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Chapter 7

Sampling Distributions

7.1 Introduction

This chapter begins inferential statistics, the method by which inferences
concerning a whole population are made from a sample. Inferential statis-
tics is concerned with estimation and hypothesis testing. Estimation uses
the data from samples to provide estimates of various characteristics of sam-
ples, especially the population mean and the proportion of successes in the
population. In hypothesis testing, an hypothesis concerning the nature of
the population is made. This hypothesis may concern the nature of the
whole distribution or the value of a specific parameter. For example, it may
be possible to test whether a distribution of grades in a class can be consid-
ered to be more or less normally distributed. Alternatively, if a value of a
particular parameter, such as the mean, is hypothesized, the data provided
from a sample can often be used to test whether the value of the parameter
is as hypothesized or not.

Inferential Statistics. Inferences concerning a population make use of
the principles of probability. Under certain conditions, conclusions concern-
ing the distribution of a population or concerning the values of particular
parameters, can be made with a certain probability. For example, on the
basis of a sample, the mean for a population may be estimated to be within
a specific range with probability 0.90. Alternatively, an hypothesis may be
proved on the basis of a sample, but there may be a probability of 0.95
that this conclusion is incorrect. All inferences concerning the nature of a
population have a probability attached to them.
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Since all statistical inferences are based on probability, this means that
such conclusions are never absolutely certain. Rather, statistical proofs
and statements are always stated with some degree of uncertainty. This
uncertainty is quantifiable in a probability sense, and may be extremely
small. An hypothesis might be proven with only 0.0001 chance of being
incorrect. The manner in which probabilities are interpreted in statistical
inference will be discussed in detail in the following sections and chapters.
Suffice it to say at this point that the probability based method of making
statistical conclusions has proven extremely useful, and allows researchers
to deal with uncertainty in a realistic and meaningful manner.

Since conclusions in inferential statistics are based on probability, this
means that inferential statistics can be used when the conditions for proba-
bility which were outlined in Chapter 6 are satisfied. While these conditions
are not always exactly satisfied in practice, researchers attempt to match
these principles as closely as possible. Some of the ways this can be done
are outlined in the following paragraphs.

Random Sampling. The circumstance in which the conditions for prob-
ability can be most closely matched is usually considered to be in random
sampling. A random sample is a method of sampling such that each member
of the population has an equal chance of being selected. If this condition is
truly satisfied when selecting a sample, then the principles of probability of
Section 6.2 are satisfied. These conditions may be modified in order to allow
for unequal probabilities of selection of different members of a population,
as in stratified or cluster sampling. As long as the probability of selection for
each member of a population can be determined, the methods of inferential
statistics can be applied. In this textbook, only the case of random sampling
is discussed. Most of Chapter 7 is concerned with random sampling, and
the nature of samples drawn on the basis of random selection.

Experimental Design. Another circumstance where the principles of
probability can be closely matched is in experimental design. In those re-
search areas where either inanimate objects or people can be given different
experimental treatments, then this method may be more practical than sur-
veys and sampling. In agricultural experiments, areas of a field crop may
be randomly assign different levels of fertilizer, rainfall, cultivation, or other
treatments. In psychological experiments, a wide range of subjects is se-
lected, and different tests or treatments are randomly assigned to these
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subjects, often without the researcher even being aware of which treatment
is being applied to each subject. These random assignments are carried
out at least partly to allow application of the principles of probability and
statistical inference in experimental design. While randomized types of ex-
perimental design are important in many research areas, these methods are
not examined in any detail in this textbook. In the social sciences, exten-
sive analysis of statistical inference in experimental design can be found in
textbooks of behavioural statistics in psychology.

Probabilistic Models. A third way in which the principles of probability
are applied is to use probabilistic models as a means of attempting to explain
social phenomena. The binomial and the normal probability distributions

are the two main distributions which will be used in this textbook, but
there are many other probability based models which are used in the social
sciences. Each of these models is based on certain clearly stated assumptions.
If the model yields results which come close to matching conditions found
in the real world, then the model may provide an explanation of reality.
This may be no more than a statistical explanation, although in some cases
researchers may regard the model as explaning the real social phenomenon
being examined. In this case, the assumptions on which the model is based
may be regarded as approximating the real world processes which produce
the observed phenomenon.

When using a model in inferential statistics, the researcher begins by
assuming that the model explains the social phenomenon. The assumptions
of the model, and the processes by which the model works are assumed to
correctly explain reality. The phenomenon in question is observed, and the
probability of the phenomenon occurring in the manner it does is determined
on the basis of the model. If this probability is extremely low, then the
model may be considered to be inappropriate, and not capable of providing
an adequate explanation of what was observed. Alternatively, the processes
involved in the model may work as hypothesized, but the assumptions on
which the model was based do not approximate reality. In either case, the
discrepancy between the assumptions, the model, and the real world can be
further studied, and knowledge concerning the social phenomenon may be
developed.

On the other hand, if the probability associated with the observed result
is fairly large, then the model, and the assumptions on which the model is
based, may be regarded as providing an explanation of reality. The model
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is then likely to become acceptable as providing an explanation of the social
phenomenon,

Outline of Chapter. This chapter begins with a short discussion of sam-
pling, in particular representative and random sampling. Section 7.4 dis-
cusses the behaviour of statistics such as the sample mean, standard de-
viation and proportion, when there are repeated random samples from a
population. The manner in which these statistics behave under repeated
random sampling is referred to as the sampling distribution of each of these
statistics. The sampling distribution provides a means of estimating the po-
tential sampling error associated with a random sample from a population.
This is demonstrated in Sections 7.5 and 7.6. Sampling distributions also
lay the basis for the estimation and hypothesis testing of chapters 8-10.

7.2 Representative Samples

As noted in Chapter 2, a sample can be regarded as any subset of a pop-
ulation. An observation concerning one member of a population can be a
sample of that population. Such a sample is not considered to be a very
good or useful sample in most circumstances. In order to obtain a better
sample, it is usually recommended that a researcher obtain a representa-
tive sample. There are various definitions of exactly what a representative
sample might be. Roughly speaking, a representative sample can be consid-
ered to be a sample in which the characteristics of the sample reasonably
closely match the characteristics of the population.

A sample need not be representative in every possible characteristic. As
long as a sample is reasonably representative of a population in the char-
acteristics of the population being investigated, this is usually considered
adequate. For example, if a researcher is attempting to determine voting
patterns, as long as the sample is representative of voting patterns in the
population as a whole, then this may be adequate. Such a sample might not
be representative of the population in characteristics such as height, musi-
cal preference, or religion of respondents. However, if any of these latter
characteristics do influence voting patterns, then the researcher should at-
tempt to obtain a sample which is reasonably representative in these latter
variables as well. Religion may be associated with political preference, and
if the sample does not provide a cross section of religious preferences, then
the sample may provide a misleading view of voting patterns.
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Example 7.2.1 Representativeness of a Sample of Toronto Women

The data in Table 7.1 comes from Michael D. Smith, “Sociodemographic
risk factors in wife abuse: Results from a survey of Toronto women,” Cana-
dian Journal of Sociology 15 (1), 1990, page 47. Smith’s research in-
volved a telephone survey using

a method of random digit dialing that maximizes the probability
of selecting a working residential number, while at the same time
producing a simple random sample ... .

Variable Sample (%) Census (%)

Age
20-24 21 18
25-34 44 50
35-44 35 32

Total 100 99
(n) (490) (753,320)

Ethnicity
Canadian, British, Irish 70 74
Italian 4 6
Portugese 2 2
Greek 2 1
Other 23 17

Total 101 100
(n) (588) (3,253,350)

Table 7.1: Comparison of Sample Characteristics with Census Data

In order to determine the representativeness of the sample, the charac-
teristics of the sample of Toronto women were compared with the character-
istics of all Toronto women, based on data obtained from the 1986 Census
of Canada. In the article, Smith comments that the data
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reveal a close match between the age distributions of women
in the sample and all women in Toronto between the ages of
20 and 44. This is especially true in the youngest and oldest
age brackets. ... Comparing the sample and population on the
basis of ethnicity is even cruder because different measures of
ethnicity were used; ... Nevertheless, the ethnic distributions ...
were surprisingly similar.

While Smith provides no statistical tests to back his statements, a com-
parison of the percentage distributions of the sample and the population,
based on the Census, is provided in Table 7.1. The sample distributions
appear to provide a close match to the Census distributions for the charac-
teristics shown. Smith argues

As far as can be determined on the basis of these limited data,
the sample was roughly representative of Toronto women.

The implication of Smith’s analysis is that this is a good sample, and that
many of the results from this research from this sample can be taken to
represent the situation with respect to women as a whole in Toronto. One
of Smith’s major findings is that “low income and marital dissolution are
strongly and consistently related to abuse.”

