for µ which contains µ.

The same method is used for each of the successive sample means. For
sample 3, X̄3 = $2, 128 and the 95% interval estimate is

($1, 716 , $2, 540).

The intervals for the next 5 samples of Table 7.5 are given below this. Note
how the sample mean, and the associated interval, differs in each case. But
each of the first 8 sample means is close enough to the true mean µ that
each interval estimate contains µ. The sample which is farthest from the true
mean is sample 7 where X̄7 = $2, 703. But even this sample has an interval
($2,291 , $3,115) which contains µ near the lower end of this interval.

In order to see that some random samples do result in intervals which
do not contain µ, take sample number 158 where X̄158 = $1, 863. Using the
same method as earlier, the 95% interval estimate for this sample is

($1, 451 , $2, 275)

and this interval does not contain µ. This whole interval lies to the left of
the true mean µ. If all the random samples in Table ?? are examined, it
can be seen that only samples 55, 59, 65, 102, 107, 158 and 171 have 95%
interval estimates which do not contain µ. This amounts to only 7 out of
192 random samples, or about 3.6% of the random samples. Just over 96%
of the samples yield 95% interval estimates which contain the true mean.

The fact that approximately 95% of the random samples in Table 7.5
contain the true mean demonstrates the meaning of the 95% confidence
interval. This method of random sampling and construction of interval
estimates results in the intervals containing the true mean in C% of the
cases. Only (100-C)% of the samples will be associated with C% confidence
intervals which do not contain the true population mean.

Since the true mean of the population is not known, and since only one
sample is usually taken, the researcher cannot be absolutely certain that
the confidence interval contains the mean. At the same time, the researcher
can be reasonably certain that the interval does contain the true population
mean, because C% of the random samples will yield C% confidence intervals
which contain the true mean.

Note that the statement concerning a particular interval is not a prob-
ability statement. In general, 95% of the intervals contain µ. A particular
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interval that is constructed either contains µ or it does not contain µ. For
example, in Figure 8.2 each of samples 1-8 contains µ, and only sample 158
was associated with an interval which did not contain µ. When dealing with
a specific random sample, since µ is unknown, the researcher does not know
whether the interval construted from the sample mean contains µ or not.
This uncertainty is always associated with an interval estimate, and there is
no way to quantify this uncertainty for a specific interval estimate. However,
the uncertainty can be quantified in a probability interpretation for interval
estimates in general. That is, for the 95% confidence level, it is meaningful
to say that 95% of the random samples will yield interval estimates which
contain the true mean µ. A probability statement can also be attached to
these intervals. That is, with 95% confidence level, the probability is 0.95
that

X̄ ± 1.96σX̄

contains µ. If the size of σX̄ can be determined, then this can be included in
the probability statement as follows. In the example of the estimate of mean
gross monthly pay, σX̄ = 210 so that 1.96σX̄ = 412. It is then meaningful
to say that the probability is 0.95 that

X̄ ± 412

contains µ. This is alternatively stated as

P (X̄ ± 412 contains µ) = 0.95

But when a specific value for X̄ is given, and the specific confidence interval
is determined, then either µ is in this interval or it is not. A probability
statement should not be attached to a specific interval, such a statement
should only be used for the general case.

Confidence Levels. Most of the discussion so far has used a 95% confi-
dence level. Any other level of confidence, C%, could have been used instead
of this. As noted earlier, the level of confidence is usually a large value, close
to 100%. Confidence levels of 90% and 99% are also common, but levels
such as 88% or 93% could be used. The level of confidence is often given
in the problem or question, or may be assigned by those commissioning the
research.

The choice of confidence level is arbitrary, but is chosen as a level close
to 100% so that there is a high degree of confidence that the interval does
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contain the population parameter being investigated. The level of confidence
can never be 100%, because with random sampling, there is always some
degree of uncertainty concerning where the value of the parameter is. An
interval estimate could be 100% certain only if the very general statement
is made that the parameter is between −∞ and +∞.

The Central Limit Theorem can be used when making estimates of the
population mean from random samples of reasonably large sample size. The
sample mean is normally distributed so that the appropriate Z associated
with each confidence level can be obtained from the normal table in Ap-
pendix A. The method used is the same as that used earlier in this chapter.
That is, if the confidence level is C%, this is the area in the middle of the
normal distribution. The Z value associated with C/2 of the area on each
side of centre is the appropriate Z value for the interval.

Some of the more common confidence levels, and the Z value which cor-
responds to each of these levels are given in Table 8.2. You can confirm each
of these Z values by checking them in the table of the normal distribution
in Appendix A.

Confidence
Level Z value

80% 1.28
85% 1.44
90% 1.645
95% 1.96
99% 2.575

99.5% 2.81

Table 8.2: Confidence Levels and Z Values

Unknown Population Standard Deviation. As noted in Chapter 7,
the value of the standard deviation of the population is required in order to
determine the standard deviation of the distribution of the sample mean. If
the Central Limit Theorem holds, then

σX̄ =
σ√
n
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is the standard deviation of the sampling distribution of X̄. Since µ is being
estimated, and determination of σ requires knowledge of µ, it appears that
there is no way of estimating σ. What is usually done when estimating µ
from random samples is to collect the data and compute the sample standard
deviation s at the same time that X̄ is being calculated. If the sample
size is reasonably large, s is generally regarded as providing a fairly close
estimate of σ. While s will not be exactly equal to σ, it can be shown
mathematically that s is a good estimator or σ. As n becomes larger, the
sample standard deviation s will become closer and closer to σ. As with
many of the approximations used in statistics, a larger n is associated with
a closer approximation. As a rough rule of thumb, a random sample of size
n ≥ 30 is usually regarded as adequate in this approximation.

Note though that this approximation is potentially another source of er-
ror when making estimates of µ. If a random sample is composed of many
atypical cases, with a value of X̄ which is considerably different than µ, it
may be that s is not a good estimate of σ. While this should be remem-
bered when conducting estimates, where the interval estimate is intended to
provide only an approximate idea of the error associated with sampling, a
small error in s may not be very misleading.

8.3.1 Interval Estimates of the Mean, Large n

The discussion of the previous section outlined the method by which estima-
tion is carried out. This section quickly reviews the rationale of estimation,
outlines in point form the steps required to obtain estimates, and provides
some examples of confidence intervals.

Estimation begins, and may end, with a point estimate. Suppose a re-
searcher has conducted a survey and has a random sample from a population
with unknown mean µ and standard deviation σ. Then the sample mean X̄
is a point estimate of µ, and s can also be regarded as a point estimate of σ.
If the sample size n in this sample is small, then the small sample method of
Section 8.4 should be consulted. If the sample size n of the random sample
is reasonably large, then X̄ provides a good point estimate of µ.

Any time that estimates of population parameters are obtained from
samples, even very well constructed random samples, there will be some
sampling error associated with the estimates. A different random sample
would yield a different set of cases in the sample. This would lead to a
different estimate of X̄, and the latter can be regarded as just as good an
estimate as the first sample mean. In order to obtain an idea of the potential
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variability in estimates of the population mean, the sampling distribution of
X̄ should be used. This will allow the researcher to obtain interval estimates
of the population mean.

If the population mean is being estimated, and the samples are large
random samples, the Central Limit Theorem can be used to describe the
sampling distribution of X̄. According to this theorem,

X̄ is Nor
(

µ,
σ√
n

)
.

This result allows the researcher to use the normal curve to describe the
sampling distribution of X̄. The next stage is for the researcher to decide
what level of confidence he or she plans to use for the interval estimate. Let
the confidence level chosen be C%, where C is a relatively large number, at
least 80 or more, and usually 90 or more. This confidence level is equated
with an area in the middle of the normal distribution. The Z values in the
normal table which are associated with this area are then determined. The
appropriate interval estimate is then

X̄ ± Z
σ√
n

where Z is the standardized normal value associated with an area of C% in
the middle of the normal distribution. The C% interval estimate is then

(
X̄ − Z

σ√
n

, X̄ + Z
σ√
n

)

The probability is C/100 that this interval contains the true population
mean µ. The values of X̄ and n can be determined from the sample. σ is
unknown, but if n is reasonably large, then the sample standard deviation
s can be obtained from the sample, and this provides a reasonably close
estimate of σ, for purposes of determining the interval estimate. Z is given
on the basis of the confidence level C and the normal curve. When all these
numbers are place in the last formula, a specific interval results. While it
is best not to make probability statements concerning this specific interval,
what can be said is that C% of the intervals constructed in this manner will
contain µ.

These steps involved in interval estimation can be outlined as follows.

1. Obtain X̄, s and n from the sample.
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2. If n is large, the sampling distribution of X̄ is normal, using the Central
Limit Theorem of Chapter 7.

3. Determine the confidence level C, either by choosing a level, or using
the confidence level given in the problem.

4. Use the normal table to find the Z value which gives an area of C%
in the middle of the normal distribution.

5. Put all these values in
(

X̄ − Z
σ√
n

, X̄ + Z
σ√
n

)

and this is the C% confidence interval.

Two examples of confidence interval estimates for the population mean
follow.

Example 8.3.2 Mean Individual Income by Province of Canada,
1985

The data in Table 8.3 comes from Statistics Canada’s General Social Survey
of 1986. The values of TINC, total income, represent the total income from
all sources, of survey respondents in dollars, for the 1985 calendar year.

Assuming that the survey is a random sample of the residents of each
of the provinces, derive a 95 per cent interval estimate for the mean income
of residents of Saskatchewan. Do the same for the residents of Alberta. On
the basis of these results, can you conclude that mean income for all Alberta
residents is greater than the mean income for all Saskatchewan residents?

Solution. Let µ be the true mean income of all Saskatchewan residents
and let σ be the true standard deviation of the income of all Saskatchewan
residents. Since µ is unknown, the sample mean X̄ is used as a point es-
timate of µ. Since there are n = 612 residents of Saskatchewan surveyed,
and assuming that this sample is random, this is a large random sample of
Saskatchewanians. This X̄ is normally distributed with mean µ and stan-
dard deviation σ/

√
n. Since σ is unknown, s = 14, 837 is used as an estimate

of σ, again since n is large. For the 95 per cent interval estimate, the ap-
propriate Z value is 1.96. The interval estimate is then:

X̄ ± Z
s√
n

= 15, 768± 1.96× 14, 837√
612
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Summaries of TINC TOTAL INCOME
By levels of PROV PROVINCE OF RESIDENCE

Variable Mean Std Dev Cases

For Entire Population 15389 14156 11720

PROV Newfoundland 12006 11583 425
PROV P.E.I. 13703 12624 141
PROV Nova Scotia 14640 13729 424
PROV New Brunswick 12248 12316 1341
PROV Quebec 15139 13582 4052
PROV Ontario 17152 15371 2713
PROV Manitoba 15505 14095 519
PROV Saskatchewan 15768 14837 612
PROV Alberta 16949 14958 613
PROV British Columbia 16742 14821 880

Total Cases = 11720

Table 8.3: Statistics of Total Income, Individuals, by Province, 1985

15, 768± (1.96)(599.75) = 15, 768± 1, 176

The 95 per cent interval estimate is thus ($14,592, $16,944). This might best
be rounded off to ($14,600, $16,900), given the approximations involved in
the determination of this interval estimate.

For residents of Alberta, the method is the same, except that n = 613,
X̄ = 16, 949 and s = 14, 958. The 95 per cent interval is:

X̄ ± Z
s√
n

= 16, 949± 1.96× 14, 958√
613

16, 949± (1.96)(604.15) = 16, 949± 1, 184

The 95 per cent interval estimate is thus ($15,765, $18,133). This could be
rounded off to ($15,800, $18,100).
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There is a fair overlap to the two intervals. In Alberta, the interval
estimate implies that mean income of all Alberta residents could be as low
as $15,800, and the estimate for Saskatchewan shows that the mean income
of all Saskatchewan residents could be higher than this, as high as $16,900.
While these results both depend on the particular samples given here, and
the choice of the 95% confidence level, there appears to be considerable
chance that the mean income of the Saskatchewan residents could be as high
as that of Alberta residents. While the evidence generally points in the other
direction, with the sample mean income being lower for Saskatchewan than
Alberta, there is still some chance that the mean income for all Saskatchewan
residents could be as high as the mean income for all Alberta residents.
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Example 8.3.3 Head Size

In the 1800s and in the early part of this century, measurements of brain
and head size were popular among some social scientists who were attempt-
ing to show that Caucasians, especially those higher in occupational status,
were more intelligent than people of other ‘races’ or lower occupational sta-
tus. Stephen Jay Gould, in his book The Mismeasure of Man, critiques
these points of view, and re-analyses some of the earlier data. Table 8.4 is
data from a table on page 109 of Gould’s book. Gould found this data in
Ernest A. Hooton’s book The American Criminal. Gould argues that
Hooton misinterpreted this data and that “most mean differences between
occupational groups are statistically insignificant.”

Head Circumference
in Millimetres

Vocational Sample Standard
Status Size Mean Deviation

Professional 25 569.9 9.5
Semiprofessional 61 566.5 11.7
Clerical 107 566.2 11.4
Trades 194 565.7 11.1
Public Service 25 564.1 12.5
Skilled Trades 351 562.9 11.2
Personal Services 262 562.7 11.3
Laborers 647 560.7 7.6

Table 8.4: Mean and Standard Deviation of Head Circumference for People
of Varied Occupational Status

Using the data in Table 8.4, derive 94% confidence interval estimates
for (i) the true mean head circumference for all those of Semiprofessional
vocational status and (ii) for the mean head circumference for all those of
Personal Service vocational status. Do your results support Gould’s state-
ment? Explain.

Solution.
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Let µ be the true mean head circumference for all those of semiprofes-
sional status and let σ be the true standard deviation of this same occupa-
tional group. µ is unknown so that the sample mean X̄ provides as a point
estimate of µ. Since there are n = 61 people of semiprofessional status for
which there is data, this can be considered to be a large sample of those of
semiprofessional status. Also assume that the sample is randomly selected.
Thus X̄ is normally distributed with mean µ and standard deviation σ/

√
n.

