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5.6 Percentiles

The median is a measure of the middle, or 50 per cent point, of a distribution.
As such, it is a positional measure, indicating the value of the variable

where this 50 per cent point is reached. Instead of the 50 per cent point,
some other per cent could be requested, not as a measure of the middle
of the distribution, but as the position where this alternative percentage
of cases has been accounted for. These positional measures, based on the
percentage of cases up to and including that value, are termed percentiles.

As an example, a researcher may wish to determine the value of income
such that only 20 per cent of the population has lower income, with the other
80 per cent having a higher level of income. This would then give a measure
of the income level below which the poorest one fifth of the population lie.
Standardized tests such as the Graduate Record Examination (GRE) or
the Law School Admission Tests (LSAT) give results in percentiles. For
example, if a student scores in the 85th percentile on the GRE, this means
that 85 per cent of the students who took the test have lower scores, and
only 15 per cent of those who took the test have higher scores. For obtaining
admission to graduate school, the percentile obtained is likely to be of more
importance than the actual score, since graduate schools are interested in
admitting students who have the highest scores. If a student is in only
the 23rd percentile, that would be an indicator that only 23 per cent of all
those who took the test scored lower, while 77 per cent scored higher. This
indicates a relatively poor performance on the test.

As in the case of the median, percentiles can be determined only if the
variable is measured on a scale which is ordinal, interval or ratio. Where
the values of the variable have been grouped into intervals or categories,
the method used to determine percentiles is the same as the method used
for the median with grouped data. That is, the cumulative frequency or
percentage is used, and where the values of the categories are not discrete,
integer values, linear interpolation is used to determine the values of the
various percentiles.

Definition 5.6.1 The rth percentile for a variable is the value of the
variable, Pr, such that r per cent of the values for the population or sample
are less than or equal to Pr and the other 100− r per cent are greater than
or equal to Pr.

For example, the 20th percentile of an income distribution is the value of
income, P20, such that 20 per cent of the population has an income less than
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or equal to P20 and the other 80 per cent of the population has an income
greater than or equal to P20. The median is the 50th percentile since the
median has one half of the cases less than or equal to the median and the
other half are greater than or equal to the median. Using this notation,
Xm = P50.

The method of calculating the percentiles is discussed in the following
sections. Only the method for grouped data is shown here.

5.6.1 Percentiles for a Discrete Variable

If a variable has a discrete set of values, and each of these values is given
in a frequency distribution, then the determination of percentiles proceeds
in the same manner as was used for calculating the median. That is, the
cumulative frequency or percentage distribution is obtained, and the value of
the variable at which the requested percentage of cases occurs is determined.
This is illustrated in the following example.

Example 5.6.1 Percentiles for People per Household

Earlier in this Chapter, in Example ??, the distribution of people per house-
hold 941 Regina households was given. This frequency distribution and cu-
mulative frequency distribution is given again here in Table 5.1. Suppose the
30th percentile and the 68th percentile are desired. These can be determined
as follows.

As a first step, begin by constructing the cumulative frequency distribu-
tion. This gives the frequency of occurrence of the each value of the variable,
up to the value of X shown in each row. The 30th percentile is the value
of X such that 30 per cent of the cases are less than this, and the other
100 − 30 = 70 per cent of cases are greater. Since there are 941 cases in
total, 30 per cent of this is (30/100) × 941 = 282.3. The 282nd or 283rd
value is P30. This means that X = 2 is the 30th percentile. That is, for
the first value of X, X = 1, there are only 155 cases. For X = 2, there are
another 286 cases, so that the number of cases up to and including X = 2
is 155 + 286 = 441. The 282nd and 283rd values are both exactly at X = 2.
Thus P30 = 2. The 68th percentile occurs at the (68/100) × 941 = 639.88
case. That is, the 639th or 640th value is at X = 4. By the time all
the households with 3 people have been accounted for, there are only 605
households, but once the 223 households with 4 people in them have been
included, there are 828 households. The 639th and 640th households are at
4 people per household, so that P68 = 4.
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Cumulative
X f frequency