This example shows the importance of attempting to determine the rep-
resentativeness of a sample. If the sample is not representative in some
of the relevant characteristics, then the applicability of the research results
to a whole population could be questioned. In terms of the method used,
this example compares whole distributions of various characteristics for the
sample and the population. That is, no summary measures of population
characteristics such as the mean, were used by Smith. Rather, the per-
centage distributions of sample and population were compared. In Chapter
10, the chi square test will provide a method of testing whether the two
distributions are really as close as claimed by Smith.

Another method of determining the representativeness of a sample is to
compute summary statistics from a sample, and compare these with the
same summary measures, or parameters, from the population as a whole.
The summary measurs used are usually the mean and various proportions.
These are illustrated in the following examples.
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Example 7.2.2 Survey of Farms in a Saskatchewan Rural Munici-
pality

A study of farm families, conducted by researchers at the University of
Regina in 1988, examined a sample of 47 farms in the rural municipality of
Emerald, Saskatchewan. The mean cultivated acreage per farm for these 47
farms was 1068.8 acres. The 4 farms that produced flax, in the survey of
Emerald, had flax yields of 381.0, 279.4, 127.0 and 381.0 kilograms per acre,
for a mean flax yield of 291.1 kilograms per acre.

In Agricultural Statistics 1989, the Economics Statistics section of
Saskatchewan Agriculture and Food gives data concerning the characteristics
of all farms in various areas of the province. This publication states that
the mean number of cultivated acres per Saskatchewan farm was 781 acres
in 1986. The same publication reports that in Crop District 5b, of which
the rural municipality of Emerald is a part, the mean yield of flax in 1989,
for farms that produced flax, was 400 kilograms per acre.

Based on these respective means, it is apparent that the sets of means
are considerably different. The mean flax yield of the four farms is over
100 kilograms per acre below the mean for all farms Crop District 5b. This
may mean that a sample of size 4 is too small to yield a very representative
mean for the farms in this area, or that Emerald as a whole has a somewhat
different mean flax yield than does Crop District 5b generally.

The sample mean cultivated acreage is about 300 acres greater than mean
cultivated acreage for all Saskatchewan farms. Again, this could be because
the farms in Emerald are larger than the Saskatchewan average farm size,
or because the sample is not exactly representative of farms in Emerald. It
is clear though, that the characteristics of this sample should not be taken
as being representative of the farms in Saskatchewan as a whole.

Example 7.2.3 Gallup Poll Results

Ordinarily the exact degree of representativeness of Gallup poll results is
not known. A sample of approximately 1000 Canadian adults is taken each
month, and the percentage of these adults who support each of the political
parties in Canada is reported. Just before the 1988 federal election, Gallup
polled over 4000 Canadian adults. A few days later the federal election was
held. Table 7.2 gives the actual results from the 1988 election, along with
the Gallup poll conducted on Noveber 19, 1988.
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Per Cent Supporting:
PC Liberal NDP Other

Election 43% 32% 20% 5%

Nov. 19, 1988 40% 35% 22% 3%

Table 7.2: 1988 Election Results and Nov. 19, 1988 Gallup Poll Result

The percentage supporting each political party can be seen to be quite
close to the actual result in the 1988 federal election. Gallup slightly under-
estimated the percentage of the Canadian electorate who voted Conservative
and overestimated the percentage who voted Liberal and NDP. In terms of
the representativeness of the sample though, Gallup appears to have ob-
tained quite a good sample. Estimates of the popular vote for each political
party can be reasonably accurately obtained on the basis of opinion polls.
In Canada, it is much more difficult to predict the standings in terms of the
number of seats in Parliament obtained by each political party. This is be-
cause each seat is determined independently of other seats, and the overall
popular vote across Canada may be an inaccurate indicator of the results in
any particular constituency.

In Examples 7.2.2 and 7.2.3, the notion of sampling error can be used
to consider the representativeness of each sample. Roughly speaking, the
sampling error is the difference between the value of a statistic in a sample
and the corresponding value of this statistic if a survey of the whole popu-
lation were to be conducted. In the political prefercence example, the last
Gallup poll before the election predicted that 40% of the electorate would
vote Conservative, while 43% of those who voted cast their vote for the
Conservatives. The sampling error associated with this Gallup poll is thus
43 − 40 = 3 percentage points. In the survey of farms in Example 7.2.2,
the 4 farms in Emerald give a sampling error for mean flax yield in Crop
District 5b of 291.1− 400 = −108.9, approximately -110 kilograms per acre.

When the sampling error is relatively small, as in the case of the Gallup
poll, then the sample can be said to be reasonably representative of the
population. Where the sampling error is larger, as in the case of the farm
survey, the sample is not representative of the population.
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Measure Parameter Statistic Sampling Error

Mean µ X̄ |X̄ − µ|

Standard Deviation σ s |s− σ|

Proportion p p̂ |p̂− p|
Table 7.3: Statistics, Parameters and Sampling Error

Sampling Error. In order to define sampling error, the distinction be-
tween statistics and parameters is useful. Table 7.3 gives the most com-
monly used parameters and statistics, along with the sampling error. Recall
that the parameter, or population value, is the true value of the summary
measure for the population as a whole. The statistic is the correspond-
ing summary measure based on data from a sample. The mean cultivated
acreage reported for all Saskatchewan farms in the 1986 Census was µ = 781
acres. The sample of n = 47 farms in the Emerald rural municipality re-
ported a sample mean cultivated acreage of X̄ = 1068.8 acres. While the
Emerald sample was not intended to be representative of the whole province
of Saskatchewan, if this sample were to be used to estimate the true mean
for all Saskatchewan, the sampling error would be

X̄ − µ = 1068.8− 781 = 287.7

or approximaterly 290 acres.
Note that the sampling errors in Table 7.3 are given as absolute values.

The absolute value |X| of a number X is the magnitude of the number,
without reference to whether it is positive or negative. For example, the
absolute value of 5 is written |5| and is equal to 5. The absolute value of
−5 is written | − 5| and is also equal to 5. That is, the absolute value of
any number represents the magnitude of the number, without reference to
whether it is positive or negative.

For the Gallup poll result, the parameter is the true proportion of the
population which voted Conservative in the 1988 election. Let this true
proportion be p, and the sample proportion be p̂. Since the election results
are known, p = 0.43. On the basis of the November 18 sample, the estimate
of the proportion who would vote Conservative is p̂ = 0.40. The sampling
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error is
|p̂− p| = |0.40− 0.43| = | − 0.03| = 0.03.

That is, the sampling error is a proportion 0.03, or 3 percentage points.
Based on these considerations of sampling error, the representativeness

of a sample can be more carefully defined. A sample with a small sampling
error in the characteristic being investigated is considered representative of
the population. A sample with a larger sampling error in this characteristic
is considered to be a less representative sample. A sample cannot usually
be considered to be exactly representative of a population because there is
almost always some sampling error associated with any sample. What a
good sampling method does is reduce the sampling error to a low level.

The concept of sampling errror is relatively straightforward, and illus-
trates the nature of representativeness of a sample. The difficulty in dis-
cussing sampling error is that the values of parameters concerning a popu-
lation are generally not known. That is, µ, σ or the population proportion
p, are not known by the researcher. If these parameters were known, then
there would be little need for sampling in the first place. The examples given
above, where the population values and the sample values are both known,
are unusual. Often some of the population values can be determined from a
Census, or administrative data sources. But is unlikely that the parameters
for all the variables which the researcher wishes to investigate are known.

Since the values of the parameters are not known, the size of the sampling
error cannot be determined. This is certainly the case before the sample is
selected and before the results from the sample have been analyzed. But even
after X̄, s and p̂ have been determined, the parameters which correspond
to these statistics are not known. As a result, the exact size of the sampling
error cannot be determined. For example, even though X̄ can be determined,
|X̄ − µ| cannot be determined because µ is unknown. While the researcher
can be sure that there is some sampling errror associated with each sample,
the extent of this error is not certain.

The principles of probability become important at this point. While
the exact size of sampling error cannot be determined, probabilities can be
attached to various levels of this sampling error. For example, in the Gallup
poll, Gallup usually states that a national sample of 1,000 respondents has
a sampling error of no more than 4 percentage points associated with it.
Gallup states that this level of sampling error is not exceeded in 19 out of
20 samples. Stated in terms of probability, this means that the probability is
19/20 = 0.95 that the sample proportion p̂ differs from the true proportion
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p by not more than 4 percentage points, or 0.04. Symbolically,

P ( |p̂− p| < 0.04 ) = 0.95

The calculations which show this are given later in this chapter in Exam-
ple 7.6.2. Similarly, when estimating the sample mean µ, the exact size of
the sampling error |X̄ − µ| will never be known. But under certain condi-
tions, the probability that this sampling error does not exceed a particular
value can be determined.

The following section discusses sampling, emphasizing random sampling
and other types of probability samples. In probability based sampling it
is possible to determine probabilities of various levels of sampling error.
Section 7.3 leads to Section 7.4.1 which discusses the manner in which X̄
behaves when random samples are drawn from a population. Following the
results of that section, it is possible to determine different levels of sampling
error, along with their associated probabilities.