Since σ is unknown, s = 11.7 is used as an estimate of σ, again since n is
large. For the 94 per cent interval estimate, the appropriate Z value is 1.88.
That is, with 94% confidence, there is 0.94/2 = 0.47 of the area on each side
of the mean. An area of 0.47 is associated with Z = 1.88, since at that Z,
the area in column A of Appendix Table A is 0.4699. The interval estimate
is then:

X̄ ± Z
s√
n

= 566.5± 1.88× 11.7√
61

566.5± (1.88)(1.498) = 566.5± 2.816

The 94 per cent interval estimate is thus (563.7, 569.3).
For those of personal service occupations, the method is the same, except

that n = 262, X̄ = 562.7 and s = 11.3. The 94 per cent interval is:

X̄ ± Z
s√
n

= 562.7± 1.88× 11.3√
262

562.7± (1.88)(0.698) = 562.7± 1.312

The 94 per cent interval estimate is thus (561.4, 564.0).
These results are not too conclusive concerning Gould statements. Since

we are 94 per cent sure that the first estimate is correct to within plus or
minus 2.8 millimetres, and the second to within plus or minus 1.3 millime-
tres, and since the intervals overlap, there is a small chance that the true
means of these two groups are identical. That is, given that there is a small
overlap in the intervals, it is possible that the true mean for each of the
two groups could be in this overlapping area, around 564. This seems fairly
unlikely though. In Chapter 9, an hypothesis test can be used to directly
test Gould’s statement.
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8.3.2 Choosing a Confidence Level.

There are no hard and fast guidelines concerning the choice of a confidence
level for a confidence interval. If the confidence level is given in the question,
or assigned by someone, then this is the confidence level which should be
used. Where no confidence level is given, there are several considerations
which guide the choice of confidence level. These are outlined as follows.

1. The first guideline is to make sure you always report the confi-
dence level. Each different level gives an interval estimate of different
interval width.

2. If you are not sure which confidence level to choose, use the 95%
confidence level. This has become by far the most common and
popular confidence level, and if there is any doubt concerning which
level to choose, this level will be widely recognized.

3. If you wish to be more certain that the interval contains the true
mean µ, select a high confidence level If you feel you need not be so
certain of the result, select a lower confidence level. Remember that
a high confidence level is associated with a wide interval, and a lower
level with a narrower interval. A narrow interval makes your results
appear more precise. In fact, the result may not be all that precise if
the narrow interval is obtained by using a low confidence level. That
is, the interval should not be artificially narrowed by selecting too low
a confidence level. If you wish to select a low confidence level like 80%,
you should make sure that you report the level chosen.

4. If you wish to compare your results with those of other researchers, it
is best to use the same confidence level as that used by other
researchers. If you do this, then your results can easily be compared
with results from other research.

5. Some types of problems require a high level of confidence. In issues
of health and safety, it may be very important to ensure that the
mean does not exceed a certain level. For example, if the concentration
of certain chemicals or other substances in water supplied to a city
exceeds a certain level, then this may be harmful to human health.
Samples may be taken from the water supply, and the mean level of
the potentially harmful substance determined. Those who use the
water suppply would like to be assured that the mean level of the
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potentially harmful substance is within the safe level. That is, they
would like to be 99% sure, or 99.9% sure that the water is safe. If the
99.9% confidence level for the mean amount of the substance is within
the safe level, then it seems fairly certain that the water is safe.

Most social science research is not concerned with matters of life and
death, or even of health and safety. For most social science research,
a confidence level of 95%, or at most, 99% would seem aequate.

6. There may be many other methodological problems associated with
research, or many nonsampling errors. If this is the case, it may not
make too much sense to demand a very high confidence level. For
example, if there is considered to be up to 15% nonsampling error,
then it would seem unnecessary to use more than a 90% confidence
level.

The above guidelines are rough guidelines, and it is most common to use a
round number such as 90% or 95% confidence.

It would be most desirable to have high confidence level, say 99% confi-
dence, and a narrow interval. But such a result can only be obtained with
a large sample size. If the sample size is large enough to use the Central
Limit Theorem, but is still not all that large, then the interval may be of
considerable width. In the estimates of mean income in Saskatchewan and
Alberta in Example 8.3.2, the intervals were approximately $2,000 wide even
though the confidence level was only 90% and the sample sizes were over
600 in each case. Given the nature of these populations, there is little that
can be done about this. The only way that the interval estimate can be
narrowed and, at the same time have larger confidence associated with it, is
to have a larger sample size. Obtaining a large sample may be too costly, so
that the researcher just has to live with the smaller sample, and the results
that are associated with it.

8.3.3 Probability of Interval Estimate.

In this chapter, the meaning of interval estimates and the manner in which
interval estimates of the mean are constructed have been discussed. This
section shows how an interval estimate and its associated probability is de-
rived from the Central Limit Theorem. If you have difficulty following this
section, you can skip it and move on to Section 8.4.1. If you can follow this
section, you will obtain a better understanding of interval estimates, and
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also how these interval estimates relate to the hypothesis tests of Chapter
9.

In order to provide a systematic notation for this explanation, some
new notation is required. The notation in this section may seem a bit
strange, and may not seem to be the most straightforward way of presenting
the interval estimate. The notation used here is developed in order to be
consistent with the notation used in hypothesis testing in Chapter 9. Since
estimation and hypothesis testing are similar, it is useful to have the same
notation for each.

Beginning from the Central Limit Theorem,

X̄ is Nor
(

µ,
σ√
n

)
.

if the sample size n of the random sample is large. µ is the true mean of the
population and σ is the true standard deviation of the population. If X̄ is
being used as the point estimate of µ, then this normal distribution can be
used to determine the C% confidence interval. C represents an area in the
middle of the normal distribution, usually quite a large area, such as 90%,
95% or 99%.

In terms of notation, the symbol C% is not usually used. Rather the
confidence level is defined as

(1− α)× 100%.

In this expression, α is the first letter of the Greek alphabet, and is called
‘alpha’. This expression is just an alternative way of writing the previous
confidence level C%. That is

(1− α)× 100% = C%.

In order to make C a large number, α must be a small number. With a little
experimentation with this expression, it can be seen that when C = 90%,
α = 0.10. That is, 1− α = 1− 0.10 = 0.90 and

(1− α)× 100% = 0.90× 100% = 90%.

For the 95% confidence level, α = 0.05 and for the 99% confidence level
α = 0.01. Whereas C was a percentage, α is a number between 0 and 1, and
can be regarded as a proportion or a probability. C was a large value, but
α is a small number; the two are complements of each other.
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Figure 8.3: α Notation for the Standardized Normal Curve

The value 1 − α represents the proportion of the area in the middle of
the normal curve. Since the total area under the curve is 1, the area under
the curve which is not in the centre is 1− (1− α) = α. That is, if 1− α is
the area in the middle of the normal curve, then α is the sum of the areas
in the two tails of the distribution. Since the normal curve is symmetric,
there is α/2 of the area in each tail of the distribution. All of these areas are
shown in Figure 8.3. The area in the middle of the curve, between the limits
shown, is a proportion of the area 1 − α, or a percentage (1 − α) × 100%.
This means that there is (1−α)/2 of the area on each side of centre, within
the limits shown, and α/2 of the area in each tail of the distribution, outside
the limits shown.

This notation also provides a means of defining the limits mentioned in
the last paragraph. In Figure 8.3, these limits are labelled −Zα/2 and Zα/2.
Since the standardized normal distribution is centred at a mean of Z = 0,
values of Z to the left of centre are negative, and values to the right of centre
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are positive. The Z value of Zα/2 is used to denote the Z value associated
with an area of α/2 beyond it. From the diagram it can be seen that there
is an area of α/2 to the left of −Zα/2 and an equal area of α/2 to the right
of Zα/2.

This awkward notation is quite flexible, and it provides a compete way
of labelling and discussing the normal distribution. The values α/2 are the
values in column C of the normal table in Appendix A, and the associated Z
values are those in the table. For example, for an area of 0.95 in the middle
of the standardized normal distribution, 1 − α = 0.95 and α = 0.05. Thus
α/2 = 0.025 represents the area in one tail of the distribution. Looking
for a value of 0.025 in column C of Appendix A gives Z = 1.96. Thus
Zα/2 = Z0.025 = 1.96. This value should by now be recognizable as the
familiar Z value of 1.96 associated with the 95% interval estimate.

The values of α can be interpreted as probabilities rather than propor-
tions. If Z is regarded as a random variable with a standardized normal
probability distribution, then the areas under the normal distribution rep-
resent probabilities of different values of Z occurring. The area in the middle
of the normal distribution can be represented in a probability statement:

P (−Zα/2 < Z < Zα/2) = 1− α

That is, between the limits of −Zα/2 and Zα/2 there is an area of 1− α. If
the variable Z varies randomly according to this distribution, then this is
also the associated probability of Z being within these limits. Similarly,

P (Z < −Zα/2) =
α

2

and
P (Z > Zα/2) =

α

2
.

This can be made more concrete by using the example of the 95% confi-
dence level. Then (1−α)×100% = 95%, 1−α = 0.95, α = 0.05, α/2 = 0.025
and Zα/2 = 1.96. Thus

P (Z < −Zα/2) = P (Z < −Z0.025) = P (Z < −1.96) = 0.025

and
P (Z > Zα/2) = P (Z > Z0.025) = P (Z > 1.96) = 0.025

Also, the probability in the middle can be given as:

P (−Zα/2 < Z < Zα/2) = 1− α
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Figure 8.4: α Notation for Interval Estimate of the Mean

P (−Z0.025 < Z < Z0.025) = 1− α

P (−1.96 < Z < +1.96) = 0.95

That is, the probability that the normal random variable Z takes on a value
between Z = −1.96 and Z = +1.96 is 0.95.

This notation can now be used to discuss the sampling distribution of X̄
and the interval estimates. Figure 8.4 uses the same notation as Figure 8.3.
But rather than representing simply the standardized normal distribution,
Figure 8.4 represents the sampling distribution of X̄. This distribution has
a mean of µ and a standard deviation of

σX̄ =
σ√
n

.

Suppose that the (1 − α) × 100% confidence interval is to be obtained for
the estimate of µ. The corresponding Z values are −Zα/2 and Zα/2. The
probability is 1 − α that Z takes on a value within these limits. In terms
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of the distribution of X̄, these limits are Zα/2 standard deviations on each
side of the true mean µ. These limits are

µ− Zα/2
σ√
n

and
µ + Zα/2

σ√
n

The possible values of X̄ in the sampling distribution of X̄ can then be
described in a probability statement

P

(
µ− Zα/2

σ√
n

< X̄ < µ + Zα/2
σ√
n

)
= 1− α.

While this may appear to be an intimidating expression, all it states is that
1 − α is the probability that X̄ is within Zα/2 standard deviations of the
true mean µ.

The above expression may appear to provide the interval estimate, at
least in probability form. The difficulty with this expression is that the inter-
val is constructed around µ, rather than around X̄. Since µ is unknown, an
interval cannot be constructed around it. Fortunately, the above expression
can be rearranged to provide the interval estimate. From

P

(
µ− Zα/2

σ√
n

< X̄ < µ + Zα/2
σ√
n

)
= 1− α

the expression inside the probability statement can be rearranged to preserve
the inequalities, yet produce an interval constructed around X̄. If µ is
subtracted from each part of the probability expression inside the probability
bracket, and X̄ is also subtracted from each part, then this expression still
holds and is

P

(
−X̄ − Zα/2

σ√
n

< −µ < −X̄ + Zα/2
σ√
n

)
= 1− α

The interval is now stated negatively. If an inequality is multiplied by a
negative number, the direction of the inequalities are reversed, in order to
preserve the inequalities. That is, −3 > −5, but 3 < 5. Multiplying the
expression inside the probability brackets and rearranging gives

P

(
X̄ − Zα/2

σ√
n

< µ < X̄ + Zα/2
σ√
n

)
= 1− α.
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The last expression gives the interval estimate, and the probability associ-
ated with this interval estimate. It states that the probability is 1− α that
the intervals around X̄ contain µ. The interval is constructed with a lower
confidence limit of

X̄ − Zα/2
σ√
n

and a upper confidence limit of

X̄ + Zα/2
σ√
n

.

The (1− α)100% confidence interval is thus
(

X̄ − Zα/2
σ√
n

, X̄ + Zα/2
σ√
n

)
.

The only difficulty associated with computing this after the sample has been
obtained is that σ is unknown. As long as n is reasonably large, the sample
standard deviation s can be used as an estimate of σ, and the interval
estimate is: (

X̄ − Zα/2
s√
n

, X̄ + Zα/2
s√
n

)
.

The above explanation provides the rationale for the interval estimates.
In Chapter 9, it will be seen that interval estimation and hypothesis testing
are quite similar. The notation developed in this section will make more
sense once the method of hypothesis testing is examined, and this notation
is consistent with Chapter 9.

The following section examines the situation when the sample size is
small. The method outlined in this section needs to be modified a little
when the sample has size less than 30. The method and notation outlined
in this section will also be used in Section 8.5, when the interval estimate
for a population proportion is obtained.

8.4 Estimate of the Mean, Small n

There are many circumstances where the sample size of the random sample
is quite small, so that the Central Limit Theorem cannot be used to describe
the sampling distribution of the sample mean. If this is the case, then the t
distribution can often be used to describe the sampling distribution of the
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sample mean. This section describes how to use the t distribution. Be-
fore examining this distribution, a few comments concerning the difficulties
associated with small sample sizes are discussed.

A small sample size has many problems associated with it. In Chapter
7 it was seen that the sampling distribution of X̄ has a standard error, or
standard deviation, of

σX̄ =
σ√
n

.

where σ is the standard deviation of the population from which the random
sample has been drawn. When the random sample has a large sample size,
then the standard error associated with X̄ is relatively small. Since the
sample size n appears in the denominator of the standard error, the larger
the sample size, the smaller the standard error.