1 155 155
2 286 441
3 164 605
4 223 828
5 86 914
6 21 935
7 5 940
8 1 941

Total 941

Table 5.1: Frequency and Cumulative Frequency Distribution of Number of
People per Household

Example 5.6.2 Percentiles for Percentage Distribution of Attitudes

In Example ??, a percentage distribution of attitudes toward immigration
into Canada was presented. The percentage and cumulative percentage dis-
tribution is given in Table 5.2. Suppose the 23rd, 58th and 92nd percentiles
are desired for this distribution.

Again proceed by first constructing the cumulative percentage distribu-
tion. Once this has been done, the appropriate percentiles can be read from
the cumulative percentage distribution. The 23rd percentile occurs at atti-
tude level X = 1, because the 31 per cent of cases with the lowest values of
X occur here. This is more than the lowest 23 per cent, so all these lowest
23 per cent occur at this first value of X. Thus P23 = 1.

The 58th percentile occurs at X = 3, because attitudes 1, 2, and 3
account for the lowest 59 per cent of values, more than the 58% requested.
Thus P58 = 3. Based on the same reasoning, the 92nd percentile can be
seen to occur at X = 6. Only 5 per cent of respondents have larger values
of X on the attitude scale, and the top two values of X include 12% of all
the cases, more than the top 8% associated with the 92nd percentile. As a
result, P92 = 6.



PERCENTILES 211

Response Per Cumulative
Label X Cent Per Cent

Strongly Disagree 1 31 31
2 15 46
3 13 59

Neutral 4 18 77
5 11 88
6 7 95

Strongly Agree 7 5 100

Total 100

Table 5.2: Percentage and Cumulative Percentage Distributions of Attitudes

5.6.2 Percentiles for Grouped Data - Continuous Variable

When the values of the variable have been grouped into intervals, then it is
necessary to use linear interpolation to produce an accurate estimate of each
percentile. Beginning with a frequency distribution, construct a percentage
distribution for the variable, and then a cumulative percentage distribution.

In order to determine the rth percentile of the distribution, locate the
interval in which the rth percentile lies, using the cumulative percentages.
Then using this interval, the rth percentile, Pr, is

Value of the variable at
the lower end of the in-
terval

+




r −
Cumulative per cent at
lower end of the inter-
val

Per cent of cases in the
interval




[
Interval
width

]

As can be seen by comparing this formula with the formula for the median
in Section ??, the only change is to replace the value of 50 by the value r,
where r is the percentile that is desired. Also note that the real class limits
should be used for the values of the variable at the ends of each interval,
and in order to determine the proper interval width.
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Example 5.6.3 Percentiles for a Status or Prestige Scale

Table 5.3 presents the distribution of status or prestige for 322 respon-
dents in the Social Studies 203 Labour Force Survey, originally given in
Example ??. This distribution will be used to find the 75th percentile, P75,
and the thirteenth percentile, P13.

Per Cumulative
X f Cent Per Cent

0-20 2 0.6 0.6
20-30 49 15.2 15.8
30-35 85 26.5 42.3
35-40 71 22.0 64.3
40-45 49 15.2 79.5
45-50 29 9.0 88.5
50-60 27 8.4 96.9
60-70 8 2.5 99.4
70-80 2 0.6 100.0

Total 322 100.0

Table 5.3: Distribution of Socioeconomic Status

In order to obtain percentiles, begin by converting the frequency distri-
bution into a percentage distribution. This is done in the per cent column of
Table 5.3. Then a cumulative percentage column can be calculated, as
shown. Recall that the cumulative percentage column gives the per cent of
cases that have a value less than or equal to the upper limit of each interval.

In order to determine the 75th percentile, P75, of socioeconomic status,
first find the interval within which this percentile lies. Note that at X = 40,
64.3% of the cases have been accounted for, and there are 79.5% of the cases
that have a value of X of less than or equal to 45. As a result, the 75th
percentile is in the interval 40-45, somewhere between an X of 40 and 45.
Since 75% is closer to 79.5% than to 64.3%, one might roughly guess that
P75 is approximately 43 or 44.