7.3 Sampling

As noted earlier, any subset of a population can be regarded as a sample
of that population. As a result, some samples are very poor samples, being
quite unrepresentative of the population. Other methods of sampling may
provide much better samples, where a reasonably representative sample may
be obtained. This section briefly discusses a few principles of sampling,
concentrating on random sampling.

Samples can be divided into probability based samples, and nonprobabil-
ity samples. Probability based samples are those sampling methods where
the principles of probability are used to select the members of the popula-
tion for a sample. Random sampling is an example of a probability based
method of sampling. The advantage of using a probability based technique
of sampling is that the principles of probability can be used to quantify and
place limits on uncertainty. In particular, probabilities of various levels of
sampling error can be determined if a sample is selected using the principles
of probability. The statistical inference of the following chapters is based on
the assumption that the sample is selected on the basis of some of the prin-
ciples of probability. Before discussing random sampling, a few comments
concerning nonprobability sampling are made.
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Nonprobability Samples. Statisticians are often reluctant to recom-
mend that a sample be drawn without using some systematic principles
of random selection. However, in many circumstances, it is not really pos-
sible to select a probability based sample, either because of the nature of
the problem, or because of the time or cost factors involved. In these cir-
cumstances, it may be necessary, or even desirable, to select a sample on
some nonprobability basis. If such selection is done with care, then some of
these methods may yield very useful and meaningful results. Further, if the
researcher makes some effort to determine how representative the sample is
in terms of some of the characteristics being investigated, it may be that a
fairly representative nonprobability sample can be obtained.

Some of the types of nonprobability samples are the person in the street
interview, the mall intercept, asking for volunteers, surveying friends or ac-
quaintances, quota samples and the snowball sample. If care is taken in
attempting to obtain diverse types of people, the person in the street in-
terview may obtain a reasonable cross section of the population. The mall
intercept is essentially the same method, stopping people in a particular
location, and obtaining some information from them. Asking for volun-
teers or relying on friends can often yield quite an unrepresentative sample.
However, if the researcher is not interested in obtaining a cross section of a
population, but is attempting to find people who have relatively uncommon
characteristics, then these methods may yield the desired sample. A quota
sample begins by deciding how many people of each characteristic are to be
selected. In this method, a sample of size 100 may aim at selecting 50 males
and 50 females. Then some method of finding these people, such as going
from house to house, is used. If care is taken in constructing quotas, and
using a systematic approach to finding these people, then this technique
can produce quite a representative sample in the characteristics given in
the quotas. A snowball sample is a method of beginning with a few people
having the desired characteristics, and asking them to suggest others. The
sample will grow, or snowball, as more names are suggested for inclusion in
the sample. Some of these are discussed in more detail in Chapter 12.

The difficulty with all of these nonprobability methods of obtaining a
sample is that statistical inference is not possible. That is, the level of
sampling error, or the probability associated with this error cannot be de-
termined. As a result, the uncertainty associated with these samples cannot
easily be quantified in any meaningful manner. If the nonprobability sample
yields useful information, then this may not be a concern. In addition, by
comparing sample results with known characteristics of a whole population,
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it may be found that a nonprobability sample is representative of the pop-
ulation. If using nonprobability samples though, care must be taken by the
researcher concerning the extent to which research results can be generalized
to a larger population.

Random Sampling. Random sampling is a method of sampling whereby
each member of a population has an equal chance of being selected in the
sample. Not many members of a population would ordinarily be selected in
such a sample, but no one in the population is systematically excluded from
the list from which the sample is drawn. In addition, each member of the
population on this list has exactly the same probability of being included
in the sample as does any other member of the population. Where these
conditions are satisfied, then the sample is said to be random.

There are various ways in which a random sample may be selected. Each
member of the population could be given a ticket, these tickets could be
placed in a drum, the drum could be shaken well, and one or more cases
could be randomly picked from this drum. Such a sample could be drawn
either with or without replacement, both methods satisfy the conditions laid
down for random sampling.

When dealing with a list of a population, it is most common to use
a random number table. Such a table is given in Appendix ?? of this
textbook. The list of 1,000 numbers in Appendix ?? was randomly generated
using a computer program Shazam. In this table, each of the ten digits, 0
through 9, should occur with approximately equal frequency, but with no
discernable patterns of repeated sets of digits. Assuming that these 1,000
integers really are random, they can be used to select a random sample from
a population list. If there are N members of the population on the list, each
member of a population is given a different identification number, from 1,
2, 3, and so on through to N . Sets of random digits from the table are then
used to select the number of cases desired in the sample. In the description
at the beginning of Appendix ??, the method of selecting a sample of size
n = 5 from the population of N = 50 people in Appendix A is described.

One method of sampling which has become common is to obtain a sample
on the basis of random digit dialling of telephone numbers. (Example 7.2.1
used this method for the sample of Toronto women). A list of all the tele-
phone numbers within particular telephone exchanges may be obtained, and
then random numbers are generated. A sufficient set of random digits is
generated so that the particular set of 7 digit telephone numbers yields an
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adequate number of responses. This method of selecting telephone numbers
is superior to selecting numbers randomly from a telephone book. The latter
does not have unlisted telephone numbers and may be out of date.

At the same time, there are several reasons why random digit dialling
does not yield a perfectly random sample of a population. First, people who
do not have telephones have no chance of being selected, while those with
more than one telephone stand a greater chance of being selected than do
those with only one telephone. As a sample of households, random digit
dialling provides close to a representative sample. As a sample of indi-
viduals, this method is less representative. Individuals in households with
many members have considerably lower probability of being selected than
do individuals in smaller households. In addition, telephone interviews have
nonsampling errors. This is the same problem as that encountered in most
methods of sampling - nonresponse or refusals. In spite of these difficul-
ties, random digit dialling of telephone numbers has become a popular, and
relatively good method of selecting a sample, one which is close to random.

Other Probability Based Sampling Methods. In many circumstances,
selecting a random sample is neither feasible nor efficient in terms of time
and cost. Modifications of the principles of probability can often be used
in such circumstances. For example, when sampling households in cities,
the city block seems a natural unit to sample. Some blocks, though, have
more households than do other blocks. When selecting blocks for sampling,
selection may be made on the basis of probability proportional to size.
That is, if the number of households on each block can be determined from
the Census, then probabilities of selection proportional to this number can
be assigned. Blocks with more households then have a greater probability
of being selected, and blocks with fewer households have a lower probability
of being selected.

Another method of sampling is to stratify the population into groups,
and then draw random samples from each of the strata. For example, stu-
dents at a university might be stratified into first year, second year, third
and fourth years, and graduate students. Then a random sample of each
group, or a sample proportional to the size of each group, might be selected.
This is termed a stratified sample. In some circumstances, a stratified
sample provides a more representative sample than does a random sample.

The other common type of sample is the cluster sample. In this method
of sampling, the population is divided into many small groupings or clusters.
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A random selection of these clusters may then be obtained. In the case of
sampling city blocks, each block can be regarded as a cluster of households,
and a set of these clusters can be chosen, either randomly or with probability
proportional to size.

There are many other methods of sampling using the principles of prob-
ability. Some combination of stratified, cluster and random sampling may
be used in a multistage sample. What is common to all of these methods
is that the principles of probability can be used to quantify the uncertainty
associated with each sample. This means that inferences concerning sam-
pling error and the nature of population parameters can be obtained from
these samples.

The following section returns to random sampling. This is the sampling
method assumed throughout the rest of this textbook. The behaviour of the
sample mean and the sample proportion obtained from random sampling are
discussed in some detail in the rest of this chapter.

7.4 Statistics from Random Samples

The methods of statistical inference used in this textbook are based on the
principles of random sampling. Recall that a random sample is a sampling
method whereby each member of the population has an equal chance or
probability of being selected. Statisticians have conducted detailed inves-
tigations of the behaviour of statistics which are obtained on the basis of
random sampling. The manner in which a statistic such as the mean is
distributed, when many random samples are drawn from a population, is
referred to as the sampling distribution of the statistic. This sec-
tion outlines and gives examples of sampling distributions for the sample
mean and for the sample proportion. These sampling distributions could
be obtained for other types of probability based samples, but these are not
provided in this textbook. The discussion which follows assumes the sample
is drawn on the basis of random selection.

7.4.1 Central Limit Theorem

A random sample of size n drawn from a population with mean µ for variable
X will result in values of the variable X1, X2, X3, · · · , Xn. These different
Xis may be quite disparate, taking on values anywhere within the range of
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values of the variable X. When the mean

X̄ =
∑

Xi

n

of these n values is obtained, the researcher hopes that the X̄ will be rela-
tively close to the true mean µ. This sample mean is unlikely to be exactly
equal to µ, so that there will be some sampling error |X̄−µ|. If this random
sample is close to being a representative sample, the sampling error will be
quite small.