When the sample size n is small, this also means that the standard
error is relatively large and there is considerable variation in the sampling
distribution of X̄. This, in turn, implies that the sampling error |X̄ − µ|
may be large. It will be seen later in this section that this also produces
a wide interval estimate. Thus a statistic obtained from a sample with
small sample size, even when the sample is random, may not provide a very
accurate estimate of the size of the population parameter.

Small samples are often not random. Many of the small samples selected
by researchers use volunteers, students or other captive members of a pop-
ulation. If the sample is selected on this basis, then it becomes difficult to
make any inferences from the sample to a larger population. These non-
probability methods of obtaining samples or subjects for an experiment are
often necessary. There are often insufficient resources for researchers to se-
lect a probability based sample of a population. Since some data concerning
a phenomenon is always preferred to no information, small nonprobability
samples are often very useful. The caution that should always be attached to
them is that the results from these small nonprobability samples should not
be generalized too much. Or, if the researcher does wish to generalize the
results to larger populations, some effort should be made by the researcher
to investigate the representativeness of the sample.

Having discussed these cautions, it is often the case that only a small
random sample is available. Alternatively, a researcher may wish to inves-
tigate whether a small sample is likely to be a random, or representative,
sample of a population. In these circumstances, the researcher may have to
use the t distribution.
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8.4.1 Student’s t distribution.

Student’s t distribution describes the sampling distribution of the sample
mean of random samples taken from a normally distributed population with
unknown standard deviation. The distribution is called Student’s t dis-
tribution, named after Student, the pen name of the statistician who de-
veloped this distribution. The distribution is more commonly referred to as
merely the t distribution.

The t distribution behaves in much the same manner as does the normal
distribution, but is more dispersed than the normal distribution. The t
distribution is peaked at the centre, and is symmetrical about the centre.
The large bulk of the area under the curve of the t distribution is near
the centre, with less and less of the area the farther one goes from the
centre of the distribution. The curve is asymptotic to the horizontal X axis,
always approaching this axis, but never quite touching it. As can be seen in
Figure 8.5, the t distribution is somewhat more spread out than the normal
distribution.

The horizontal axis of the t distribution is labelled t and this t is inter-
preted in the same manner as is Z in the standardized normal distribution.
That is, the t distribution pictured is a standardized t distribution, so that
the mean of the t distribution is 0 and its standard deviation is 1. The values
of t represent the number of standard deviations from centre for each point
on the horizontal axis. If t = 1, this represents a point on the horizontal
axis which is 1 standard deviation above the mean. If t = −1.8, this is a
point 1.8 standard deviations to the left of centre.

Degrees of Freedom. There was only one standardized normal distri-
bution. In contrast, there are many different standardized t distributions.
Each t distribution has a degree of freedom associated with it. When
working with the sample distribution of sample means, the degree of free-
dom is the sample size minus one. If d is used as the symbol to represent the
degree of freedom associated with the t distribution, and if n is the sample
size, then

d = n− 1.

Appendix ?? gives the table of the t distribution, and this table shows that
there are different t values associated with each degree of freedom. For a
small degree of freedom, the t distribution is quite dispersed, meaning that
it is necessary to go a considerable distance from the mean in order to ac-
count for most of the area. When the degrees of freedom are increased,
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the t distribution becomes more concentrated around the centre of the dis-
tribution, meaning that the t value associated with each area is somewhat
smaller than in the case of a smaller degree of freedom. When the degrees of
freedom increase beyond 30, the t distribution becomes almost exactly the
same as the normal distribution. As the degree of freedom increases even
more, the t and the normal distribution become so close to each other, that
the t distribution becomes the normal distribution for all practical purposes.

As n becomes large, or as d = n− 1 becomes large,

td(0, 1) → Nor(0, 1)

where td(0, 1) is the standardized t distribution with mean 0, standard de-
viation 1, and d degrees of freedom.

Using the t Table. Since there is a different t distribution for each sample
size or for each degree of freedom, it is not possible to provide a complete set
of t tables. Instead, the table in Appendix ?? gives t values only for selected
areas under the curve of the t distribution. These are the most commonly
used values, such as the 90%, 95%, 99% confidence levels. The areas asso-
ciated with significance levels in hypothesis testing are also provided in the
table.

The body of the table contains the standardized t value associated with
each level of confidence, and each degree of freedom. For example, if a
confidence level of 90% is used, and the sample size is n = 14, so that there
are d = n − 1 = 13 degrees of freedom, the t value in the column headed
90%, and row labelled d = 13, is 1.77. This means that there is 90% of the
area in the middle of the t distribution between t = −1.77 and t = +1.77.
This is the t value which will be used in the interval estimate for the mean,
when there is a sample of size n = 14.

As another example, suppose that the confidence level is 95%, and the
sample size is n = 28, so that there are d = 28− 1 = 27 degrees of freedom.
Using the 95% confidence level column and row 27, the t value can be seen
to be t = 2.05. This means that the middle 95% of the t distribution for 27
degrees of freedom is 2.05.

Note how the t values decline from the top to the bottom of the t table.
At the top of the t table, where there are relatively few degrees of freedom,
the t values are all quite large. This means that for small degrees of free-
dom, it is necessary to go a considerable distance from centre to obtain any
given area under the curve. Where the degrees of freedom are larger, the
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corresponding area under the curve is reached somewhat sooner, at smaller
t values. However, there is a limit to how small the t values become, and
this limit is that provided by the normal distribution. Note how the t values
get closer and closer to the corresponding normal values as the degrees of
freedom increase. For example, for the 95% confidence level, at 10 degrees
of freedom, the t value is 2.228. By the time 27 degrees of freedom have
been reached, the t value is 2.05. At 30 degrees of freedom the t value is
2.04, and as the degrees of freedom increase further, the t value gradually
declines, until it reaches the familiar value of 1.96, associated with the 95%
area under the normal distribution.

When using the t table, you are restricted to using the confidence levels
given in the table. If you wish to pick a different confidence level, you could
try interpolating between the t values given. For example, if there are 15
degrees of freedom for a sample, and you need to determine the t value
associated with the 92% confidence interval, this represents two fifths of
the distance between the 90% and 95% levels. The respective t values for
those two confidence levels are 1.75 and 2.13, and two fifths of the distance
between these is

1.75 +
2
5
(2.13− 1.75) = 1.75 + 0.15 = 1.90

and this provides a rough estimate of the 92% area.

Derivation of the Distribution. The strict conditions for using the t
distribution are two:

1. The sample is a random sample of the population, and

2. The population from which the sample is drawn is normal.

Further, the t distribution is most often used to provide confidence intervals
for, or hypothesis tests of, the mean. In carrying these out, the assumption
is that the variable being studied has an interval or a ratio level scale. As will
be seen in the examples, all of these conditions may be relaxed somewhat in
actual research studies. You should always be aware of these assumptions
though, and consider how the violation of these assumptions might affect
the interval estimates or t tests.

The manner in which the t distribution describes the sampling distribu-
tion of X̄ is discussed in this section. In Chapter 11, when correlation and
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regression are discussed, the t distribution is also used, and slightly different
conditions will be examined there.

Suppose that a variable X describes a characteristic of a population,
and that the mean of X is µ and the standard deviation of X is σ, where
neither of these population parameters are known. Further imagine that
this population has a distribution which is normal. That is,

X is Nor (µ, σ).

Note that this is not the distribution of X̄ yet, because samples have not yet
been taken. This distribution is the actual distribution of the population.
The assumption that the population is normally distributed is a very strong
assumption, and one which is not likely to be satisfied in most circumstances.
If the variable X is the height of people of one sex, all members of a particular
ethnicity, then perhaps X will be normally distributed. If the population is
a large set of students who have taken a standardized test, such as the LSAT
or GRE, then perhaps the answers will be normally distributed. But many
characteristics of populations are not normally distributed, and then this
assumption will be violated. For example, distributions of income, wealth,
farm size, many test results, and many attitudes, cannot be considered to
be normally distributed.

Assume that the distribution of the variable in the population is given
by

X is Nor(µ, σ)

and suppose random samples of size n are drawn from this population. Each
random sample will yield a different set of Xis in the sample, producing a
different X̄ for each sample, so that X̄ has a sampling distribution. It can
be proved mathematically that the sample distribution of the sample means
is a t distribution with d = n − 1 degrees of freedom. The mean of this
sampling distribution is the same as the population mean µ. The standard
deviation of the sample means is the sample standard deviation s divided by
the square root of the sample size. All this can be summarized as follows.

If
X is Nor (µ, σ)

where µ and σ are unknown, and if random samples of size n are drawn
from this population,

X̄ is td

(
µ,

s√
n

)
.
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where d = n− 1.

When the sample size n is small, say less than n = 30, the t distribution
should be used. If n > 30, then the t values become so close to the stan-
dardized normal values Z that the Central Limit Theorem can be used to
describe the sampling distribution of X̄. That is,

t → Z as n →∞.

This means that the t distribution is likely to be used only when the sample
size is small. For larger sample sizes, X̄ may still have a t distribution, but
if the sample size is large enough, the normal values are so close to the t
values that the normal values are ordinarily used.

8.4.2 Interval Estimate for the Mean.

The t distribution for X̄ can be used to provide interval estimates of the
population mean µ. The method of constructing interval estimates is exactly
the same for this small sample method as it is for the large sample method.
If the population mean µ is to be estimated, and the sample is a random
sample of size n with sample mean X̄ and sample standard deviation s, and
if the population from which this sample is drawn is normally distributed,
then

X̄ is td

(
µ,

s√
n

)
.

where d = n− 1.
In order to obtain an interval estimate, the researcher picks a confi-

dence level C% and uses this to determine the appropriate t value from
Appendix ??. For d degrees of freedom, let td be the t value such that C%
of the area under the t curve lies between −td and td. The C% confidence
interval is then

X̄ ± td
s√
n

or in interval form, (
X̄ − td

s√
n

, X̄ + td
s√
n

)
.

Note that this is exactly the same as the confidence interval for the mean
when the sample size is large, with the only difference being that td replaces
the Z value. One other minor difference is that s is used in this formula,
rather than σ. The latter was used when presenting the formula for the
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interval estimate in the case of the large sample size. But even in the case
of a large sample size, σ is almost always unknown, so that in practice, s is
used as an estimate of σ in that formula.

The interpretation of the confidence interval estimate is also the same
as earlier. That is, C% of the the intervals

X̄ ± td
s√
n

contain µ if random samples of size n = d+1 are drawn from the population.
Any specific interval which is constructed will either contain µ or it will not
contain µ, but the researcher can be confident that C% of these intervals
will be wide enough so that µ will be in the interval.

8.4.3 Examples of Interval Estimates, Small n

This section contains several examples of interval estimates using the t distri-
bution when the sample size is small. In these examples, the strict conditions
laid down earlier may not always hold, but the t distribution can often yield
useful interval estimates, even when the assumptions are violated.

Example 8.4.1 Flax Yields

A study of farms in the rural municipality of Emerald, Saskatchewan,
was discussed in Example ??. This survey found that the 4 farms that
produced flax had flax yields of 381.0, 279.4, 127.0 and 381.0 kilograms per
acre. Assuming this is a random sample of all farms in the Crop District
of which Emerald is a part, obtain the 95% interval estimate for mean flax
yield.

Solution. When the data is given in this form, as a list of all the values of
the variable, the first step in obtaining the interval estimate is to obtain the
point estimate. The population value being estimated is the mean flax yield
of all flax growing farms in the Crop District. Let this true mean be µ. If X
is the variable representing flax yield in kilograms per acre, then X̄ will be
the point estimate. In order to determine X̄, the formulae of Chapter 5 will
be used. Since the interval estimate is required, and the sample standard
deviation s must be calculated as part of this, both the mean and standard
deviation are calculated here. Table 8.5 and the following paragraph give
the calculations for determining these statistics.
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X X2

381.0 145,161.00
279.4 78,064.36
127.0 16,129.00
381.0 145,161.00

1,168.4 384,515.36

Table 8.5: Calculations for Mean and Standard Deviation of Flax Yield

From Table 8.5,
ΣX = 1, 168.4

ΣX2 = 384, 515.36

and n = 4. The mean value of flax yield for these 4 farms is

X̄ =
ΣX

n
=

1, 168.4
4

= 292.1

Given the data in the table, the variance is

s2 =
1

n− 1

[
ΣX2 − (ΣX)2

n

]
=

1
3

[
384, 515.36− 1168.42

4

]

s2 =
1
3

[
384, 515.36− 1, 168.4

4

]

s2 =
384, 515.36− 341, 289.64

3
=

43, 225.72
3

= 14, 408.573

The standard deviation is

s =
√

14, 408.573 = 120.036

or 120.0 kilograms per acre.
The point estimate of µ, the true mean flax yield in the Crop District,

is X̄ = 292 kilograms per acre. The interval estimate can be obtained using
the t distribution. That is, the sample is assumed to be random, the mean
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and standard deviation of the population are unkown, and the sample size
is small. If it is assumed that the population is normal, then

X̄ is td

(
µ,

s√
n

)
.

where d = n− 1.
For this example, d = n−1 = 4−3 = 3, X̄ = 292.1 and s = 120.0. Given

3 degrees of freedom, and the 95% confidence level, the appropriate t value
from Appendix ?? is 3.182. That is, with only 3 degrees of freedom, it is
necessary to go out from the centre of the distribution a distance of 3.182 t
values, or 3.162 standard deviations, in order to account for the middle 95%
of the t distribution. The interval estimate for µ is constructed in the same
manner as interval estimates earlier. The interval is constructed around X̄,
plus or minus the t value times the standard deviation of X̄. This is

X̄ ± td
s√
n

and with the values for this sample, this is

292.1± 3.182
210.0√

4

292.1± (3.182× 105.0)

292.1± 334.1

Thus the 95% interval estimate for the true mean flax yield is (−42.0, 626.2)
acres. Since negative yields are not possible, this might be made into the
interval (0, 626), rounding to the nearest integer. Since this is such a wide
interval, this sample tells us little concerning the true mean flax yield in the
Crop District.