Using straight line interpolation in the interval 40-45 means that it is
necessary to go from 64.3% to 75.0%, or 75 − 64.3 = 10.7%, out of a total
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¾ 15.2% -

¾ 10.7% -

¾ 5 units of SES -

P75

75%
Cumulative
Per Cent

X

64.3%

40 45

79.5%

Figure 5.1: 75th Percentile of Socioeconomic Status

distance of 15.2%. As a result, the 75th percentile lies 10.7/15.2 = 0.704 of
the way between 40 and 45. The value of P75 is thus

P75 = 40 +
(

75− 64.3
15.2

)
× 5 = 40 + (0.704× 5) = 40 + 3.52 = 43.52

Thus P75 = 43.52. This is illustrated diagramatically in Figure 5.1.
The 75th percentile of socioeconomic status might best be reported as

a socioeconomic status level of 43.5, or 44. Linear interpolation assumes
that the cases in the interval across which the interpolation takes place, are
uniformly distributed. This may not be the case, so the 75th percentile as
calculated here may not be accurate to more than the nearest integer.

The 13th percentile must be in the interval between 20 and 30, because
only 0.6% of the respondents have been accounted for at a socioeconomic
status level of 20, but 15.8%, more than 13%, have been accounted for by
the time a status level of 30 has been reached. Based on linear interpolation
in the 20-30 interval, the 13th percentile is

P13 = 20 +
(

13− 0.6
15.2

)
× 10 = 20 + (0.816× 10) = 28.16

This could be rounded off so that the 13th percentile, P13, occurs at a status
level of X = 28.2 or 28. Figure 5.2 gives the diagrammatic representation
of this calculation.
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Figure 5.2: 13th Percentile of Socioeconomic Status

5.7 Measures of Variation

The measures of central tendency discussed earlier in this Chapter provide
various ways of identifying the centre of a distribution. In addition to the
centre, another essential characteristic of distributions is the amount of vari-
ation or variability in a distribution. Some distributions have most of their
values concentrated near the centre of the distribution so that they have
a low degree of variability. Other distributions have values of the variable
spread out across a much greater set of values, so that they are more varied.
This section presents several measures which can be used to summarize the
variation of a distribution.

Example 5.7.1 Grades for Two Students

As an initial example illustrating differences in variation, suppose that
two distributions have the same centre but have quite different amounts
of variability. Let the grade in per cent for two students in a particular
semester be as follows.

Student A 66 69 71 76 82
Student B 60 63 71 79 91

Each student has the same mean grade of approximately 73, and the
same median of 71, but the grades of Student B can be seen to be more
varied than the grades of Student A. The grades for Student B extend over
more values, and each of Student B’s grades is farther from the centre than
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the corresponding grade for A. For example the second highest grade for
A is 76%, about 3 points above the mean, while for Student B the second
highest grade is 79%, about 6 points above the mean.

The various measures of variation or variability discussed in the following
sections will provide summary measures of the amount of variability in a data
set. Distributions having values of the variable which differ considerably,
such as the grades for Student B in the above example, will have large
values for measures of variation. Distributions with less variability, such as
the set of grades of Student A, will have smaller values for the measures of
variation.

Measures of variation are likely to be less familiar than measures of the
central tendency or the average. While the media and ordinary language
use the notion of average very commonly, the idea of variation or variability
is much less commonly used.

Even though variation is less widely understood, and less intuitive, than
is centrality, it is an extremely important concept the social sciences. People
differ in their characteristics and behaviour, and a large part of the social
sciences is devoted to attempting to understand and explain this variation.
In addition, social scientific explanations are developed on the basis of an
examination of variability among people, attempting to understand why
people differ from each other, both in their innate characteristics, and in
the manner in which they develop. Statistics by itself cannot provide ex-
planations of social phenomena, but it can be used to describe variation.
Understanding how variation can be described is essential to understanding
explanations of differences among people.