Now suppose that the sample is one of those samples which just by
chance happens to select a set of values X1, X2, X3, · · · , Xn which are rather
unusual. Even though this sample is random, X̄ may differ considerably
from µ, and the sampling error associated with this sample may be relatively
large, resulting in a quite unrepresentative sample. While the researcher
hopes that the latter situation does not occur, there is always some chance
that this could happen. What the theorems of statistics can show though, is
that if n is reasonably large, the probability of the latter situation occurring
is relatively small. The following paragraphs give some of the mathematical
properties of statistics such as the mean of a sample. These results are not
proven in this textbook, but are explained and illustrated.

In order to consider sampling distributions of statistics, it is necessary
to imagine many random samples being taken from a population. It should
be noted that the researcher is not usually able to obtain many samples.
Ordinarily only one sample is drawn, and the researcher must attempt to
provide inferences concerning the population on the basis of this one sample.
But to discuss the behaviour of statistics, it is necessary to imagine that
there is the possibility of selecting repeated random samples from the same
population.

Suppose the researcher is attempting to estimate the true mean µ of
the population on the basis of these samples. Some of these samples will
yield sample means X̄ which are close to µ, while other samples will yield
sample means more distant from µ. It can be shown mathematically that
if many random samples are taken from a population, the average of the
sample means X̄ is the true mean of the population µ.

Suppose that several random samples are taken from the same popula-
tion. From the data obtained in each of these samples a sample mean X̄
can be obtained. Each of these individual sample means X̄ differs from the
true mean µ. But if the mean of the set of all of the different sample means
is obtained, this mean of the set of sample means is very close to the true
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mean µ of the whole population. If more and more random samples are
taken from this population, the mean of the set of sample means gets closer
and closer to the true mean of the population. In the limit, if an extremely
large number of such random samples are taken from the same population,
the mean of the sample means is the true mean of the population.

Not only is the average of the sample means known, but the variability in
these sample means can also be determined. The standard deviation of the
sample means can be shown to be the standard deviation of the population,
divided by the square root of the sample size. Let σ be the standard
deviation of the population from which the samples are being drawn. If the
samples are randomly selected from this population, each having sample size
n, then the standard deviation of the set of sample means is σ/

√
n. Again,

this property is exactly true only when the number of samples drawn is
extremely large. However, as long as the samples are random, the standard
deviation of the sampling distribution of X̄ can be considered to be σ/

√
n.

Standard error. This last property of the mean is often referred to as
the standard error of the mean, and is given the symbol σX̄ . That is,
if a random sample of size n is selected from a population with standard
deviation σ, the standard error of the sample mean X̄ is

σX̄ =
σ√
n

.

All this means is that the standard deviation of the sample mean, when
there is repeated random sampling, is σ/

√
n.

The use of ‘error’ in the term ‘standard error’ does not mean error in
the sense of mistake, or an attempt to mislead. Rather, the standard error
is used in the sense of the error associated with random sampling. Histor-
ically, the term emerged based on measurements of astronomers. Different
astronomers made different estimates of astronomical distances. Since no
one measurement was perfect, difference associated with different measure-
ments came to be called measurement errors. Later the term became asso-
ciated with the error involved in random sampling. The measure of error
which mathematicians developed became known as standard error. Remem-
ber though that what standard error denotes is the standard deviation of the
sampling distribution of the sample mean when there are repeated random
samples from a population.

The standard deviation of the sample mean being σ/
√

n means that this
standard error has a very desirable property. The standard error of the
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sample mean has the square root of the sample size in the denominator.
This means that the standard deviation of the sample means is smaller than
the standard deviation of the population from which the sample was drawn.
This further implies that the sample means are considerably less variable
than are the values of the variable themselves. The sample means tend to
cluster around the true mean, with most of the sample means being quite
close to the true mean.

In addition, the larger the size of the sample, the smaller the standard
deviation of the sample means. For example, if n = 25, the standard error
of the sample mean is σ/

√
25 = σ/5. But if the sample size is enlarged to

n = 100, this standard error is reduced to σ/
√

100 = σ/10. This implies
that the larger the size of the random sample, the less variation in the
sample means. Since the mean of the sample means is the true mean of the
population, this further implies that a large sample size is associated with
sample means which tend to cluster very closely around the true mean.

Not only are the mean and standard deviation of the sample means
known, but the type of distribution for X̄ can also be determined mathemat-
ically. It is possible to prove that if the random samples have a reasonably
large sample size, the sample means are normally distributed. Recall
that the areas under the normal curve can be interpreted as probabilities.
Since the mean and standard deviation are both known, and the normal

probabilities are known, this implies that it is possible to determine the
probability that X̄ is any given distance from µ. In Section 7.6, the proba-
bilities associated with various levels of sampling error will be determined.
All of these results can be summarized in the following theorem.

The Central Limit Theorem. Let X be a variable with a mean of µ
and a standard deviation of σ. If random samples of size n are drawn from
the values of X, then the sample mean X̄ is a normally distributed variable
with mean µ and standard deviation σ/

√
n. Symbolically,

X̄ is Nor (µ,
σ√
n

)

This result holds for almost all possible distributions of variable X. The only
condition for this result to hold is that the sample size n must be reasonably
large. Often a sample size as small as n = 30 is regarded as being adequate
for this theorem to hold.

The Central Limit Theorem is illustrated diagramatically in Figure 7.1.
The distribution given at the top of this figure is drawn roughly, in order to
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illustrate that the population can have practically any type of distribution.
In general, the shape of this population distribution will be unknown, and
the mean and standard deviation will also be unknown. If random samples
of size n are drawn from this population, and n is reasonably large, then the
sample means are distributed normally. This is shown in the diagram at the
bottom of Figure 7.1. Note that the variable on the horizontal axis of the
lower distribution is no longer X but is X̄, the sample mean. These sample
means vary with each random sample selected, but the middle of this nor-
mal distribution for X̄ is µ; the distribution of sample means has the same
mean as does the population from which the samples were drawn. The nor-
mal distribution for the sample means is much more concentrated than the
original population distribution. The diagram at the top of Figure 7.1 gives
the approximate size of the standard deviation. The normal distribution
of sample means in the bottom diagram is much more concentrated, with
a considerably smaller standard deviation, and with most cases lying fairly
close to the true population mean µ

This theorem is the single most important theorem in statistics. It states
that regardless of what a population or a distribution looks like, the sampling
distribution of the sample means will be normally distributed, with mean
and standard deviation as given above. The only conditions for this to hold
are that the samples be random samples with relatively large sample sizes.
If the samples are not random, or if the sample size is quite small, then
this result may not hold. But in general, the result of the theorem holds,
and this means that the nature of the sampling distribution of X̄ can be
determined. Since the nature of the original distribution of X can be almost
any distribution, the normal distribution appears seemingly out of nowhere.
Even though nothing is known about the population, the manner in which
the sample is distributed can be well understood and described.

In terms of the size of the samples, there is some debate concerning what
constitutes a large sample size. If the population from which the sample is
originally drawn is close to symmetrically distributed (even though it is not
normally distributed), then a random sample of 25 or 30 cases should be
sufficient to ensure that the central limit theorem holds. Where the original
population is quite asymmetric, skewed either positively or negatively, a
considerably larger sample size may be required before this theorem holds. A
sample size of over 100 should ensure that the theorem can be used in almost
any circumstance. In addition, the larger the sample size, the more closely
the theorem holds, so that a random sample of 500 or 1,000 will ensure that
the normal probabilities very closely approximate the exact probabilities for
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X̄. As with any approximation, the theorem can be used even when these
minimum conditions do not hold, for example for a sample of only n = 15.
But in this circumstance, the probabilities calculated on the basis of the
normal curve would not provide a very accurate estimate of the correct
probabilities associated with values of X̄.

Standard Deviation of the Sampling Distribution. One difficulty
associated with the use of this theorem in practical situations is that the
standard deviation of the population, σ, is not usually known. Since the
standard deviation of the sampling distribution of X̄ is σ/

√
n, this means

that this standard deviation of the sampling distribution is not known. It
in unlikely that the researcher will ever have an exact idea of σ because
a sample is being taken to determine the characteristics of the population.
Just as there is sampling error associated with X̄, there is also sampling
error associated with the sample standard deviation s as an estimate of σ.

In Chapter 8 it will be seen that there are various ways in which the
problem of the lack of knowledge of σ can be dealt with. Usually researchers
will use the sample standard deviation s as an estimate of σ, even though
there is some sampling error associated with this. As long as only a rough
estimate of sampling error is needed, then this solution is adequate, at least
when the sample size is reasonably large. Thus, in practice,

σX̄ =
σ√
n
≈ s√

n

Effect of Sample Size. The standard deviation of the sampling distri-
bution of X̄ is

σX̄ =
σ√
n

so that a larger sample size means a smaller standard deviation for the
sampling distribution. This means that the sample means are less variable,
from sample to sample, when the sample size is large. This, in turn, implies
that there is less sampling error when the sample size is large. This is one of
the reasons that researchers prefer random samples with large sample sizes
to those with smaller sample sizes.