Additional Comments. Note that there are three reasons why the interval
is so wide in this example. First, the sample size of n = 4 is very small, so
that s/

√
n, the standard deviation of X̄ does not have a very large value

for n in the denominator. Second, the t value is quite large, so the interval
goes out from X̄ a considerable distance in each direction. If the sample
size had been larger, then the Z value might have been used, and this would
put Z = 1.96 into the interval estimate, rather than t = 3.182. Using the
Z value would produce a narrower interval. The third reason the interval is
so wide is that s is fairly large. The 4 farms sampled have quite different
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flax yields. Since this standard deviation of s = 120 is used as the estimate
of σ, this implies that the flax yield in the crop district has large variation.
Any time the population has considerable variability, the interval estimate
will be quite wide.

One problem with this sample is that the sample may not be random.
In addition, all the farms sampled were in Emerald, only a small part of the
Crop District. For purposes of estimating the true mean flax yield in the
District as a whole, these farms may not be representative.

One further issue which should be considered here is whether the as-
sumption that the population from which the sample is drawn is normally
distributed or not. The assumption is that variable X is a normally dis-
tributed variable. Since X represents the flax yield on each farm, the as-
sumption is that the flax yield per farm is normally distributed across farms.
While it is unlikely that this assumption is exactly satisfied, this is not all
that unreasonable as an assumption. Flax yields will differ from farm to
farm based on factors such as the fertility of the soil, cultivation practices,
amount of fertilizer used, and weather and other climate considerations.
Across all farms growing flax, these factors may balance out, with some
farms having above average yield, and others having below average yield,
but most farms clustered around the average yield. If this reasoning is cor-
rect, then the assumption of normally distributed flax yield could be close
to being satisfied.

In summary, the sample of 4 farms is really too small to provide a good
estimate of the true mean flax yield in the Crop District. What this example
shows is the difficulty of providing a very accurate estimate of a population
parameter when the sample size of a sample is very small.

Example 8.4.2 Explanations of Unemployment

The 1985 Edmonton Area Study, conducted by the Population Research
Laboratory at the University of Alberta, surveyed 385 Edmonton adults
concerning various possible explanations for the existence of unemployment
in Canada. This study is examined in H. Krahn et. al., “Explanations
of Unemployment in Canada,” International Journal of Comparative
Sociology, XXVIII, 3-4, 1987, pp. 228-236. One of the explanations given
was “Many people are unemployed because they are unwilling to move to
places of work” and respondents were asked whether they agreed or disagreed
with this explanation. The responses were given on a 7 point scale, with
1 being ‘strongly disagree’ and 7 being ’strongly agree.’ I drew a random
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sample of 6 of these respondents, and their responses were 2, 4, 1, 5, 6, 1.
Using these 6 responses, derive a 90% and a 99% interval estimate for the
true mean response for all Edmonton adults.

Solution. Define X as the variable giving the responses to this explanation.
X can potentially take on integer values from 1 through 7. Let the true mean
of the response to this question for all Edmonton adults be µ. Assume that
the distribution of responses to this explanation for unemployment to be
normally distributed among all Edmonton adults. If this sample of n = 6
respondents represents a random sample from Edmonton, then the sample
mean X̄ has a t distribution with mean µ and standard deviation s/

√
n, and

with d = n− 1 degrees of freedom. That is,

X̄ is td

(
µ,

s√
n

)
.

where d = n− 1.
Using the sample data from this sample, the values of X are 2, 4, 1,

5, 6, and 1. There are n = 6 values, and the formulae for the mean and
standard deviation can be used to show that X̄ = 3.167 and s = 2.137.
For this sample, there are d = n − 1 = 6 − 1 = 5 degrees of freedom. For
the 90% interval estimate, the t value is obtained from Appendix ?? in the
column headed 90% and row d = 5. This t value is td = 2.015. The interval
estimates are provided using

X̄ ± td
s√
n

With the values for this sample, this is

3.167± 2.015
2.137√

6

3.167± 2.015
2.137
2.449

3.167± (2.015× 0.872)

3.167± 1.758

The 90% interval estimate for the true mean opinion is (1.409, 4.925). These
values should be rounded so that the 90% interval estimate for the true mean
opinion level of all Edmonton adults is (1.4, 4.9). Recall that 1 represents
strongly disagree with this explanation, 7 represents strongly agree, and by
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implication 4 would be a relatively neutral view with regard to this explana-
tion. The point estimate is 3.2, on the disagree side of centre. The interval
estimate is mostly on the disagree side of the explanation. As a result, this
sample appears to show that Edmonton adults, on average, slightly disagree
with this explanation.

The 99% interval estimate uses the same n, X̄ and s, but the t value
changes. The degree of freedom is still 5 so row 5 of the table in Appendix ??
is used. But with the column for the 99% interval, td = 4.032. The interval
is given as follows:

3.167± 4.032
2.137√

6

3.167± 4.032
2.137
2.449

3.167± (4.032× 0.872)

3.167± 3.518

The 99% interval estimate for the true mean opinion is (−0.351, 6.685).
Again, these values should be rounded so that the 99% interval estimate is
that the true mean opinion level for all Edmonton adults is (−0.4, 6.7). Since
this includes practically the whole range of opinions, this interval estimate
tells us little that could not have been said before the sample was selected.
Since the t value associated with the 99% interval is so large, practically
the whole range of possible opinions is included in the interval estimate. In
order to be 99% confident that the estimates contain µ, the whole range of
opinions has to be included.

Additional Comments. These results show some of the problems that
can develop if the sample size is small. The 99% interval estimate is so wide
as to be useless, and even the 90% interval estimate is quite wide, including
practically all the opinions on the diagree side. What this shows is that
a random sample of size n = 6 is really too small to make any definitive
conclusions concerning the nature of opinions among all Edmonton adults.

The complete Edmonton Area Study contained data from 385 adults
surveyed. This data can be used to provide a much more precise interval
estimate of the true mean opinion. For the set of all n = 385 adults surveyed,
X̄ = 4.151, s = 1.834 and the sample size is quite large, so that

X̄is Nor

(
µ,

σ√
n

)
.
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For the 99% interval, the appropriate Z value is 2.575 and the 99% interval
would be

X̄ ± 2.575
σ√
n

4.151± 2.575
1.834√

385

4.151± 2.575
1.834
19.621

4.151± (2.575× 0.093)

4.151± 0.241

Based on the sample size of n = 385, the 99% interval estimate for the true
mean opinion is (3.9, 4.4). The increase in the sample size from 6 to 385 has
dramatically reduced the size of the interval, making the estimate of mean
opinion level a much more precise estimate. The probability is 0.99 that a
random sample of size n = 385 will provide an estimate of µ which is correct
to within ±0.241.

In addition, note that with the larger sample size, the Central Limit
Theorem can be invoked, so that the Z value can be legitimately used. With
the small sample size of only 6, there is some question concerning whether
even the t distribution can be used. The t distribution for X̄ assumes
that the population from which the random sample is drawn is a normally
distributed population. In this case, the frequency distribution of the larger
sample of 385 respondents allowed me to check whether the opinions for
that sample were close to normally distributed or not. Although not shown
here, the distribution of opinions is not too far from a normal distribution,
although it is not real close to being normal either. Thus the t value may
not be quite appropriate.

As a general rule, when the sample size is small, it is always advisable
to use the t value from the t distribution rather than the Z value from the
normal distribution when determining the interval estimate.

Since the Z value is much smaller than the t value, using the Z value
could produce an interval which appears much narrower than it really should
be. That is, the Z value underestimates the size of the interval in the case of
small sample size. Even the use of the t value may lead to underestimation
of the interval width. But since the t value produces a wider interval than
does the Z value, there is less chance of underestimating the interval width
if the t value is used.
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Example 8.4.3 Self-Esteem of Elderly Women

A situation in which the t distribution may be used is when the number of
subjects which can be studied is fairly small. This was the case for a study
of 25 elderly women who were residents of a Windsor, Ontario nursing home.
Two psychologists at the University of Windsor studied these women, along
with a sample of 28 elderly women who were living in their own homes. The
results of the study are in Rhonda A. Loomis and Cheryl D. Thomas, “El-
derly Women in Nursing Home and Independent Residence: Health, Body
Attitudes, Self-Esteem and Life Satisfaction,” Canadian Journal on Ag-
ing, Vol. 10, No. 3, 1991, pp. 224-231. The authors state

One aim of the current study was to determine if elderly women
who live in a nursing home differ from those who have remained
in their own homes with respect to their self-reported health,
body attitudes, self-esteem, or life satisfaction.

The elderly women in the study were asked to give responses to various
questions, including the ‘Index of Self-Esteem ’ (ISE).

The ISE ... is a 25-item self-report inventory designed to measure
the level of self-esteem problems experienced by the respondent.
Items (e.g., “I feel that I bore peple”) are rated on a five-point
scale from 1 (rarely or none of the time) to 5 (most or all of the
time) and item ratings are summed to yield a total score between
0 and 100. Scores above 30 ... indicate clinically signficant self-
esteem problems.

Community Nursing Home
Group Group

Mean 29.4 25.1
SD 15.0 14.4
n 28 25

Table 8.6: Means and Standard Deviations (SD) of ISE

The summary statistics for ISE from the study are contained in Table 8.6.
Since a higher ISE score indicates more problems, the community women
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who lived in their own homes appear to score higher on the index of self
esteem than did the women in nursing homes. A higher ISE score indicates
lower self-esteem, so that the community group appears to show lower self-
esteem. However, the authors claim that this difference is not statistically
significant. While proof of this must wait until Chapter 9, interval estimates
can be used to show much the same result.

Obtain 95% interval estimates for the true mean of each group. Use
these results to comment on whether women in nursing homes and in the
community show different levels of self-esteem.

Solution. It is not clear what the population from which these samples are
drawn really is. Imagine though that the community women are a random
sample of all elderly women who live in their own homes. Further suppose
that the residents of the nursing home represent a random sample of all
elderly women in nursing homes. In addition, assume that the index of self-
esteem is normally distributed for both groups. Given these assumptions,
the t distribution can be used to obtain interval estimates of the true mean
for each group. In each case, the sample size is under 30, and the standard
deviation of the whole population is not known, so that the t, rather than
the normal, distribution must be used in each case.

For the community women, n = 28, so that the degree of freedom is d =
n− 1 = 27. The appropriate t value for 95% confidence from Appendix ??
is t27 = 2.052. If µc is the true mean of ISE for all elderly women who live
in their own homes, the interval estimate for µc is

X̄ ± td
s√
n

29.4± 2.052
15.0√

28

29.4± 2.052
15.0
5.292

29.4± (2.052× 2.834)

29.4± 5.8

The 95% interval estimate for the true mean ISE of community women is
(23.6, 35.2).

Let the true mean of ISE for all elderly women who live in nursing
homes be µn. Since the sample size for these women is n = 25, there are
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d = 24 degrees of freedom, and at the 95% confidence level, the t value is
t24 = 2.064. The interval estimate for µn is

25.1± 2.064
14.4√

25

25.1± 2.064
14.4
5

25.1± (2.064× 2.88)

25.1± 5.9

The 95% interval estimate for the true mean ISE of community women is
(19.2, 31.0).

Since each of these intervals has considerable width, the estimates of
the respective means of ISE are not very precise. The researchers can be
95% confident that the estimate of µc is no more than 5.8 units from its
true value, and that the estimate of µn is not incorrect by more than 5.9
units. But since the estimates of mean ISE differ by only 29.4− 25.1 = 4.3
units, there is not sufficient evidence to conclude that the true means for the
two groups are different. If the 5.8 and 5.9 are regarded as sampling error,
this sampling error for each group is greater than the estimated difference
between the groups.

Also note that the two intervals overlap considerably. This means that
the true mean of each group could be in the overlapping region. For example,
the true mean µn could be as large as 31.0, considerably greater than the
sample mean for the community group. Thus the authors appear to be
justified in their statement that there is not really a significant difference
between the reported self-esteem for the two groups. In Chapter 9, an
hypothesis test will be used to test this directly, but the interval estimates
provide the same result.

Additional Comments. Finally, a few comments can be made concerning
the possible violation of assumptions here. First, the samples do not appear
to be random samples, so that it is not clear how the sample results can
be generalized to a large population, or to what population they could be
generalized. While this is a problem, it is sometimes useful to treat non-
random samples of this sort as if they were random samples. In this case,
the results above show that even if the samples were random, the reported
means are little different. This is useful information, but care must be taken
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concerning how general this result may be. It could be that if larger random
samples were taken, then there would be a difference.

Second, whether or not the distributions of ISE are normal is not dis-
cussed by the authors. It would be useful to know a little more concerning
how this scale is constructed. Often a scale of this sort is constructed to
produce a normally distributed pattern of responses. This may be the case
with this scale.

The assumptions may be violated in this example. But since the differ-
ence between the two groups is found to be insignificant on the ISE scale, no
major claims or conclusions are being made for differences between the two
groups. Whatever violation of assumptions there may be, has been inter-
preted in a cautious fashion. Where problems develop is when assumptions
are violated, and stronger conclusions are reported.

8.4.4 Notation for Confidence Levels with t Distribution.

Just as in the case of the normal distribution, a complete notation for the
areas under the t curve, the t values, and interval estimates for small n,
can be obtained by using the α notation. In you did not follow this when
the interval estimate for the mean was discussed, you can skip this section.
But if you follow the notation in this section, then you should have a better
grasp of interval estimation using the t distribution. The notation of this
section is also consistent with the t tests of Chapter 9.