The measures of variation discussed in this chapter deal with variables
measured on scales which are ordinal or higher level scales. While some
measures of variation for scales which are no more than nominal do exist,
they are not so commonly used. For variables measured at no more than
nominal scale, it is usually advisable to give all the values, either as a list,
or as a frequency or percentage distribution.

The measures of variation which will be discussed in the following sec-
tions are the range, the interquartile range, the variance and the standard
deviation. The methods of calculating these, some of the advantages and
disadvantages of each, along with an idea of how these might be interpreted
and used, is provided. The last section on variation examines measures of
relative variation, discussing how values may differ relative to each other.
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5.8 Variation - Positional Measures

Positional measures of variation take two values of the variable and report
how far apart these values are. Variables which have greater variation will
have values which are farther apart, and variables which have less varia-
tion will be closer together. The various positional measures of variation
are based on different considerations concerning which position should be
considered. The two most common positional measures are the range and
the interquartile range.

5.8.1 The Range

The range of a variable is likely to be the only measure of variation which
is used by people who are not familiar with Statistics. In ordinary language
we sometimes use range to describe limits. For example, we may say that a
two year old child has a much more limited range of expression than does a
five year old child. When examining data, the notion of range is basically
the same as this, focussing on the outer limits of the values of the variable.

Definition 5.8.1 The range of a set of values of a variable is the largest
value of the variable minus the smallest value of the variable.

For Students A and B, in Example 5.7.1, the ranges are easily determined
since the data set is small and the values of the variable are in order. For
Student A, the smallest value is 66 and the largest value is 82, so the range
is 82− 66 = 16. For Student B, the minimum grade is 60 and the maximum
grade is 91, so that the range of grades is 91− 60 = 31. Based on the range,
the grades for Student B are more varied than the grades for Student A.

Alternatively the range may be reported as the smallest and the
largest value. For Student A, the range could be reported as 66 to 82,
and for Student B the range is 60 to 91. This manner of reporting the range
gives a little more information, in that the minimum and maximum values
are both reported, although it leaves subtracting these values to those who
are examining the data. Either method of reporting the range is acceptable,
although the difference between the maximum and minimum values as given
in Definition 5.8.1 is more common.

For a variable where the distribution has been grouped into categories
or intervals, the range can usually be read from the table. For example, the
range of the number of people per household in Table 5.1 is from 1 to 8, or
a range of 7.
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In Table 5.2, the range of attitudes is from Strongly Disagree to Strongly
Agree, a range from 1 to 7, or a range of 6 points on an attitude scale. In the
case of an attitude variable such as this, it may make more sense to report
the range as the minimum and maximum value, that is, Strongly Disagree
and Strongly Agree. This means more to anyone examining the data, than
does a report that the range is 6 points on the attitude scale.

The range of socioeconomic statuses reported in Table 5.3 is 80, from a
minimum of 0 to a maximum of 80.

For distributions with open ended intervals, the range cannot accurately
be reported. For example, the distribution of hours of work per week for
Canadian youth, given in Table ?? has intervals ‘less than 10’, ‘11-30’, ‘31-
40’, ‘41-50’ and ‘50+’. While the minimum value of hours worked per week
has to be 0, the maximum value of hours worked per week for youth cannot
be determined from this table. About all that can be done is to report the
range as from 0 to ‘50 and over’, although this is not of all that much use.

The range is a useful first measure to examine when encountering a new
data set. The range gives a very quick and very rough idea of the set of
values. For example, suppose the range of acreages of farms in a particular
region of Canada, such as a crop district on the Prairies, is 5300 acres, while
in another region, say a county in Prince Edward Island, is 325 acres. These
two ranges tell a lot concerning the two areas. They show that farms are a
lot larger, and a lot more varied in terms of size, on the Prairies as compared
with Prince Edward Island.