The effect of sample size on the sampling distribution of X̄ is shown in
Figure 7.2, where three different sample sizes are given. The possible values
of X̄ are given along the horizontal, with X̄ having a mean of µ. The vertical
axis represents the probability of each value of X̄.
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Figure 7.2: Sampling Distribution of X̄ for 3 Sample Sizes

Suppose that three random samples have been selected from a popula-
tion with mean µ and standard deviation σ. For sample C, with sample size
n = 50, the sampling distribution is the least concentrated normal distribu-
tion, with σ/

√
50 as the standard deviation. When the size of the random

sample is increased to n = 200 in sample B, the standard deviation is con-
siderably reduced, being σ/

√
200 in this case. This is the middle of the

three distributions. Finally, in sample A, when the sample size is increased
again, to n = 800, the sampling distribution becomes considerably more
concentrated, with

σX̄ =
σ√
n

=
σ√
800

.

By comparing these three normal distributions, it can be seen that when
n is larger, the chance that X̄ is far from µ is considerably reduced. A
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larger random sample is associated with smaller sampling error, or at least
a greater probability that the sampling error is small. In Example 7.6.1 this
is illustrated with two different random samples.

7.4.2 Sampling Distribution of a Proportion.

To this point, the discussion in this section has been solely concerned with
the behaviour of the mean in random sampling. Another population pa-
rameter with which researchers are commonly concerned is the population
proportion. Suppose a particular characteristic of a population is being
investigated, and the proportion of members of the population with this
characteristic is to be determined. Ordinarily the proportion of cases in the
sample which take on this characteristic will be used to make statements
concerning the population proportion. If the sample is a random sample,
and is reasonably large, then the sampling distribution of the sample propor-
tion can be determined. This is based on the binomial distribution, and is
a simple extension of the normal approximation to the binomial probability
distribution.

Let p be the proportion of members of the population having the char-
acteristic being investigated. This can be stated in terms of the binomial
by defining this characteristic as a success. Any member of the population
which does not have this characteristic can be considered as a failure.

Suppose random samples of size n taken from this population. Let X be
the number of cases selected which have the characteristic of success. Each
random sample will have a different number of successes X. The variable X
is a random variable, and in Section 6.5 it was shown that the mean of X is
np and the standard deviation of X is

√
npq. In addition, if n is reasonably

large, then this distribution is normal.
That is, if random samples of size n are selected from a population with

p as the proportion of successes, the number of cases X which have the
desired characteristic is distributed

Nor(np,
√

npq).

The researcher is not likely interested in the number of successes in n trials,
so much as he or she is likely to be concerned with the proportion of successes
in n trials. This proportion is a statistic and is given the symbol p̂. Since
there are X successes in n trials, the proportion of successes in the sample
is X/n, so that p̂ = X/n. Since X is distributed

Nor(np,
√

npq),
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it can be seen that p̂ will be distributed as is X but divided by n, so that p̂
is

Nor(p,
√

pq/n).

This result holds as long as n is reasonably large, and the sample is a
random sample. The rule for the size of n is the same as in the normal
approximation to the binomial, that is,

n ≥ 5
min(p, q)

The standard deviation of the sample proportion,
√

pq/n can be called the
standard error of the proportion and is sometimes given the symbol
σp̂. This symbol is used with σ to denote that it is a standard deviation, and
the subscript to denote the statistic for which it is the standard deviation.
Thus

σp̂ =
√

pq/n

This result is comparable to the Central Limit Theorem for the mean.
The only difference is that the above result is based on the binomial, and the
normal approximation to the binomial. What this result shows is that large
random samples from a population yield a well known and well understood
sampling distribution for the sample proportion. This distribution can be
used to provide estimates of the population proportion, test hypotheses con-
cerning the population proportion, or estimate probabilities associated with
different levels of sampling error of the population proportion. An example
of the latter is given in the following section, with interval estimates and
hypothesis tests for proportions in Chapters 8 and 9.

7.5 Example of a Sampling Distribution

This example illustrates the Central Limit Theorem by drawing a large num-
ber of random samples from a population which is not normally distributed.
Suppose that µ is the mean of a population, σ is the standard deviation of
this same population, and random samples of size n are drawn from this
population. According to the Central Limit Theorem, the sample mean X̄
is normally distributed with mean µ and standard deviation σ/

√
n. This

result is true regardless of how the population itself is distributed. The
only condition required for this Theorem to be true is that the samples be
random samples and that n be reasonably large. In this example, random
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samples of size n = 50 will be used to illustrate the sampling distribution of
the sample mean.

Population of Regina Respondents This example begins with the dis-
tribution of gross monthly pay of 601 Regina respondents. The set of 601
pay levels of respondents, along with an identification number for each re-
spondent is given in Appendix ??. This data was obtained from respondents
in the Social Studies 203 Regina Labour Force Survey. These 601 values are
grouped into a frequency distribution, along with some summary measures
for this distribution, in Table 7.4. Although the data is based on a sample,
for this example this distribution of gross monthly pay will be regarded as a
distribution for a population. If this sample were to be exactly representa-
tive of the population of Regina labour force members, then this distribution
could be regarded as describing the distribution of gross monthly pay of all
Regina labour force members. Thus it will be assumed that the mean pay
level of $2,352 is a population parameter µ, and the standard deviation of
$1,485 is also a parameter σ.

-
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Figure 7.3: Histogram of Distribution of Gross Monthly Pay

The histogram for the frequency distribution of gross monthly pay in
Table 7.4 is given in Figure 7.3. A quick examination of Table 7.4 and
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Figure 7.3 shows that the distribution of gross monthly pay is not normal.
Rather, the distribution peaks at a fairly low pay level, around $1,500-
2,000 per month, and then tails off at higher income levels. There are some
individuals with quite high pay levels, so that the distribution goes much
further to the right of the peak than it does to the left of the peak income
level. At these upper income levels though, there are relatively few people.
A distribution of this sort is said to be skewed to the right; distributions
of income and wealth are ordinarily skewed in this manner.

Gross Monthly Pay
($ per month) f

Less than 500 45
500-999 51
1,000-1,499 69
1,500-1,999 110
2,000-2,499 77
2,500-2,999 60
3,000-3,499 59
3,500-4,000 52
4,000-4,999 46
5,000 and over 32

Total 601

Parameters for Distribution

Mean µ =$ 2,352
Median $ 2,000
Standard Deviation σ =$1,485
Minimum $ 50
Maximum $9,000
Sum $1,413,316

Table 7.4: Distribution of Gross Monthly Pay, 601 Regina Respondents

For this example, consider these 601 people, with the pay distribution of
Table 7.4, as a population from which random samples will be drawn. For
this population, the variable X is gross monthly pay, measured in dollars.
The mean and standard deviation of gross monthly pay in dollars for this
population are

µ = 2, 352

σ = 1, 485

and this population appears to have a distribution which is not normal.
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Mean gross monthly pay (GMP) for 192 random samples, each of size n = 50 from a population
with mean GMP of $2,352 and standard deviation $1,485. See text pp. 448-455.

Sample Mean Sample Mean Sample Mean Sample Mean Sample Mean
No. GMP No. GMP No. GMP No. GMP No. GMP

1 2205 41 2245 81 2630 121 2467 161 2197
2 2641 42 2478 82 2485 122 2435 162 2556
3 2128 43 2295 83 2632 123 2460 163 2452
4 2199 44 2135 84 2125 124 2547 164 2317
5 2322 45 2365 85 2497 125 2572 165 2230
6 2009 46 2526 86 2291 126 2149 166 2378
7 2703 47 2278 87 2547 127 2319 167 2655
8 2512 48 2105 88 2379 128 2164 168 2233
9 2166 49 2226 89 2250 129 2446 169 2220
10 2628 50 1959 90 2788 130 2102 170 2360
11 2157 51 2391 91 2288 131 2352 171 2990
12 2404 52 2717 92 2400 132 2452 172 2011
13 2317 53 2540 93 2586 133 2238 173 2676
14 2248 54 2389 94 2718 134 2071 174 2584
15 2274 55 1931 95 2441 135 2357 175 2432
16 2224 56 2463 96 2463 136 2170 176 2370
17 2013 57 2121 97 2425 137 2685 177 2408
18 2113 58 2459 98 2668 138 2181 178 2486
19 2463 59 2864 99 2414 139 2369 179 2099
20 2296 60 2672 100 2313 140 2562 180 2207
21 2633 61 2261 101 2353 141 2447 181 2454
22 2262 62 2363 102 2988 142 2567 182 2578
23 2372 63 2328 103 2044 143 2431 183 2609
24 1945 64 2345 104 2352 144 2348 184 2098
25 2671 65 1778 105 2394 145 2066 185 2220
26 2597 66 2251 106 2410 146 2129 186 2291
27 2264 67 2196 107 1826 147 2373 187 2178
28 2247 68 2282 108 2066 148 2286 188 2527
29 2223 69 2331 109 2184 149 2296 189 2523
30 2381 70 1985 110 2174 150 2486 190 2485
31 2239 71 2464 111 2213 151 2023 191 2278
32 2155 72 2367 112 1996 152 2329 192 2275
33 2264 73 2264 113 2624 153 2420
34 2028 74 2209 114 2574 154 2471
35 2454 75 2241 115 2439 155 2280
36 2300 76 2824 116 2458 156 2421
37 2326 77 1947 117 2405 157 2135
38 2297 78 2395 118 2137 158 1863
39 2447 79 1963 119 2273 159 2539
40 2225 80 2166 120 2356 160 2277