Suppose X is a variable which is normally distributed with mean µ and
standard deviation σ. That is

X is Nor (µ, σ).

Suppose though that both µ and σ are unknown. If a random sample of
size n is taken from this population, the sample mean X̄ has a t distribution
with mean µ and standard deviation s/

√
n, d = n − 1 degrees of freedom.

That is,
X̄ is td (µ,

s√
n

).

This result holds regardless of the sample size, but the t distribution is most
often used when the sample size is small. When n is larger, this t distribution
approaches the standardized normal distribution.

The t distribution can be used to determine the C% confidence interval,
where

C% = (1− α)× 100%.
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Figure 8.6: α Notation for the Standardized t Distribution

where 1−α represents the proportion of the area in the middle of the t dis-
tribution. Then α is the sum of the areas in the two tails of the distribution,
and since the t distribution is symmetric, there is α/2 of the area in each
tail of the distribution. All of these areas are shown in Figure 8.6.

Since there is already one subscript on the t value representing the degree
of freedom, it is necessary to add another subscript to denote the area. The
two subscripts are separated by a comma. For d degrees of freedom, and α/2
of the area in one tail of the distribution, let td,α/2 represent the appropriate
t value. In Figure 8.6, these limits are labelled −td,α/2 and +td,α/2. Since
the standardized t distribution is centred at a mean of t = 0, values of t to
the left of centre are negative, and values to the right of centre are positive.
The value of t of td,α/2 is used to denote the t value associated with an area
of α/2 beyond it. From the diagram it can be seen that there is an area of
α/2 to the left of −td,α/2 and an equal area of α/2 to the right of +td,α/2.

If these areas are interpreted as probabilities,

P (−td,α/2 < t < td,α/2) = 1− α
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That is, between the limits of −td,α/2 and td,α/2 there is an area of 1 − α.
If the variable t varies randomly according to this distribution, then this is
the associated probability of t being within these limits. Similarly,

P (t < −td,α/2) =
α

2

and
P (t > td,α/2) =

α

2
.

For a sample mean X̄ which has a t distribution with unknown mean µ
and standard deviation s/

√
n, the limits on the confidence interval are td,α/2

standard deviations on each side of the true mean µ. These limits are

µ− td,α/2
s√
n

and
µ + td,α/2

s√
n

The possible values of X̄ in the sampling distribution of X̄ can then be
described in a probability statement

P (µ− td,α/2
s√
n

< X̄ < µ + td,α/2
s√
n

) = 1− α.

The expression in brackets can be rearranged, producing

P (X̄ − td,α/2
s√
n

< µ < X̄ + td,α/2
s√
n

) = 1− α

and this is the interval estimate in the brackets.

8.5 Estimate of a Proportion

Estimating a population proportion uses the same method as that used for
estimating a population mean, with only a few modifications for different
notation. Since the latter has been described in detail earlier in this chapter,
this section provides only a short description of the method of estimating a
population proportion. Examples of these interval estimates for a population
proportion are also provided.

Suppose that a researcher wishes to determine the proportion of popu-
lation members which have a particular characteristic. Let this proportion
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be defined as p. This population characteristic is unknown, but suppose a
random sample with a large sample size is taken from this population. The
sampling distribution of the sample proportion can be determined using the
extension of the normal approximation to the binomial discussed in Chapter
7. This is as follows.

Suppose a random sample of size n is taken from the population having
p as the true proportion of members with the characteristic in question.
Any member of the sample which has this characteristic is defined as being
a success. If there are X successes in the sample of n members of the
population, the proportion of successes is p̂ = X/n. For a given sample,
p̂ = X/n is the point estimate of the true population proportion p.

Each random sample will yield a different value of p̂, but if n is reasonably
large, the sampling error of the sample proportion p̂ is normally distributed
with mean p and standard deviation σp̂ =

√
pq/n. Symbolically,

p̂ is Nor ( p , σp̂ )

or
p̂ is Nor

(
p ,

√
pq/n

)

This result holds as long as

n ≥ 5
min(p, q)

In order to determine the confidence interval estimate, the same method
as used for the mean can now be used. Pick a confidence level C%. Since
the distribution of p̂ is normal, the Z value corresponding to an area of C%
in the middle of the normal curve can be obtained from Appendix A. Using
this Z value, an interval estimate for p can be constructed around p̂. The
lower confidence limit for this interval will be

p̂− Z

√
pq

n

and the upper confidence limit is

p̂ + Z

√
pq

n

The C% confidence interval is thus

p̂± Z

√
pq

n
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or in interval form, (
p̂− Z

√
pq

n
, p̂ + Z

√
pq

n

)
.

The only difference between this interval estimate and the large sample
method for the mean is that p̂ replaces X̄, and the standard deviation of X̄
is replaced with the standard deviation of p̂. The standard deviation of p̂ is√

pq/n.
After the sample has been obtained, the only problem in providing the

interval estimate for a proportion is to determine the value of p and q in√
pq/n. As in the discussion of the sampling error for a proportion on

page ?? in Chapter 7, there are two choices. If p = q = 0.5 is used in
σp̂ =

√
pq/n, then this provides the maximum possible value for σp̂. This is

a conservative method, providing an interval estimate which may be a little
wider than the interval really should be.

The alternative choice for the estimate of σp̂ =
√

pq/n is to let p = p̂
and q = 1 − p = 1 − p̂ in this part of the expression. This will produce
a somewhat narrower interval. The only danger with using this method is
that the interval which is obtained may be a little narrower than the interval
really should be. This is only likely to occur is either p̂ or q̂ is quite different
from 0.5. If that is the case, this method may produce an underestimate
of the true interval width. (The true interval width would be based on the
actual values of p and q, but these values are unknown, these are the values
being estimated).

Example 8.5.1 Interval Estimate for the Gallup Poll

In Example ?? of Chapter 7, the sampling error for Gallup poll estimates
was shown to be a little under 4 percentage points, in 19 out of 20 samples.
Here a recent poll result is taken, and the respective interval estimates are
determined.

In the August, 1992 poll, Gallup asked the question

If a federal election were held today, which party’s candidate do
you think you would favor?

Of those adults who had decided which party they would favor, 21% sup-
ported the PCs, 44% the Liberals, 16% the NDP, 11% the Reform Party,
6% the Bloc Quebecois and 1% other parties. The totals do not add to
100% because of rounding error. Of those polled, 33% were undecided, so
these reported percentages are based on the 67% of those polled who were
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decided. Obtain the interval estimates for the true proportion of Canadian
adults who supported the PCs and Liberals in August, 1992.

Solution. Since Gallup mentions the sampling error in 19 or 20 samples,
the C=95% confidence level will be used here. For each of the political
parties, success can be defined as support for that political party.

For the Conservatives, define success as the characteristic that an adult
who is interviewed will support the PC party. Let p be the true proportion
of Canadian adults who really do favor the Conservative party. This true
population parameter p is unknown, but since the Gallup poll is a random
sample of Canadian adults, with a large sample size, the distribution of the
sample proportion p̂ can be determined on the basis that:

p̂ is Nor ( p ,

√
pq

n
)

In this sample, n = 1, 025, p̂ = 0.21 and thus q̂ = 1− p̂ = 1−0.21 = 0.79.
In order to estimate σp̂ =

√
pq/n either these values, or p = q = 0.5 may be

used. Using the latter values, the 95% interval estimate is

(
p̂− Z

√
pq

n
, p̂ + Z

√
pq

n

)

(
0.21− 1.96

√
0.5× 0.5

1, 025
, 0.21 + 1.96

√
0.5× 0.5

1, 025

)

(
0.21− 1.96

√
0.000243902 , 0.21 + 1.96

√
0.000243902

)

(0.21− [1.96× 0.0156174] , 0.21 + [1.96× 0.0156174])

(0.21− 0.0306 , 0.21 + 0.0306)

(0.1794 , 0.2406)

Rounding this off, the 95% interval estimate for the true proportion of PC
supporters is thus (0.18, 0.24), or between 18% and 24% of Canadian adults.

If p̂ and q̂ had been used in determining this interval, the interval would
have been

0.21± 1.96

√
0.21× 0.79

1, 025

or 0.21 ± 0.0249. Using these values in the standard deviation reduces the
size of the interval estimate a little, producing a 95% interval of (0.185,
0.235).
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Also recall that the undecided might best be taken out of this estimate,
as argued on page ?? in Chapter 7. If this is done, this reduces the effective
sample size to approximately 686. If p = q = 0.5 is used in σp̂ =

√
pq/n,

then the interval estimate is p̂ ± 0.037, or approximately plus or minus
4 percentage points. For the PCs, the maximum size of the 95% interval
estimate would be (0.17, 0.25). Given this data, it seems quite likely that the
true proportion of PC supporters among Canadian adults would be between
17% and 25% in August 1992.

For the Liberals, the method is the same. Define support for the Lib-
erals as a success. Then p̂ = 0.44 and the 95% interval estimates can be
constructed in the same manner as for the PCs. If the full sample size
of n = 1, 025 is used, then the maximum size of the interval estimate is
0.44±0.031. Note that if p̂ and q̂ are used in

√
pq/n, the interval is reduced

in size to only 0.44 ± 0.030. Reducing the effective sample size to 686 will
have the same effect as it did for the PCs, widening the interval a little.

For each of the other groups, the interval estimates are approximately
the same width. If p = q = 0.5, all the interval estimates for a given sample
size and confidence level will be the same width. Only if p̂ and q̂ are used
in

√
pq/n will be interval estimates be narrowed slightly.

Based on these considerations, the 95% interval estimates for each pro-
portion are p̂ ± 0.031. This is the same as the sampling error shown in
Chapter 7, and the same level as claimed by Gallup.

Example 8.5.2 Child Discipline and Child Abuse

Table 8.7 is based on Table II of Rhonda L. Lenton, “Techniques of Child
Discipline and Abuse by Parents,” Canadian Review of Sociology and
Anthropology, 27 (2), 1990. This table contains the results of a survey of
Toronto families, and gives the percentages of mothers and of fathers who
used various types of disciplinary action with children in the year before
being surveyed. Lenton notes that the sample is a random sample of Toronto
families, with 89 mothers and 48 fathers in the sample.

Referring to this table, Lenton comments

Mothers appear to be somewhat more likely to have used violent
disciplinary techniques with the notable exceptions of two of the
most severe acts – withholding food and beating.

Obtain the 90% interval estimate for the proportion of all Toronto moth-
ers who pushed, shoved or grabbed a child in the past year. Do the same
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Aggressive
Disciplinary Percent of:
Action Mothers Fathers

Yell 96 94
Ridicule Child 35 52
Verbally Threaten 65 71
Withdraw Emotionally 14 27
Push, Grab, Shove 55 46
Throw something at Child 11 4
Slap or Spank Child 75 58
Hit Child with Object 15 10
Withhold Food 4 8
Beat Child 12 15

Sample Size 89 48

Table 8.7: Aggressive Disciplinary Actions Tried by Parents in Past Year
(in percent)

for fathers. Using the percentages in Table 8.7 comment on Lenton’s con-
clusion that mothers appear to have been more likely to have used violent
disciplinary techniques.

Solution. The 90% interval estimates are interval estimates for a propor-
tion. Let p be the true proportion of all Toronto mothers who pushed,
shoved or grabbed a child in the past year. The sample of n = 89 Toronto
mothers shows that 55% of Toronto mothers pushed shoved or grabbed a
child in the last year. In terms of a proportion, this is p̂ = 0.55. Also, q̂,
the proportion of Toronto mothers who did not push, shove or grab a child
in the past year is q̂ = 1− p̂ = 1− 0.55 = 0.45. Since

5
min(p, q)

=
5

0.45
= 11.1 < 89

the normal approximation to the binomial provides a good estimate of the
distribution of p̂ so that

p̂ is Nor
(
p,

√
pq/n

)
.
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For the (1 − α)100% = 90% interval estimate, Z = 1.645, and the interval
estimate is as follows. (For the standard deviation of p̂, in this case p̂ has
been used for p, and q̂ has been used for q. Alternatively, a slightly wider
interval would have resulted if we let p = q = 0.5).

p̂± Z

√
pq

n
= 0.55± 1.645

√
0.55× 0.45

89

0.55± 1.645
√

0.0027808 = 0.55± 0.087

The 90% confidence interval estimate for the proportion of all Toronto moth-
ers who pushed, shoved or grabbed a child is (0.463, 0.637) or 46% to 64%.

For the fathers, the method is exactly the same, but p̂ = 0.46, q̂ = 0.54
and n = 48. Since

5
min(p, q)

=
5

0.46
= 10.9 < 48

the normal approximation to the binomial provides a good estimate of the
distribution of p̂ so that

p̂ is Nor
(
p,

√
pq
n

)
.

The 90% interval estimate is

p̂± Z

√
pq

n
= 0.46± 1.645

√
0.46× 0.54

48

0.46±
√

0.005175 = 0.46± 0.118

The 90% confidence interval estimate for the proportion of fathers who
pushed, shoved or grabbed a child in the past year is (0.342,0.578) or 34%
to 58%.

The wide size of the interval estimates casts some doubt on Lenton’s
statements. The sample sizes of mothers and fathers are not all that large, so
that even though only the 90% confidence level has been used, the intervals
for each of mothers and fathers are plus or minus 9 percentage points or
more. Given that the percentage of mothers and fathers who used each
technique often differs by less than this, the data here provides only very
weak evidence for Lenton’s statement. The interval estimates are just too
wide to conclude that larger percentages of mothers than of fathers used the
more violent techniques.
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In addition, it may be questioned whether the sample really was random.
While this would require going back to the methodology of the original study,
it may be that the sample has some selection problems associated with it.

In conclusion, Lenton may have found evidence for a difference in be-
haviour of mothers and fathers toward children, but more evidence would
be required before this difference could be considered to be well founded. In
Chapter 9, an hypothesis test for the difference between mothers and fathers
is conducted.