Sometimes the range is also useful in indicating whether or not to ex-
amine a particular issue, or how to examine that issue. For example, if the
price of a product has a range of 0 from store to store, then what has to
be explained is the fact that prices do not vary from store to store. If the
price has a range of $55 among different stores, then what has to be ex-
plained is why the price is so much lower at some locations than in others.
As well, in the former case, it is not worthwhile to shop around from store
to store to find the cheapest price, while it may be worthwhile in the latter
circumstance.

Even though the range is a useful first indicator of the degree of variation
of a variable, it is quite limited in terms of the information which it can
provide. As a positional measure, the range focusses on only two values,
the very smallest value and the very largest value. No other values are
considered, and the variation in the remainder of the values is not taken
into account. The following measures of variation correct for this weakness
in various ways.
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In spite of these difficulties, the range is useful, and is often reported. It
gives an idea of the set of values to be examined, and provides a quick and
rough idea of variation.

5.8.2 The Interquartile Range

Another positional measure, one which corrects for the weakness of the range
just mentioned, is the interquartile range. This is defined as follows.

Definition 5.8.2 The interquartile range (IQR) of a variable is the sev-
enty fifth percentile minus the twenty fifth percentile. That is

IQR = P75 − P25

The interquartile range is a positional measure in that it takes two values
of the variable, P75 and P25, and reports the difference between these two
values of the variable.

The advantage of the interquartile range over the range is that the IQR
examines the range of the middle portion of the distribution. Recall that the
75th percentile of a distribution is the value of the variable such that 75%
of the cases lie below this. The 25th percentile is the value of the variable
such that only 25% of the cases are below this. The interquartile range, by
eliminating the lowest 25 per cent of cases, and the upper 25 per cent of
cases, the IQR describes the set of values over which the middle half of cases
are spread. This gives those analyzing the data a good idea of how varied
the cases are for the middle 50 per cent of cases.

The following examples show how to determine the IQR. The first exam-
ple is that of a discrete, integer valued ordinal scale. The second example is
that of a continuous variable on a ratio scale, where interpolation is required
in order to obtain the appropriate values of the percentiles.

Example 5.8.1 Explanations of Unemployment

A 1985 survey of Edmonton adults asked these respondents their views
concerning various explanations of unemployment. The results of this study
are published in H. Krahn, G. S. Lowe, T. T. Hartnagel and J. Tanner,
“ Explanations of Unemployment in Canada,” International Journal of
Comparative Sociology, XXVIII, 3-4 (1987), pp, 228-236. The responses
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Variable 1 Variable 2
Recession and Inflation Unemployment Insurance

Cum Cum
Attitude X f P P f P P

Strongly Disagree 1 8 1.9 1.9 54 13.1 13.1
2 17 4.1 6.0 43 10.4 23.5
3 17 4.1 10.1 45 10.9 34.5
4 37 8.9 19.1 43 10.4 44.9
5 93 22.5 41.5 72 17.5 62.4
6 133 32.1 73.7 73 17.7 80.1

Strongly Agree 7 109 26.3 100.0 82 19.9 100.0

Total 414 100.0 412 100.0

Table 5.4: Responses to Explanations of Unemployment

to two of the questions asked in this survey are contained in Table 5.4.
Variable 1 refers to responses to the explanation “World wide recession and
inflation cause high unemployment,” and Variable 2 gives responses to the
explanation ‘Unemployment is high because unemployment insurance and
welfare are too easy to get.”

For each variable, respondents were asked how much they agreed or
disagreed with each explanation, with responses being given on a 7 point
scale, where 1 represents strongly agree and 7 represents strongly disagree.
The responses are thus given on a discrete, ordinal level scale. The sample
sizes differ slightly for the two variables, because some respondents did not
answer one of the two questions.

The distributions are presented in Table 5.4 first as frequency distribu-
tions, where f represents the frequency of responses to each question. These
are then presented as percentages, P , and cumulative percentage distribu-
tions, ‘Cum P ’.