Table 7.5  Mean GMP for 192 Different Random Samples, Each of Size n = 50                              page 451
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192 Random Samples From this population of 601 Regina respondents,
192 different random samples have been drawn. Each of these samples is a
random sample of the population, and was drawn using the SAMPLE com-
mand of SPSSX. This command was used 192 different times, each time
resulting in a selection of 50 of the Regina respondents. According to the
Central Limit Theorem, the distribution of the sample mean, X̄, should be
normal with mean µ and standard deviation σX̄ = σ/

√
n. Since µ = 2, 352

and σ = 1, 485, the sampling distribution of the sample mean should have
a standard deviation of

σX̄ = σ/
√

n = 1, 485/
√

50 = 210

rounded to the nearest dollar.
Not all the data for each of the samples selected is given here. Table 7.5

gives the values of the 192 different sample means that were drawn. Each
number in Table 7.5 is a sample mean, an average of the 50 different re-
spondents which were chosen in that sample. For example, the first random
sample of 50 respondents had a mean pay of $2,205, the second random sam-
ple of 50 respondents had a mean pay of $2,641, and so on. The last of the
192 random samples drawn had a mean pay of $2,275 for the 50 respondents
in the sample.

Each of the means in Table 7.5 can be regarded as an estimate of the
true mean of $2,352. As can be seen in Table 7.5, most of the means are
fairly close to this true mean. The first sample mean of $2,205 differs from
the the true mean by 2, 205 − 2, 352 = −147 dollars. The second sample
mean of $2,641 is $289 greater than the true mean, so that the sampling
error for this sample is $289. In Table 7.6, it can be seen that the minimum
mean of Table 7.5 is $1,777. On the low side, this is the worst estimate of
the true mean, being $575 less than the true mean. On the high side, the
sample that was the worst produced a sample mean of $2,988, $636 above the
true mean. In general though, the sample means provide reasonably close
estimates of the true mean, some of the estimates being quite precise, others
further away. What this shows is that a random sample of size 50 generally
provides a reasonably good estimate of the true mean of a population.

The extent of variability of the sample means can be examined by looking
over the list of all sample means in Table 7.5. Each sample mean provides
a different estimate of the true mean, and these sample means vary consid-
erably. Table 7.6 summarizes the set of 192 sample means of Table 7.5 as
a sampling distribution. The standard deviation of these 192 sample means
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Gross Monthly Pay
($ per month) f

Under 1,780 1
1,780-1,884 2
1,884-1,988 6
1,988-2,092 11
2,092-2,196 23
2,196-2,300 44
2,300-2,404 33
2,404-2,508 35
2,508-2,612 18
2,612-2,716 13
2,716 and over 6

Total 192

Statistics for Sampling Distribution

Mean $2,337
Median $2,329
Standard Deviation $206
Minimum $1,777
Maximum $2,988
No. of Cases 192

Table 7.6: Distribution of 192 Different Sample Means

is calculated and given in Table 7.6 as $206. This is a little lower than if
central limit theorem were exactly true. It was noted above that if the theo-
rem were exactly true, the standard deviation of these sample means would
be approximately $210. Again, the fact that the sample size is only n = 50
may be the reason that the actual standard deviation is a little different
from what would be expected from the theorem.

Finally, the distribution of the sample means is given in Figure 7.5. While
this distribution is not the exact normal distribution would be expected from
the central limit theorem, this distribution comes close to being symmetrical.
In addition, note how concentrated this distribution of sample means is,
compared with the original population distribution of Figure 7.3, given again
as Figure 7.4. Each of the sample means in Figure 7.5 is quite close to the
true mean µ. The chance that any sample mean lies very distant from µ is
quite small.

Conclusion. This example shows that when a random sample is drawn
from a population, the sample mean generally provides quite a good estimate
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Figure 7.4: Histogram of Distribution of Gross Monthly Pay
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of the true population mean. Sometimes the sample mean is a little on the
low side, sometimes a little on the high side, but the sample mean is generally
quite close to the true mean. The standard deviation of the sample means
is σX̄ = σ/

√
n. Since the standard deviation of the original population, σ,

is divided by
√

n in this expression, this implies that the standard deviation
of the sample means is much smaller than the standard deviation of the
population from which the samples are drawn. In addition, because

√
n

is in the denominator of σX̄ , the larger the sample size, the smaller the
standard deviation of the sample means. Together these mean that if a
random sample is taken from a population, a larger sample size is more
likely to provide a close estimate of the true population mean than is a
smaller sample size.

Finally, the Central Limit Theorem also states that the distribution of
sample means is likely to be close to normally distributed. Since the prob-
abilities associated with the normal distribution are well known, the proba-
bility of the sample mean differing from the population mean by any given
amount can be calculated. This will be seen in the following section, where
sampling error is briefly discussed. These properties of the sampling dis-
tribution also provide the basis for interval estimates and hypothesis tests
concerning the population mean.

7.6 Sampling Error

Each time a sample is taken from a population, there will be some sampling
error. The sampling error associated with a sample is the numerical differ-
ence between the sample statistic and the corresponding population param-
eter. Since the value of the latter is unknown, the exact size of the sampling
error is not known. If the sample is being used to make inferences concern-
ing the population mean, then the central limit theorem lays the basis for
determining the probability of various levels of sampling error. Similarly,
when inferences concerning a population proportion are being made, the
extension of the normal approximation to the binomial provides the basis
for estimating probabilities associated with different sizes of sampling error
for a population proportion. In this section, the probability associated with
the sampling error for each of the sample mean and the sample proportion
will be discussed.

If a reasonably large random sample is taken from a population, the
Central Limit Theorem states that the sample mean is normally distributed
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with mean µ and standard deviation σ/
√

n, where µ is the population mean,
σ is the standard deviation of the population, and n is the sample size. The
probabilities associated with different sample means X̄ can be determined
on the basis of this normal distribution.

Suppose that a particular level of sampling error, E, is specified. This
will be a value of |X̄ − µ|, and can be represented by a distance around
the centre of the normal distribution. Whatever value of E is specified,
this can be represented by the distance from µ − E to µ + E. That is, if
the sampling error is not to exceed E, then X̄ must be between µ − E to
µ + E. If X̄ is outside this interval, then the smpling error exceeds E. The
area under the normal curve between µ − E and µ + E can be determined
by using the table of the normal distribution in Appendix ?? If this area
is interpreted as a probability, then this is the probability that the sample
mean X̄ is within these limits. This area further represents the probability
that the sampling error does not exceed E. All of this can be written as a
probability statement as follows:

P (µ− E < X̄ < µ + E) = PE

where PE is the area under the normal curve between µ − E and µ + E.
That is, the probability that X̄ is between µ−E and µ+E is PE . This also
means that

P (|X̄ − µ| ≤ E) = PE

and this states that the probability is PE that the sampling error does not
exceed E. This is ilustrated diagramatically with an example from the
distribution of gross monthly pay of Regina labour force members.

Example 7.6.1 Sampling Error of Mean Gross Monthly Pay

In Section 7.5 the mean gross monthly pay of Regina labour force mem-
bers was given as µ = 2, 352, with a standard deviation of σ = 1, 485, where
both measures are in dollars. Even though this data was originally obtained
on the basis of a sample, it was assumed that this mean and standard de-
viation are parameters representing the true gross montly pay of all Regina
labour force members. In this example, the probability that the sampling
error does not exceed $100 will be determined, first for a sample size of 50,
and then for a sample size of 200. This is the probability that in a random
sample from this population X̄ differs from µ by less than $100.
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If a random sample of size n = 50 is taken from this population, then the
central limit theorem states that the sample means are normally distributed
with mean µ = 2, 352 and standard deviaton

σX̄ =
σ√
n

=
1485√

50
=

1485
7.07107

= 210.011

Rounded to the nearest dollar, the standard error of the sample mean is
σX̄ = $210. That is,

X̄ is Nor ( $2, 352, $210 )

Since the sampling error is not to exceed E = $100 on either side of µ, if
the area under the normal curve within plus or minus $100 of the mean can
be determined, then this is the appropriate probability. Since the standard
deviation of this normal distribution is $210, a distance of $100 on either
side of the mean is 100/210 = 0.48 standard deviations or Z values.

The required area is the area under the normal distribution between
Z = −0.48 and Z = +0.48. This area is 0.1844+0.1844 = 0.3688. Thus the
probability that the sampling error is no more than $100 is approximately
0.37 when the sample size is n = 50. Note that neither the value of the
mean of the original distribution nor of the sample, was not required in
obtaining this estimate. However, the value of the standard deviation of the
population was required in order to determine the Z value associated with
the sampling error.