Example 8.5.3 Representativeness of Regina Labour Force Survey

The 1986 Census of Canada gives data showing that of 132,825 adults
aged 15 or over in Regina, 15,240 have completed less than grade 9 education.
The Social Studies 203 Regina Labour Force Survey also surveys adults aged
15 and over and of the 937 respondents surveyed, 74 have completed less
than grade 9 education. Using only the data from the Survey, obtain the
98 per cent interval estimate for the proportion of all Regina adults aged
15 or over, who have completed less than grade 9 education. Based on this
result, what conclusion can you draw concerning the representativeness of
the Survey?

Solution. Based on the Survey, the point estimate for the proportion of all
Regina adults who have completed less than a grade 9 education is

p̂ =
74
937

= 0.0790.

The sample size is n = 937. Using p̂,

5
min(p, q)

=
5

0.0790
= 63.3 < 937

and the normal approximation to the binomial provides a good estimate of
the distribution of p̂. If p is the true proportion of all Regina adults who
have less than a grade 9 education, then

p̂ is Nor
(
p,

√
pq
n

)
.

For the (1− α)100% = 98% interval estimate, Zα/2 = Z0.01 = 2.33, and the
interval estimate is as follows. ( p̂ has been used for p, and q̂ has been used for
q in this case, for calculating the standard deviation of p̂, σp̂. Alternatively,
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a wider interval would have resulted if we let p = q = 0.5). The interval
estimate is:

p̂± Zα/2

√
pq

n
= 0.0790± 2.33

√
0.079× 0.921

937

0.079± 2.33
√

0.00007765 = 0.079± 0.021

The 98% confidence interval estimate for the proportion of all Regina
adults who have less than grade 9 education is (0.058, 0.100) or 5.8% to
10.0%. Using the result from the Survey would lead a researcher to be fairly
confident that the percentage of all Regina adults who have completed less
than a grade 9 education is between 6% and 10%.

Data from the Census of Canada is available to provide a separate check
on these figures. From the 1986 Census there are 15,240 out of 132,825 adults
who had less than a grade 9 education. This is 15, 240/132, 825 = 0.115, or
11.5% of the adult population. This is more than the point estimate from
the Survey, and is even outside the interval estimate. From this indepen-
dent check on the figures, it appears that the Regina Labour Force Survey
underrepresents those adults who have less than a grade 9 education. This
provides useful information for those designing the Survey.

Some reasons for the underrepresentation of those with less than a grade
9 education are hypothesized here. It might be that a considerable pro-
portion of those with less than a grade 9 education are elderly, and elderly
people may be missed in a telephone survey. Another consideration might be
the reluctance of those with less than a grade 9 education to respond to the
Survey interviewers. A further consideration might be that some of these
could be people who do not have telephones, or tend to move frequently,
and do not have an up to date telephone number in the telephone directory.
Whether any of these explanations is likely to explain this underrepresen-
tation cannot be determined on this basis of this data. But these would be
some of the factors which the researchers might investigate.

Probability of the Estimate. Before leaving the interval estimate for
a proportion, the derivation of the probability associated with the estimate
is provided. This was explained earlier in this section, but the complete
set of formulae was not given. If you did not follow the derivation of these
probabilities earlier in the chapter, you can also skip this section.

Suppose p is the true proportion of a population with a particular char-
acteristic. Take random samples of size n from this population. Let there
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be X successes in the sample, that is, X of the respondents have the charac-
teristic being investigated. Then the sample proportion p̂ = X/n is a point
estimate of p.

In addition, p̂ has a mean of p and a standard deviation of σp̂ =
√

pq/n.
This is based on the binomial distribution, and the characteristics of the
binomial probability distribution. In addition, if

n ≥ 5
min(p, q)

then the distribution of p̂ is normal, so that

p̂ is Nor ( p , σp̂ )

or
p̂ is Nor

(
p ,

√
pq/n

)
.

Pick a confidence level C% = (1 − α)100%. Since p̂ has a normal dis-
tribution, the Z value associated with the C% confidence interval can be
determined from the normal table in Appendix A. Let this Z value be Zα/2.
Then

P
(
p− Zα/2σp̂ < p̂ < p + Zα/2σp̂

)
= 1− α

and since σp̂ =
√

pq/n,

P

(
p− Zα/2

√
pq

n
< p̂ < p + Zα/2

√
pq

n

)
= 1− α

This states that the probability is 1− α that the values of p̂ fall within
Zα/2 standard deviations of the true mean p. The expression in the proba-
bility brackets can be rearranged so that the interval is constructed around
the known value of p̂. This expression can be shown to be

P

(
p̂− Zα/2

√
pq

n
< p < p̂ + Zα/2

√
pq

n

)
= 1− α

The expression in brackets is the C% interval estimate.
The lower confidence limit for this interval is

p̂− Zα/2

√
pq

n



531

and the upper confidence limit is

p̂ + Zα/2

√
pq

n

The C% confidence interval is thus
(

p̂− Zα/2

√
pq

n
, p̂ + Zα/2

√
pq

n

)

Since p and q are not known, there are two choices concerning the values
of p and q in

√
pq/n. A conservative choice is to pick p = q = 0.5, and for

any given n, this produces the widest possible interval. A narrower interval
will result if p = p̂ and q = q̂ are used in

√
pq/n. This makes the interval

estimate look a little more precise, but has the danger that the size of the
interval estimate could be an underestimate of the true interval width.

8.6 Sample Size

From the sampling error or from the interval estimate, it is a short step to
determining the sample size required to achieve a given accuracy of estimate
for a population parameter. This section begins with a short discussion of
the general method of determining sample size, and then shows how the
sample size can be determined for a mean and for a proportion. Examples
of each are provided.

If either a population mean or a population proportion is being esti-
mated, a large random sample from the population ensures that the sample
statistic is normally distributed. The Central Limit Theorem ensures this
for the mean, and the normal approximation to the binomial provides this
result for the proportion. Not only is the distribution of the statistic normal,
but in each case, a larger sample size is associated with a smaller standard
deviation for the sampling distribution of the sample statistic. For the es-
timate of the population mean, the standard deviation of the sample mean
is σ/

√
n, and for the estimate of the population proportion, the standard

deviation of the sample proportion is
√

pq/n. By increasing the sample size
associated with the random sample, the standard deviation of each of the
statistics can be reduced until the standard deviation reaches the desired
level.

This is the principle on which the determination of sample size is based.
An interval width is specified and a probability that this interval width will
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not be exceeded is also specified. These, along with the normal distribution
of the statistic, are used to determine the sample size which will satisfy these
requirements.

Alternatively, the basis for determining the sample size could be the
sampling error, introduced in Chapter 7. There the symbol E was used to
denote the sampling error. The normal distribution for X̄ or p̂ provided
the basis for determining the probability that the sampling error would not
exceed E. This same method, with a little modification, can be used here.

The method of determining sample size is first to specify the accuracy
of the estimate desired. The accurace of the estimate is the difference
between the sample statistic and the population parameter, and is equivalent
to the sampling error of Chapter 7. The accuracy of the estimate is given
the symbol E, so that the accuracy for a mean is specified as X̄ − µ. For a
proportion, the accuracy can be specified as E = p̂− p. A confidence level,
or a probability, that the accuracy of the estimate will be within E must
also be given. Call this probability PE . Then the formulae of the following
sections can be used to determine a sample size n. This will provide a sample
statistic so that the value of the statistic does not differ from the value of
the population parameter by more than E with probability PE .

These formulas for sample size assume random selection from a popula-
tion so that the formulas are formulas for random samples. It is possible to
develop formulas for the required sample size when other types of sampling,
such as stratified or cluster sampling, are used. These are not developed in
this textbook, but textbooks on sampling use similar methods to develop
such formulas. The latter formulas can become quite complex, but are based
on the same principles as used for random sampling.

One other point to consider is that these formulas are not intended as
hard and fast rules concerning the sample size which will actually be ob-
tained in a specific survey. The formulas which follow are based on con-
siderations of accuracy and probability. Many other considerations such as
time, cost, types of respondents desired in the survey, extent of interference
with the population, and so on, are also involved in determining the actual
sample size selected. In addition, how many of those people selected actu-
ally respond will be an important consideration. If the formulas indicate
that a sample of size n = 500 be selected, but there is a 20% nonresponse
rate, then this sample size should be boosted by 20% so that the number
of responses actually obtained is 500. Given these other considerations, the
following formulas for sample size give the approximate sample size required
so that a random sample achieves the required accuracy with the specified
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probability.

8.6.1 Sample Size for Estimation of the Mean

Suppose that a researcher wishes to determine the true mean µ of a popula-
tion. The researcher knows that if he or she obtains a large, random sample
of this population, the Central Limit Theorem can be used to obtain the
sampling distribution of X̄, the sample mean. Based on this distribution,
the probabilities of X̄ being various distances from µ can be determined.
Suppose the researcher wishes this distance to be less than or equal to E.
While there can never be absolute certainty that a random sample can yield
an X̄ which is less than distance E from the true mean µ, the researcher
can be sure of this with a certain probability. If this probability is specified,
and the accuracy E is also specified, then the required size of the random
sample can be determined as follows.

Let E be the accuracy of the estimate, and let PE be the specified prob-
ability. PE will ordinarily be a large number, and could be equal to the
confidence level. For example, if the researcher ultimately wishes to pro-
duce a 95% confidence level for the interval estimate of the mean, then the
probability selected is PE = 0.95. A random sample with a large sample
size is normally distributed as follows

X̄ is Nor
(

µ,
σ√
n

)
.

Thus the Z value associated with an area of PE in the centre of the normal
distribution can be determined from Appendix A. For PE = 0.95, this would
be the familiar value Z = 1.96.

The problem now becomes one of determining which normal curve has
an area of PE in the centre, between µ−E and µ+E. That is, if the sample
mean resulting from the sample is between these limits, the probability will
be PE that the accuracy E will not be exceeded. But since this is a normal
distribution, the probability is also PE that X̄ will be within Z standard
deviations of the centre, where Z is the value associated with PE in the
centre of the distribution. Since one standard deviation for X̄ is σ/

√
n,

Z standard deviations is Z(σ/
√

n). If this latter value is set equal to the
accuracy of the estimate, then the sample size can be determined.

Using these considerations, the required sample size will be the sample
size n which makes

E = Z
σ√
n

.
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That is, E and Z have been specified by the researcher, and σ is given as the
true standard deviation of the population from which the sample is drawn.
Different sample sizes yield differnt normal curves, and the problem becomes
one of determining the sample size so that the specified accuracy is equal to
the number of standard deviations associated with the specified probability.
Take the expression

E = Z
σ√
n

and solve for n by first squaring each side to get rid of the square root sign

E2 = Z2 σ2

n
.

Now rearrange this expression so that n is on the left. Multiplying both
sides by n, and dividing both sided by E gives

n = Z2 σ2

E2

This expression can be rewritten in the following manner to make it a little
easier to calculate

n =
Z2σ2

E2
=

(
Zσ

E

)2

If a random sample of this size is selected from the population, then the
probability is PE that the sampling error |X̄ − µ| will be less than µ, and
the PE% confidence interval will be

(
X̄ − Z

σ√
n

, X̄ + Z
σ√
n

)

where Z is the appropriate value from the normal distribution for an area
of PE in the centre of the distribution.

Example 8.6.1 Sample Size for Estimating Mean Individual In-
come

In Example 8.3.2 interval estimates for the true mean income of indi-
viduals in Alberta and Saskatchewan were constructed. In each case 95%
intervals were constructed so that they were just over ±$1, 000 on each side
of the sample mean. Determine the sample size so that mean individual
income for each province is determined to accuracy E = $500, with (i)
probability 0.90, and (ii) with 95% confidence. (For each of Saskatchewan
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and Alberta, the sample standard deviation of individual income was around
$15,000.)

Solution. The formula for determination of the required sample size is

n =
(

Zσ

E

)2

.

The values Z, σ and E must be obtained, and then the sample size can
be determined. Since the standard deviation of income for each of the two
provinces was approximately $15,000, the same sample size would be re-
quired for each province. This s = 15, 000 will be used as the estimate
if σ in the formula for sample size. Since an accuracy of 500 is required
in each province, then E = 500 in each case. For probability 0.90, the Z
value can be used because the distribution of sample means will be normal
with a large random sample. For probability 0.90, the appropriate Z value
is 1.645 since the middle 0.90 of the normal distribution occurs between
Z = −1.645 and Z = +1.645. That is, 0.90 in the middle of the distribution
means 0.90/2 = 0.45 on each side of centre. An area of 0.45 in column B of
Appendix A is associated with Z = 1.645.

Putting these values in

n =
(

Zσ

E

)2

gives

n =
(

1.645× 15, 000
500

)2

= (49.35)2 = 2, 435.4

Rounding this up, to ensure that the sample size is large enough, a random
sample of 2,436 individuals from each of Alberta and Saskatchewan would be
required to ensure that mean individual income would be estimated correct
to within plus or minus $500. If random samples of this size were obtained in
each of the provinces, then the sampling error associated with the estimate
of mean individual income would have a probability of 0.90 that it did not
exceed $500.

For 95% confidence, all that changes is the Z value. For 95% of the area
in the middle of the normal distribution, there is 0.95/2 = 0.475 of the area
on each side of centre. Using column B of the normal table in Appendix A
gives Z = 1.96 as the Z value associated with 95% confidence. The required
sample size is

n =
(

Zσ

E

)2

=
(

1.96× 15, 000
500

)2

= (58.8)2 = 3, 457.44.
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A sample of size n = 3, 458 would be required in each province in order that
the 95% interval estimate would be X̄ ± $500.

Additional Comments on Sample Size. Before presenting more exam-
ples, there are a number of points that should be discussed concerning these
estimates of sample size. These are as follows.

1. As noted earlier, the sample sizes refer to random sampling only.
The derivation of the above formula was based on the method of ran-
dom selection. Some other sampling methods would give a different
formula for the required sample size.