Note that the range of responses is the same for both explanations. For
each variable, the range is 6 points on the attitude scale, from 1 to 7. If the
actual distributions are examined though, the differences in variability of
responses for these two variables can be seen. For Variable 1, recession and
inflation as the cause of unemployment, there is considerable similarity in
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response. Very few respondents disagree very strongly with this explanation,
and the bulk of responses is in the categories 5, 6 or 7. For Variable 2,
responses are much less concentrated on a few values of X. No one value of
attitude stands out as having all that many more responses than do other
values, although the modal response is strongly agree, value 7. But there are
also a considerable number of respondents who strongly disagree that UIC
and welfare are too easy to get, and responses are varied across all values of
X.

The interquartile range is based on the 25th and 75th percentile. Since
this distribution is a ordinal scale with discrete, integer values, the appro-
priate percentiles occur at these integer values. No interpolation between
categories is required. The interquartile range provides a summary measure
which shows the variation in these two distributions. For Variable 1, the
75th percentile occurs at attitude value 7, and the 25th percentile at atti-
tude value 5. That is, the cumulative percentage column does not reach
75% until X = 7, and it is not until X = 5 that the 25% of respondents
with the lowest values on the attitude scale are accounted for. Thus,

IQR = P75 − P25 = 7− 5 = 2

For Variable 2, the 75th percentile is at attitude 6 and the 25th percentile
at attitude 3. Thus

IQR = P75 − P25 = 6− 3 = 3

As a summary measure then, the IQR shows that Variable 2 has greater
variation than does Variable 1. While a difference of one point in the values
of the IQR may not seem like much, there are only 7 points on this scale,
and an IQR of 3 is actually one and a half times greater than an IQR of 2.

Example 5.8.2 Age Distributions of Inuit and Total Population of
Canada

Table 5.5 give age distributions of the Inuit and total population of
Canada for 1986. This table is based on data in Statistics Canada, Cana-
dian Social Trends, Winter 1989, page 9. The table can be used to
determine the interquartile range for the ages of the Inuit population and of
the total population of Canada as follows.

The variable ‘age’ in this example has a continuous, ratio level scale. The
percentage distributions have already been provided, and the cumulative
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Per Cent of:
Age Inuit Total

Under 15 40 22
15-24 23 18
25-39 20 24
40-54 10 17
55-64 4 9

65 plus 3 10

Total 100% 100%

Table 5.5: Age Distribution of Inuit and Total Population, Canada, 1986

percentages are calculated from these. The values of age are grouped into
intervals, and thus linear interpolation must be used to determine the 75th
and 25th percentiles. There is also a gap between the endpoints of the
intervals, so that the real class limits must be constructed and used. The
cumulative percentages and the real class limits are given in Table 5.6. For
the Inuit population, the 25th percentile occurs in the first interval, since
the youngest 40% of the Inuit population is in that interval. By linear
interpolation, P25 is

P25 = −0.5 +
(

25− 0
40

)
× 15

P25 = −0.5 +
(

25
40

)
× 15 = −0.5 + 9.4 = 8.9

The 75th percentile is in the interval 25-39, since there are 63% of the Inuit
population of age less than 25, and 83% of age less than 40. Thus P75 is

P75 = 24.5 +
(

75− 63
20

)
× 15

P75 = 24.5 +
(

12
20

)
× 15 = 24.5 + 9 = 34.5

The interquartile range for the Inuit population is

IQR = P75 − P25 = 34.5− 8.9 = 25.6
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Inuit Total
Real Class Population Population

Age Limits P Cum P P Cum P

Under 15 -0.5-14.5 40 40 22 22
15-24 14.5-24.5 23 63 18 40
25-39 24.5-39.5 20 83 24 64
40-54 39.5-54.5 10 93 17 81
55-64 54.5-64.5 4 97 9 90

65 plus 64.5 plus 3 100 10 10

Total 100 100

Table 5.6: Cumulative Per Cent Distributions, Inuit and Total Population,
Canada, 1986

Thus the interquartile range for the Inuit population of Canada in 1986 was
26 years.