This is illustrated in the top diagram of Figure 7.6. There the sampling
distribution of X̄ is the normal curve shown, with µ as the mean of the
sampling distribution. A distance of $100 on each side of µ is shown. The
shaded area represents the probability that X̄ falls between X̄ − $100 and
X̄ +$100, that is that the sampling error |X̄−µ| < 100. Since the standard
deviation σX̄ for this distribution is $210, a distance of $100 is 100/210 =
0.48 in terms of Z. From the normal table in Appendix ??, the area under
the normal curve between Z = −0.48 and Z = +0.48 is 0.3688.

Standardized Value. Recall that the formula for standardizing a normal
variable X with mean µ and standard deviation σ was

Z =
X − µ

σ
.

This transformation converts X into a variable Z which has mean 0 and
standard deviation 1. Such a transformation is said to standardize a vari-
able. This formula can be generalized as follows. Any variable can be
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standardized by subtracting the mean from the variable and dividing this
difference by the standard deviation. This produces a new variable with a
mean of 0 and a standard deviation of 1. That is, in general

Z =
variable−mean of variable

standard deviation of variable

and this Z has mean 0 and standard deviation 1. In this case, the variable is
X̄, with mean µ and standard deviation σX̄ = σ√

n
. The appropriate formula

for standardization in this distribution is

Z =
X̄ − µ

σX̄

=
X̄ − µ

σ√
n

and for this Z,
Z is Nor ( 0 , 1 )

Returning to the previous example, but using this new formula for Z,
the sampling error is E = |X̄ − µ|. The magnitude of this sampling error is
the same as the numerator of the expression for determining Z in the new
formula. That is, working only with the sampling error to the right of the
mean,

Z =
X̄ − µ

σX̄

=
E

σX̄

=
E
σ√
n

=
100
1485√

50

= 0.47

and this is essentially the same Z as earlier, with only a slight difference due
to rounding error.

In the second part of this example, the sample size is increased to n =
200, and all that changes is n. The sampling error is still E = $100, but
now the standard deviation of the distribution of the sample mean is

σX̄ =
σ√
n

=
1485√

200
=

1485
14.142

= 105.01

or $105. Since one standard deviation is $105, a sampling error of E = $100
is associated with Z = 100/105 = 0.95. The area between Z = −0.95 and
Z = +0.95 is 0.3289 + 0.3289 = 0.6578. The probability is approximately
0.66 that the sampling error does not exceed $200 when a random sample
of size n = 200 is selected from the population. Using the formula for
standardization of X̄,

Z =
E

σX̄

=
E
σ√
n

=
100
1485√

200

= 0.95
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Sample Size Probability that Sampling
(n) Error Does not Exceed $100

50 0.37
200 0.66
500 0.87
4000 0.00002

Table 7.7: Probability of $100 Sampling Error with Various Sample Sizes

Note how the probability that the sampling error does not exceed $100 is
increased with the increased sample size. Increasing the size of the random
samples from 50 to 200 increases the chance that the sampling error does not
exceed $100 from 0.37 to 0.66. In general, a larger random sample results in
an increased probability that the sampling error is no greater than specified.
This means that the researcher has more confidence in the results from a
larger random sample. It can be shown that for any given probability, the
sampling error is smaller, the larger the size of the random sample. The
sample mean from a large random sample is likely to be closer to the true
population mean compared with the sample mean from a smaller random
sample.

Table 7.7 summarizes these results. The determination of the probabili-
ties of the sampling error being no greater than $100 when the sample sizes
are 500 and 4000 are left as an exercise for the student.

Sampling Error for a Proportion. If a random sample of a reasonably
large sample size is taken from a population with proportion of successes p,
the sampling error of the sample proportion p̂ can be determined in much
the same manner as in the case of the mean. Based on the extension of the
normal approximation to the binomial, the sample proportion p̂ is normally
distributed with mean p and standard deviation σp̂ =

√
pq/n. Symbolically,

p̂ is Nor ( p , σp̂ )

or
p̂ is Nor ( p ,

√
pq/n )
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This result holds as long as

n ≥ 5
min(p, q)

Suppose the researcher wishes to set the sampling error at E. Then the
probability that p̂ is between p−E and p + E can be determined, since the
distribution of p̂ is known to be normal and the standard deviation can also
be determined. As a probability statement, this can be written

P (p− E < p̂ < p + E) = PE

where PE is the area under the normal curve between p−E and p+E. That
is, the probability that p̂ is between p−E and p+E is PE . This also means
that

P (|p̂− p| ≤ E) = PE

The probability that the sampling error for p̂ is less than or equal to E is PE .
The sampling error for a sample proportion is illustrated in the following
example.

Example 7.6.2 Sampling Error in the Gallup Poll

Each month Gallup Canada, Inc., polls Canadian adults on many issues.
The results of these polls are regularly reported in the media. For example,
in the August, 1992 poll, Gallup asked the question

If a federal election were held today, which party’s candidate do
you think you would favor?

Of those adults who had decided which party they would favor, 21% sup-
ported the PCs, 44% the Liberals, 16% the NDP, 11% the Reform Party,
6% the Bloc Quebecois and 1% other parties. The totals do not add to
100% because of rounding error. Of those polled, 33% were undecided, so
these reported percentages are based on the 67% of those polled who were
decided. Each of the reported percentages is subject to sampling error.
In The Gallup Report of August 13, 1992, Gallup makes the following
statement concerning sampling error.

Today’s results are based on 1,025 telephone interviews with
adults, conducted August 6-10, 1992. A national telephone sam-
ple of this size is accurate within a 3.1 percentage point margin
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of error, 19 in 20 times. The margins of error are higher for
the regions, reflecting the smaller sample sizes. For example, in
Quebec 257 interviews were conducted with a margin of error of
6 percentage points, 19 in 20 times.

While Gallup uses slightly different language than has been used in this
book, these results can be shown using the concept of sampling error devel-
oped here.

First, consider the sampling error associated with the national estimates.
Take support for the Conservatives as an example. Define success as the
characteristic that an adult who is interviewed will support the PC party.
Let p be the true proportion of Canadian adults who really do favor the
Conservative party. This true population parameter p is unknown, but since
the Gallup poll is a random sample of Canadian adults, the distribution of
the sample proportion p̂ can be determined on the basis that:

p̂ is Nor ( p ,
√

pq/n )

In this sample, n = 1, 025, so that if some estimate of p and q are
available, then σp̂ =

√
pq/n can be determined. It will be seen a little later

that if p = q = 0.5 is used as the estimate of p and q in
√

pq/n, then this
provides a maximum estimate of the size of the standard deviation of p̂ for
any given n. Using these values,

σp̂ =
√

pq/n =
√

(0.5× 0.5)/1, 025 =
√

0.0002439 = 0.0156.

That is, one standard deviation in the sampling distribution of p̂ is 0.0156.
In terms of the probability associated with the sampling error, Gallup

says the sampling error is no more than 3.1 percentage points in 19 out of
20 samples. 19 in 20 samples is equivalent to a probability of 19/20 = 0.95.
Gallup is making the claim that the sampling error is 3.1 percentage points,
or a proportion E = 0.031 with probability 0.95.

Recall that when the normal distribution was being introduced, a Z of
1.96 was associated with the middle 0.95 or 95% of a normal distribution.
That is, in order to take account of the middle 0.95 of a normal distribution,
it is necessary to go to 1.96 standard deviations below the mean and to 1.96
standard deviations above the mean. This means that a probability of 0.95
is associated with a distance of 1.96 standard deviations on each side of the
mean.
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Putting together this probability and this Z value, the size of the sam-
pling error can be seen. One standard deviation is Z = 1.96 and the size
of the standard deviation for the distribution of sample means is 0.0156. In
this distribution, 1.96 standard deviations is 1.96 × 0.0156 = 0.0306. This
is a proportion and converted into percentages is 0.0306 × 100% = 3.06%
of 3.1 percentage points. This is the margin of error claimed by Gallup.
That is, the probability is 0.95 that p̂ lies within 3.1 percentage points of
the true proportion p. While the error associated with this sample may be
larger than 3.1 percentage points in any particular month, 19 in 20 such
samples will yield values of p̂ which are within 3.1 percentage points of the
true proportion of PC supporters p.