2. Also note that the sample size n obtained using the above formula is
the actual number of cases for which data is obtained. If there is
some nonresponse, the sample sizes indicated by the above formula
should be boosted so that there will be n cases for which data is
actually obtained.

3. Note how n behaves as the other terms vary. Since

n =
(

Zσ

E

)2

n is increased with an increase in σ or Z, and with an decrease in
E. A larger σ represents a population with a larger variation. In
order to determine the true mean of a population that is disparate, a
relatively large sample size is required. An increase in Z occurs when
the probability or confidence level is increased. A 99% confidence
level would require Z = 2.575, while 90% confidence that the interval
contains µ would require only Z = 1.645. That is, to be more confident
that the interval estimate contains µ, or that the sampling error is
small, a larger random sample is required. An decrease in E means
greater accuracy, that is, the interval estimate is narrower, or the
sampling error is smaller.

A requirement that the researcher obtain a more accurate estimate
means that the required sample size will be larger. In the above ex-
ample, the inital interval estimate of Example 8.3.2 was accurate to
within just over E = $1, 000 in each province. This required a sample
size of just over 600 cases in each of Alberta and Saskatchewan. Re-
quiring that the accuracy be increased, so that E = $500, boosted the
sample size by approximately 4 times, to over n = 2, 400.
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4. Note that the interval width associated with the interval estimate
is twice the accuracy required. That is, if accuracy E is required, and
the sample size for this is n, then the interval estimate resulting from
that random sample will be X̄ ± E. This is an interval width of 2E.
Sometimes the interval width is specified ahead of time. If W is the
require interval width for the interval estimate, then

W = 2E

or
E =

1
2
E.

5. Note that no reference to the size of the population has been
made in the formula for sample size. All that is contained in the
formula is the sample size, the confidence level, the accuracy, and the
standard deviation of the population from which the sample is drawn.
The size of the population does not influence the required sample size,
and the resulting interval estimate depends only on the sample size.
This result may seem surprising. For example, Alberta has over twice
as many people as does Saskatchewan. But each province requires a
random sample of about 2,400 people in order to determine the true
mean income correct to within ±$500 with 90% confidence. If the true
mean income for all Canada were to be estimated to this accuracy,
then only a sample of about n = 2, 400 would be required for the
country as a whole. But this sample of 2,400 people across Canada
would provide this level of accuracy only for estimates concerning the
country as a whole. The resulting samples in each province would have
much smaller sample sizes, meaning that the interval estimates for each
province would be much wider than $500. For example, if a random
sample of n = 2, 400 Canadian individuals were to be selected, the
number of these who live in Saskatchewan would be only about 100,
since less than 4% of the Canadian population live in Saskatchewan.
The resulting interval estimate in Saskatchewan would be

X̄ ± 1.645
15, 000√

100
= X̄ ± 2, 468

That is, the interval estimate would be approximately ±$2, 500, or
about $5,000 wide.
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The determination of sample size is based on the accuracy required
for the smallest group which needs to be estimated. If a sample is
required so that mean income is estimated correct to within $500 with
probability 0.90 for each province of Canada, then a sample of approx-
imately n = 2, 500 would be required in each province, even in Prince
Edward Island.

Now the rule that the population size has no influence on the sample
size does not hold when the sample size becomes a considerable pro-
portion of the population. For example, suppose a random sample of
graduate students is taken at a university. Suppose there are N = 500
graduate students, and the required sample size is n = 150. In this
case, the sample size is a considerable proportion of the population
size. According to textbooks of sampling, the required sample size
can be reduced somewhat in these circumstances. As a rough rule of
thumb, if the sample size indicated by the formula in this section is less
than 10% of the population size, then this formula holds. If the sample
size approaches, or passes, 10% of the population size, it is likely that
the required sample size can be reduced somewhat. The exact formula
in this circumstance can be found in texbooks on sampling.

6. Note that the Z value, rather than the t value is used for determining
the sample size. This is equivalent to assuming that the required
sample size will be 30 or more. This is almost always the case. If
the formula yields a required sample size of less than 30, then a t
value could be substituted for the Z value in the above expression.
But since the t value has a degree of freedom which depends on the
sample size, exactly which degree of freedom to use would have to
be a matter of trial and error. It seems unlikely that the sample
size would be under 30 in most circumstances. Usually the accuracy
and probability specified ahead of time lead to a much larger sample
size. Then considerations of time and cost may result in the researcher
reducing the sample size to below 30. This would then result in greater
sampling error, or lower probabilities. The researcher may have little
choice but to accept these uf research resources are quite limited.

7. The formula for sample size is quite simple. The one difficulty with the
above formula is that it requires knowledge of σ, the true population
standard deviation. Since the population has not yet been investi-
gated, the researcher is very unlikely to know the size of σ. There are
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several ways in which this problem can be solved. These are as follows.

(a) In the above example, a sample of the population of each of Al-
berta and Saskatchewan has already been taken. The sample
size of this sample was over 600, a relatively large sample size.
This gave an estimated standard deviation of individual income
of about $15,000 for each province. While this is not exactly the
true standard deviation of individual income for each province,
this is likely to be close. If such a sample is available, perhaps
from a different year, or for a slightly different variable then this
sample standard deviation can be used as a rough estimate of σ
in the formula for sample size.

(b) A similar population, or a similar research issue may have been
investigated by someone else. For example, if information con-
cerning the variability of incomes in the other provinces of Canada
had not been available, but the researcher knows that the stan-
dard deviation of income in each of Alberta and Saskatchewan is
around $15,000, then it seems likely that the standard deviation
in the other provinces would have a similar value. In fact, from
Table 8.3 the standard deviation of income in the other provinces
is less than $15,000 in all cases except Ontario, and even there it
is only slightly greater. The estimate of $15,000 for σ would not
be an unreasonable estimate for each province, or for the country
as a whole.
Journals and other publications frequently publish standard de-
viations as part of the research report. These published standard
deviations can often be used in other research studies, so that
estimates of required sample sizes can be obtained.

(c) If no information concerning the standard deviation is available,
then it may be that the range, or some other measure of variation,
can be roughly determined. Recall that the standard deviation
is approximately equal to the range divided by 4. If the smallest
and largest value of a population can be determined, this rough
rule can be used to give a very approximate idea of σ, and a
sample size can then be estimated.
If not even the range is available, then a researcher might just try
to guess what the range might be. This could then be divided by
4, and some very approximate estimate of required sample size
obtained.
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(d) When designing the research study, it is possible to construct a
sampling method so that the random sample can later be en-
larged in size, and yet still be random. Suppose that the re-
searcher underestimates the standard deviation of a population,
and the formula indicates that a smaple size of only 150 cases
is required. After collecting data on these 150 cases, it is found
that the sample standard deviation is considerably more than
anticipated, and that a sample of size 250 would be required to
achieve the desired accuracy with the specified probability. The
researcher can then select another 100 cases, again randomly cho-
sen. The first 150 cases, and the subsequent 100 cases, can be
pooled together, and the total of 250 case can be regarded as a
random sample of n = 250 cases from the population.

(e) Remember that the above formula is only one of the considera-
tions in determining sample size. If the sample size is estimated
incorrectly, useful data can still be obtained, the only consequence
is that the results will not be as accurate as hoped. Thus the
failure of this formula in some circumstances may have minimal
negative consequences. Finally, if too many cases have been se-
lected, the results will be more accurate than anticipated. This
is good, and the only difficulty this will have caused is that the
researcher may have devoted more resources than necessary to
the study.

Example 8.6.2 Sample Size for Explanations of Unemployment

In Example 8.4.2 data was presented from an attitude survey of Edmon-
ton residents concerning explanations of the reasons for unemployment in
Canada. In that study, 6 people were surveyed, and the standard deviation
of opinion was 2.137 for these 6 respondents. What is the sample size re-
quired so that the mean attitude can be estimated correct to within plus or
minus 0.5 points on the attitude scale, with 98% confidence.

Solution. This is a problem in determining the required sample size for
estimating the mean µ of a population. The accuracy requested is E = 0.5.
The confidence level is 98%, and from column B of the normal table in
Appendix A, an area of 0.98/2 = 0.49 on each side of centre of the normal
curve is associated with Z = 2.33. The estimate of σ is 2.137, although since
this s was based on a sample of only size 6, this value may not be a very
accurate estimate of σ. The required sample size is given by



541

n =
(

Zσ

E

)2

=
(

2.33× 2.137
0.5

)2

= 9.9582 = 99.17

A sample size of about n = 100 Edmonton adults would be required to
achieve accuracy of plus or minus 0.5 points, with probability 0.98.
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Example 8.6.3 Sample Size for Self-Esteem of Elderly Women

In Example 8.4.3 the standard deviations for an index of self-esteem was
given for two samples of elderly women. Using the data from this example,
what is the sample size so that the 95% interval estimate of self-esteem of
elderly women who live in their own homes will be no wider than 3 points
on the ISE scale.

Solution. Again, this is a problem in determining the required sample size
for estimating the mean µ of a population. The interval requested is an
interval width of 3 points. Since the interval width is twice the accuracy E,
or E = W/2 E = 3/2 = 1.5. The confidence level is 95%, and from column
B of the normal table in Appendix A, an area of 0.95/2 = 0.475 on each side
of centre of the normal curve is associated with Z = 1.96. From Table 8.6
The estimate of σ for community women is s = 15.0. Since the estimated
standard deviation for the nursing home group is fairly similar at s = 14.4,
a value of 14 or 15 for σ would appear to be close to the actual value.

The required sample size is given by

n =
(

Zσ

E

)2

=
(

1.96× 15.0
1.5

)2

= 19.62 = 384.16

A sample size of n = 385 elderly women who live in their own homes
would be required in order to achieve the interval requested.

8.6.2 Sample Size for a Proportion

The method of determining the required sample size for estimation of a
proportion is the same as for estimation of the mean, with only a few modi-
fications. If a population proportion p is to be estimated, a random sample
of the population is taken and the sample proportion p̂ is the point estimate
of p. Each random sample from the population yields a different estimate
of the true proportion p and the sampling distibution of p̂ is given by

p̂ is Nor (p,

√
pq

n
)

using the normal approximation to the binomial.
Again, the level of accuracy required of the estimate must be specified.

Let this level be E. Note that proportions are numbers between 0 and
1, so that E should also be a proportion. For example, an accuracy of
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plus or minus 4 percentage points would be given by E = 0.04, that is a
proportion of 4/100 = 0.04. In addition, a probability or confidence level
must be specified. Let this be PE . Since p̂ is normally distributed, a Z value
associated with the normal distribution can be obtained.

The required sample size will be the sample size n which makes

E = Z

√
pq

n
.

That is, E and Z have been specified by the researcher, and the true standard
deviation of the sample proportion is pq/n. Different sample sizes yield
differnt normal curves, and the problem becomes one of determining the
sample size so that the specified accuracy is equal to the number of standard
deviations associated with the specified probability. Take the expression

E = Z

√
pq

n

and solve for n by first squaring each side to get rid of the square root sign

E2 = Z2 pq

n
.

Now rearrange this expression so that n is on the left. Multiplying both
sides by n, and dividing both sided by E gives

n =
Z2

E2
pq

This expression can be rewritten in the following manner to make it a little
easier to calculate

n =
(

Z

E

)2

pq

If a random sample of this size is selected from the population, then the
probability is PE that the sampling error |p̂−p| will be less than E, and the
PE% confidence interval will be

(
p̂− Z

√
pq

n
, p̂ + Z

√
pq

n

)

where Z is the appropriate value from the normal distribution for an area
of PE in the centre of the distribution.
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Example 8.6.4 Sample Size for Child Discipline and Abuse

Example 8.5.2 gave estimates of the prevalence of various techniques of
child discipline among a sample of Toronto mothers and fathers. Determine
the sample size required so the the proportion of fathers who pushed shoved,
or grabbed a child in the year before the survey is estimated correct to within
accuracy plus or minus a proportion 0.05. Use the 90% confidence level.

Solution. For accuracy E, the required sample size is

n =
(

Z

E

)2

pq

where p is the proportion of successes and q = 1− p. In order to make sure
that we have a sample size which is large enough to achieve the required
accuracy, let p = q = 0.5. This may overestimate the required sample size.
Since the interval is to be correct to within a proportion 0.05, or 5 percentage
points, E = 0.05. For a probability of 0.90 or 90% confidence, Z = 1.645
and

n =
(

1.645
0.05

)2

0.5× 0.5 = (32.9)2 × 0.25 = 270.6

The required sample size is 271. If this many responses are obtained, then
the interval estimate will be incorrect by no more than plus or minus 5
percentage points, with probability 0.90. That is, there is 90% confidence
that these interval estimates will contain the true proportion p. Note that
if the estimate is to be this accurate for mothers as well, another sample of
size n = 271 of mothers would also be required.

Notes on Sample Size for Proportions. Many of the comments con-
cerning the determination of sample size for a mean also apply to the esti-
mate of sample size for the proportion. The formula is for a random sample
only, the n indicated by the formula is the number of cases for which data
must be obtained, and so on. In one way though, it is easier to obtain an
estimate of the required sample size for a proportion. Earlier, the determi-
nation of the sample size for a mean required some idea of the size of the
standard deviation of the population from which the sample was drawn. For
a proportion, this is not required because p = q = 0.5 can be used in the
formula. As shown in Chapter 7, the maximum size of pq is obtained when
p = q = 0.5. In the determination of the sample size using

n =
(

Z

E

)2

pq
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p and q can be replaced with 0.5 for each. If this is done, then

n =
(

Z

E

)2

(0.5)(0.5) =
(

Z

E

)2

0.25

For any given confidence level, or proability, and given accuracy E, this gives
a sample size at least large enough to meet these requirements. If anything,
the sample size indicated may be larger than really required.

If there is evidence that p and q differ rather considerably from 0.5, then
p̂ can be substituted for p, and q̂ for q in the formula. The expression for
the required sample size then is

n =
(

Z

E

)2

p̂q̂.

This will yield a smaller sample size than when p = q = 0.5 is used. The
only problem with this formula, is that if p̂ and q̂ are incorrect, then the
sample size indicated by this latter formula may be a little small to achieve
the required accuracy and probability.

Example 8.6.5 Common Sample Sizes for a Proportions

If the values p = q = 0.5 are used for p and q in the determination of the
sample sizes for a proportion, then some of the more common xample sizes
can be determined. Using

n =
(

Z

E

)2

pq

and letting p = q = 0.5 gives

n =
(

Z

E

)2

(0.5)(0.5) =
(

Z

E

)2

0.25.

Table 8.8 gives some of the commonly used sample sizes for a random sample.
In each case, the true proportion of members of the population with the
characteristic in question is being estimated. The values of E on the left
give some of the common levels of accuracy. Each is given in terms of a
proportion. For example, the first row gives the sample sizes for estimation
of a proportion correct to within plus or minus a proportion 0.05, that
is, within ±5 percentage points. These sample sizes are for the common
confidence levels of 90%, 95% and 99%. As an exercise, you should be able
to obtain each of these sample sizes using the above formula.



546

Level of Confidence Level
Accuracy (E) 90% 95% 99%

0.05 271 385 664
0.04 423 601 1,037
0.03 752 1,068 1,842
0.02 1,692 2,401 4,145
0.01 6,766 9,604 16,577

Table 8.8: Sample Sizes for a Proportion, Common Levels of Accuracy and
Confidence

Note that the sample size for the Gallup poll of Example 8.5.1 can be
closely approximated from this table. Gallup says that their sample is cor-
rect to within plus or minus 3.1 percentage points in 19 out of 20 samples.
If the level of accuracy E = 0.03 is used as being very close to the level
claimed by Gallup, and if 95% confidence is used, then the required sample
size is n = 1, 068. This is slightly more than the just over 1,000 cases that
Gallup surveys each month. Also note that the sample size of n = 271 of
Example 8.6.4 can be determined from this table, using 90% confidence and
E = 0.05.

8.6.3 Notation for Sample Size

The α notation introduced earlier can be used to provide a more complete
formula for the determination of sample size. If you had difficulty with the
earlier sections using this notation, skip this section.

The α notation was used to determine the probability or confidence
level. If a confidence level of C% = (1 − α)100% is desired, and if the
statistic is normally distributed, then the appropriate Z value is Zα/2. This
is the Z value in the formula for the determination of the sample size, when
estimating either a population mean or a population proportion. Also let the
accurace of the estimate be E, and the standard deviation of the population
be σ.

Using the arguments developed earlier, for the estimate of the mean,

n =
(

Zα/2σ

E

)2
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and for the estimate of the proportion,

n =
(

Zα/2

E

)2

pq.

For the latter expression, you have a choice of using p = q = 0.5 or p = p̂
and q = q̂, depending on the circumstances.

8.7 Conclusion

This chapter has presented the method of estimation for the mean of a
population and for the proportion in a population. The method is essentially
the same in each case. The sample mean provides a point estimate of the
population mean, and the sample proportion provides a point estimate of
the population proportion. In each case, the interval estimate is the Z or
t value multiplied by the standard deviation of the sample statistic. If C%
is the confidence level used, then the probability is C that these intervals
contain the population parameters.

Interval estimates and the sampling error can be used to provide esti-
mates of the sample size required, before a sample has been selected. The
formulas for determining sample size were given in the last section of the
chapter.

In the next chapter, the statistics obtained from samples are interpreted
in a different manner. The method of hypothesis testing is discussed in
Chapter 9. While the method of hypothesis testing may appear to be quite
different from the method of interval estimation, the two methods are very
similar. In each case, data concerning a population is obtained from a
sample, and these sample results are used to provide inferences concerning
the characteristics of a population. The similarity of the two methods will
be discussed near the end of Chapter 9.
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8.8 Additional Problems

Problems on Sample Size. Suggested solutions for the following problems
are given at the end of this section.

1. A random sample of the population of Saskatchewan is to be taken to
determine the percentage of Saskatchewan residents who favour free
trade. The sample is to determine this percentage correct to within
±2 percentage points with probability 0.94. In order to achieve this
degree of accuracy the sample size should be approximately:

(a) 1414

(b) 2209

(c) 553

(d) 1512

(e) 45

2. You are administrator of a large agricultural region where the largest
farm is 6 sections (1 section=640 acres). How large a sample size would
be required so that you can be 90 per cent sure that the mean farm
size is correct to within 100 acres?

(a) 354

(b) 250

(c) 16

(d) 675

(e) 998

3. According to geneticist John Cohen, the range of IQ scores is compar-
atively narrow, from 70 to 130. Based on this, how large a sample size
would be required so that the mean IQ can be estimated correct to
within ±5 points, at the 95 per cent confidence level?

(a) 9

(b) 35

(c) 554

(d) 139
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(e) 390

4. A sample of 3 acquaintances who were dabbling on the stock market
showed that one lost $5,000 last year, one gained $5,000 last year and
the third person’s holdings did not change in value. If these three
people are regarded as representative of all people who played the
market, how large a sample size would be required to determine the
mean change in value of stocks correct to within $500 with 95 per cent
confidence?

(a) 16

(b) 385

(c) 96

(d) 769

(e) 400

5. A random sample of Saskatchewan residents is to be taken to determine
the percentage who support the revised Constitution of Canada. If the
percentage is to be determined so that the confidence interval is no
more than 4 percentage points wide, with probability 0.96, the sample
size should be approximately:

(a) 660

(b) 1900

(c) 575

(d) 145

(e) 2630

Political Preferences in Alberta
The 1991 Alberta Survey conducted by the Population Research Labora-

tory at the University of Alberta gives the data contained in Table 8.9. The
table gives the pattern of political preferences by income of the household.
The entries in each cell of the table are the number of respondents with the
specified combination of characteristics.

1. The authors of the study comment that “Compared to other parties,
NDP supporters reported somewhat lower incomes.” They also note
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Household Political Voting Preference
Income PC Liberal NDP Reform Total

< $20, 000 21 32 30 22 105

$20− 39, 999 40 52 51 72 215

$40− 59, 999 50 54 61 72 237

$60− 79, 999 27 22 32 40 121

$80, 000+ 23 40 24 42 129

Total 161 200 198 248 807

Table 8.9: Political Voting Preferences and Incomes of Alberta Voters, 1991,
Number of Respondents

that “Only 9% of the Reform groups were in the lowest category.” Ob-
tain interval estimates for each group and comment on the conclusions
of the authors?

2. Based on the data in Table 8.9, derive the 93% interval estimate for
the proportion of all Alberta residents who support the Reform Party.
Explain in words the meaning of this interval estimate.

3. What sample size would be required so that the proportion of Reform
Party supporters in Alberta could be estimated to within plus or minus
2.5 percentage points, with 85% confidence?

Answers to Problems on Sample Size.

1.

n =
Z2pq

E2
=

1.882(0.5)(0.5)
0.022

= 2209

2. The smallest possible farm is 0 acres and the largest farm is 6× 640 =
3, 840 acres. A rough estimate of the size of the standard deviation of
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farm size is the range divided by four or 3, 840/4 = 960.

n =
(

Zσ

E

)2

n =
(

1.645× 960
100

)2

n = (15.792)2 = 250

3. Based on the same formula as in the last question, the rough estimate
of the standard deviation is the range divided by 4, or (130− 70)/4 =
15.

n =
(

1.96× 15
5

)2

= 35.

4. For this question, the sample of 3 can be used to estimated the stan-
dard deviation. The formula for the standard deviation gives s =
$5, 000. Using the same formula as in the last two questions,

n =
(

1.96× 5, 000
500

)2

= 385.

5.

n =
Z2pq

E2
=

2.052(0.5)(0.5)
0.022

= 2627

The sample size which comes closest is 2630.

Solution for Problems Concerning Alberta Political Preferences

1. For each of the NDP and the Reform Party, consider the lowest income
group, household income of less than $20,000. In order to determine
the proportion, this is the characteristic being investigated. There are
30 out of 198 NDP supporters who are in the lowest income group, so
that the point estimate of the proportion of NDP supporters who are
low income is p̂N = 30/198 = 0.152. For the Reform Party, the point
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estimate of the proportion with low income is p̂R = 22/248 = 0.089.
The sampling distribution of the test statistic is normal if

n ≥ 5
min(p, q)

.

Or the two p̂s given here, p̂R is the smaller, so that it is sufficient to
check to see if the sample sizes are large enough based on this.

5
0.089

= 56.4

and both samples sizes of 198 and 248 exceed this. Thus

p̂ is Nor
(

p ,
√

pq/n

)
.

and the interval estimates can be obtained using this. The confidence
level is not stated in the question. This estimate will be based on the
95% confidence level, and the Z value is Z = 1.96. For the NDP, the
interval estimate is

p̂± Zα/2

√
pq

n

0.152± 1.96
√

0.5× 0.5
198

0.152± 1.96
√

0.00126

0.152± (1.96× 0.0355)

0.152± 0.070

The 95% interval estimate for the true mean proportion of NDP sup-
porters who are low income is (0.072,0.022)

For the Reform Party, the interval estimate is

p̂± Zα/2

√
pq

n

0.089± 1.96
√

0.5× 0.5
248

0.089± 1.96
√

0.0010

0.089± (1.96× 0.0318)
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0.089± 0.062

The 95% interval estimate for the true mean proportion of Reform
Party supporters who are low income is (0.027,0.151)

If the sample proportions are used as estimates in the standard de-
viation, the interval narrows somewhat. For the Reform Party, the
interval estimate then becomes

p̂± Zα/2

√
pq

n

0.089± 1.96
√

0.089× 0.911
248

0.089± 1.96
√

0.000327

0.089± (1.96× 0.018)

0.089± 0.035

The 95% interval estimate for the true mean proportion of Reform
Party supporters who are low income is (0.054,0.124). As an exercise,
show that this method produces a 95% interval (0.102,0.202) for the
NDP.

Before commenting on the conclusions, note that the point estimate of
the proportion of PC supporters who are low income is 21/161 = 0.130
and for the Liberal supporters, there are 32/200 = 0.16 who are low
income. Given the similarity of these point estimates to the point es-
timate for the NDP, it may be that the NDP supporters are not much
less likely to report lower incomes than are supporters of other par-
ties. The Reform Party does appear to have the smallest proportion
of low income supporters. But even here the 95% interval estimate is
fairly wide, plus or minus 3.5 to 6.2 percentage points, depending on
which method is used. While the point estimates appear to support
the author’s contention, at least with respect to the NDP and Reform
Party, the sample sizes are not large enough to make definitive con-
clusions. The interval estimates are too wide to clearly separate the
parties concerning the proportion of low income supporters.

2. In the sample as a whole there are n = 807 respondents, and of these,
248 support the Reform Party. The characteristic being investigated
in this part is support for the Reform Party, so that the point estimate
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of Reform Party supporters is p̂ = 248/807 = 0.307. Since the sample
size is large,

p̂ is Nor
(

p ,
√

pq/n

)

and the interval estimate is

p̂± Zα/2

√
pq

n

0.307± 1.81
√

0.5× 0.5
807

0.307± 1.81
√

0.0003098

0.307± (1.81× 0.0176)

0.307± 0.032

The 93% interval estimate for the true mean proportion of Reform
Party supporters who are low income is (0.275,0.339). The researcher
can be reasonably confident that the true proportion of Reform Party
supporters in Alberta lies within these limits.

3. For 85$ confidence, Z = 1.44.

n =
Z2pq

E2
=

1.442(0.5)(0.5)
0.0252

=
0.5184

0.000625
= 829.44

The sample size required is approximately 830.
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'ry,

Figure 8.3: a Notation for the Standardized Normal Curve

the area in the middle of the normal curye' then a is the sum of the areas

in the two tails of the distribution. Since the normal curve is symmetric,
there is a 12 of. the atea in each tail of the distribution. All of these areas are

shown in Figure 8.3. The area in the middle of the cutve' between the limits
shown, is a proportion of the area 1 - c, or a percentage (1 - a) x IOO%.

This means that there is (1- a)lzof.the area on each side of centte, within
the limits shown, arrd, af 2 of the area in each tail of the distribution, outside

the limits shown.

This notation also provides a means of defining the limits mentioned in
the last patagraph. In Figure 8.3, these limits are labelled -Zolz allid. 2o12.

Since the standardized normal distribution is centred at a mean of Z = O,

values of Z to the left ofcentre are negative, and values to the right ofcentre
are positive. The Z valre of, Zo12 is used to denote lhe Z value associated

with an area of c/2 beyond it. From the diagram it can be seen that there
is an area of.af2 to the left of -Zolz and an equal area of.af2 to the right
of 2o12.

-@2

(1 - cr)

2
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P(z)

lL+Z- I
"rl-n

ry,

x

z

Figure 8.4: c Notation for Interval Estimate of the Mean
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Figure 8.6: a Notation for the Standardized t Distdbution

That is,

.i is ta (p,lt
16''

This result holds regardless of the sample size, but the t distribution is most
often used when the sample sire is small. When z is larger, this t dfutribution
approaches the standardized normal distribution.

The t distribution can be used to determine the C% confidence interval,
where

CVo=(r-o) xtoo%.

where 1 - a represents the proportion of the area in the middle of the t dis-
tribution. Then c is the sum of the areas in the two tails of the distribution,
and since the t distdbution is symmetdc, there is a/z of the area in each
tail of tLe distribution. AII of these areas are shown in Figure g.6.

since there is already one subscript on the t value representing the degree
of fteedom, it is necessary to add another subscript to denote the area. The
two aubscripts are separated by a comma. For d degrees of aeedom, etd, af 2
of the area in one tail of the distribution ,let t4,..12 represent the appropriate
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