Figure 7.7 illustrates this sampling error diagrammatically. Along the
horizontal axis is p̂, and the normal curve gives the sampling distribution of
p̂. This is a normal distribution, centred at the true proportion of successes
p, and with standard deviation σp̂ = 0.0156. Since the sampling error of
E = 0.031 is not exceeded in 0.95, or 19 out of 20, samples, the appropriate
area under the normal distribution is the middle 0.95 of the area. From
Appendix ?? it can be seen that this is the area under the normal curve
between Z = −1.96 and Z = +1.96. That is, going out from the centre of the
distribution by 1.96 standard deviations in each direction gives this middle
0.95 of the distribution. Since one standard deviation in this distribution
is 0.0156, a distance of 1.96 standard deviations on each side of centre is
associated with a distance of 1.96 × 0.0156 = 0.031 on each side of centre.
This is given as the distance from p−0.031 to p+0.031. This interval around
p contains 95% of the area under this normal curve, and it can be seen that
19 in 20 samples will yield p̂s which are within this range. Thus 19 in 20
samples have a sampling error of 3.1 percentage points or less.

As an exercise, show that the sampling error for Quebec is 6 percentage
points, 19 in 20 times, as claimed by Gallup. All that changes for Quebec
is that the sample size n is reduced to only n = 257. Otherwise the method
used is the same.

Additional Notes Concerning Sampling Error of p̂.

1. Z Value for p̂. Just as a Z value was determined for X̄ in the sampling
distribution of the sample mean, so a comparable value can be obtained for
the sampling distribution of the sample proportion. Recall that the general
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format for determining the standardized value Z is

Z =
variable−mean of variable

standard deviation of variable

In the case of the distribution of the sample proportion p̂,

p̂ is Nor ( p ,
√

pq/n )

so that the mean of p̂ is p and the standard deviation of p̂ is

σp̂ =
√

pq/n

Putting these values into the general formula for Z gives

Z =
p̂− p

σp̂
=

p̂− p√
pq/n

so that for this Z,
Z is Nor(0, 1)

In the case of the sampling error associated with the Gallup poll, the claim
is that E = 0.031. When making inferences concerning the true population
proportion p, the statistic is the sample proportion p̂, and the sampling error
associated with any given sample is E = |p̂− p|. Thus

Z =
p̂− p√
pq/n

=
0.031√

(0.5× 0.5)/1, 025
=

0.031
0.0156

= 1.96

so that the sampling error of E = 0.031 is associated with Z = 1.96. The
area under the normal curve within 1.96 standard deviations of the mean is
the area between Z = −1.96 and Z = +1.96. This distance of 1.96 standard
deviations in each direction from the mean is associated with an area of 0.95
in the middle of the distribution. The probability of 0.95 is the probability
of a sampling error of no more than proportion 0.031, or 3.1 percentage
points, in a random sample of size n = 1, 025.

2. Maximum Value of σp̂. Earlier it was stated that a good estimate of
σp̂ could be obtained if p = q = 0.5 when substituting p and q into

σp̂ =
√

pq/n.
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It was also claimed that this produces the maximum possible value of σp̂

for any given n. That is

Maximum(σp̂) =
√

(0.5× 0.5)/n =
√

0.25/n

If you have studied calculus, you will recognize this as a simple problem
of maximization. That is, q = 1−p so that pq = p(1−p) and the maximum
value of this occurs when p = 1/2. Taking the derivation of this product
with respect to p produces the maximum value of the product. That is,

d(p− p2)
dp

= 1− 2p = 0

when p = 1/2 = 0.5.
For those unfamiliar with calculus, you can satisfy yourself that p × q

cannot exceed 0.25 if p + q = 1. Take a few values such as

0.5× 0.5 = 0.25

0.3× 0.7 = 0.21

0.12× 0.88 = 0.1056

0.05× 0.95 = 0.0475

and it can be seen that p times q cannot be greater than 0.25 when each of
p and q is less than 1, and the sum of p and q is 1.

What this means is that the estimate of the standard deviation of p̂ is at
a maximum when p and q are close to 0.5. With the above set of products, it
can also be seen that it is only when p and q are quite far from 0.5 that the
product p× q is much less than 0.25. Only when this latter condition holds
is the standard deviation of p̂ reduced all that much. Thus the standard
deviation of p̂ will never be underestimated if p = q = 0.5 in

σp̂ =
√

pq/n.

If anything, using p = q = 0.5 will overestimate the standard deviation,
and thus overestimate the sampling error. As a result, it is always quite
safe to use p = q = 0.5 when estimating the sampling error of the sample
proportion. You cannot be accused of making the sampling error appear
smaller than it really is by doing this. In fact, if p̂ is considerably less or
considerably more than 0.5, then the sampling error may be somewhat less
than determined on the basis of p = q = 0.5.
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3. Estimating the Standard Deviation. In the formulae for the stan-
dard deviation of the statistics from samples, the standard deviation of the
population from which the sample is drawn always appears in some manner.
In the case of the mean, the standard deviation of the sampling distribution
of X̄ was

σX̄ =
σ√
n

where n is the sample size, and σ is the standard deviation of the popula-
tion from which the random sample is drawn. It is very unlikely that the
researcher knows σ, since the true population mean µ is unkown, and it is
usually necessary to know µ in order to determine σ. One way in which
some idea of σ can be obtained is to use the sample standard deviation s.
If the random sample has a reasonably large sample size n then,

s ≈ σ

for purposes of estimating the standard deviation of the sample mean. If
the sample has not be conducted yet, then s may not even be known. Recall
that

s ≈ Range
4

can provide a very rough estimate of the approximate order of magnitude of
σ. Another method that can be used is to use the studies of other researchers
on other populations, and if the population and variable is reasonably similar
to that being investigated, then the standard deviation of another population
can be used to provide a rough estimate of σ so that the approximate size
of the sampling error of X̄ can be determined.

When working with the estimate of the proportion, p, the same difficulty
emerges. The standard deviation of the sample proportion p̂ is

σp̂ =
√

p× q

n

In this case, neither p nor q are known, so this standard deviation cannot
be exactly determined. However, point 3 above provides a solution to this.
SInce the maximum value of p × q occurs when p = q = 0.5, these values
of p and q can be used in the determination of the standard deviation of p̂.
As noted earlier, these values will never underestimate σp̂, if anything, they
may overestimate it. This means that these values can always be used, and
the researcher can usually obtain a fairly accurate estimate of the standard



468

deviation of p̂. Thus the sampling error associated with a random sample
aimed at determining a population proportion can be reasonably closely
approximated even before the sample has been conducted.

4. Effective Sample Size. While the sample size of the Gallup poll
was n = 1, 025, the effective sample size may be somewhat less. Often a
large random sample is selected, but there are many people who refuse to
respond when surveyed. Others may respond to some, but not all of the
questions. Finally, some may not know the answer to a question, some
may be undecided, and others are listed as not responding to a particular
question. If any of these situations occur, the effective sample size should
be considered to be the number of cases for which there is actually some
data. In the case of the Gallup survey of Canadian adults concerning the
political preferences, the effective sample size is actually considerably less
than 1,025. According to The Gallup Report of August 13, 1992, 33%
of those Canadian adults polled were undecided concerning which political
party they would support. This means that 33% of 1,025 or

0.33× 1, 025 = 338.25

did not give their political preference. The effective sample size for the
August Gallup poll can be seen to be 338 or 339 less than 1,025, that is 686
or 687. This is really the n that should be used in order to determine the
sampling error. If you substitute one of these values for n in the formula for
sampling error, it can be seen that for probability 0.95, the sampling error is
approximately 0.037 or 3.7 percentage points. Thus the sample proportion
may have more sampling error associated with it than what Gallup indicates.

Further, the undecided in any poll can produce considerable nonsam-
pling error. Unless these undecided respondents are further studied in
order to see which party they previously supported, or to which party they
are leaning, not much can be said concerning which party would win an elec-
tion. The difficulty is that most of the undecided may swing to a particular
party, rather than being distributed across all political parties. In 1988, 43%
of the voting Canadian electorate voted for the PC party. The Gallup poll
of August 13, 1992 reports that only 21% would vote PC today. The dis-
parity between these two percentages indicates that a considerable number
of today’s undecided voters voted PC in the 1988 federal election. Whether
these previous PC supporters, many of whom are likely to support either the
Reform Party or the Bloc Quebecois now, would swing back to the PCs if an
election were to be held in 1992 or 1993, is not clear. Based on these figures
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though, there is some evidence that the undecided are disproportionately
former PC supporters.

7.7 Conclusion

This chapter has discussed the use of probability in sampling, and has shown
how random samples from a population can be used to obtain some idea
of the nature of a population. In particular, the sampling distribution of
the sample mean and the sample proportion were discussed. There are
many more sampling distributions in statistics, and some of these will be
introduced in later chapters. In Chapter 8, the t distribution, associated
with small random samples, of sample size under n = 30, will be used.
Inferences concerning whole distributions of a population can be analyzed
using the chi square distribution. This will be discussed in Chapter 10.

The sampling distributions of both X̄ and p̂ are normal as long as the
samples are random and the sample size is reasonably large. Since the nature
of the normal distribution is well understood, these sampling distributions
can be understood as well. These sampling distributions form the basis for
the inferential statistics of the following chapters. In Chapter 8, the methods
of providing estimates of the population mean and the population proportion
will be discussed, based on the results of this chapter. Hypothesis testing
using these same results is examined in Chapters 9 and 10.