For the total population, the method is the same. The 25th percentile
occurs in the second interval, 15-24, where the cumulative percentages cross
the 25 per cent point. By linear interpolation, P25 is

P25 = 14.5 +
(

25− 22
18

)
× 10

P25 = 14.5 +
(

3
18

)
× 10 = 14.5 + 1.7 = 16.2

The 75th percentile is in the interval 40-54, since there are 64% of the total
population of age less than 40, and over 75% of the total population by the
time an age of 54 is reached. Thus P75 is

P75 = 39.5 +
(

75− 64
17

)
× 15

P75 = 39.5 +
(

11
17

)
× 15 = 39.5 + 9.7 = 49.2

The interquartile range for the total population is

IQR = P75 − P25 = 49.2− 16.2 = 33.0
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Based on these interquartile ranges, the distribution of ages of the to-
tal population of Canada is more varied than the distribution of the Inuit
population of Canada. The interquartile range for the total population is 33
years, and for the Inuit population is 26 years, about 7 years less. This means
that the middle half of the Inuit population, in terms of age, is spread across
only 26 years of age. In contrast, the middle half of the total population of
Canada is between ages 16 and 49, a difference of 33 years.

If the original distributions are examined, it can be seen that the Inuit
distribution is more concentrated, and the total population more varied. For
the Inuit population, there is a very large concentration of population at the
youngest ages, ages less than 15. This single category has 40 per cent of all
Inuit in it. For the total population, there are considerable percentages of
the population in each age group, with no one interval being an interval in
which people are concentrated.

5.8.3 Other Positional Measures of Variation

In addition to the interquartile range, other positional measures of varia-
tion could easily be constructed. For example, if a researcher wished to
eliminate only the bottom 5 per cent and the top 5 per cent of values of
a distribution, then a measure of variation based on the middle 90 percent
of the distribution could be constructed. This measure would be the 95th
percentile minus the 5th percentile, that is P95 − P5. This might be useful
for comparing distributions which are very skewed at the ends of the dis-
tribution. An income distribution, for example, may have a few incomes of
several hundred thousand dollars at the upper end of the income scale. At
the lower end, there may be negative incomes among those small business
people or farmers whose expenditures exceed receipts in a given year. For
purposes of analying the variability of a distribution, a researcher may wish
to eliminate both of these extremes so that the variation of incomes for the
bulk of the population having more ordinary incomes can be examined.

One example where such a measure has been constructed and used
is the Saskatchewan Department of Labour’s annual publication Wages
and Working Conditions. In that publication, the 80% range is used
to describe the distribution of wages and salaries. (See Labour Relations
Branch, Saskatchewan Human Resources, Labour and Employment, Wages
and Working Conditions by Occupation: Fifteenth Report 1990,
Regina, 1991.)

This survey provides “a summary of results obtained in a survey of busi-
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ness establishments operating in the province. The reference month for the
survey is October 1990.” Data was collected from 964 establishments rep-
resenting 81,197 employees in 334 occupations. In addition to the range
of employees’ wages, this publication also reports the 80% range. This is
defined on page 220 of the publication as

The 80% Range gives the lowest and highest wage reported af-
ter disregarding 10% of the total number of employees at the
lowest wage level and at the highest wage level, i.e., 80% Range
represents the middle four-fifths of the employees.

A few examples of the survey results are given in Table 5.7.

No. 100% 80%
in Range Range

Occupation Sample Low High Low High Median Mean
Sales Clerk 247 5.00 12.95 5.25 10.05 6.95 7.28
Assembler 128 6.00 15.71 8.75 15.71 10.35 11.81
Bus Driver 225 7.00 14.57 13.28 14.57 14.57 13.81

Engineer 154 2600 6075 3000 4844 4000 3917
Nurse 1715 2106 3795 2605 3385 3080 3039

Table 5.7: Summary Measures of Wages of Salaries for Various Occupations,
Saskatchewan, 1990

The above measures are symmetrical, in that they are based on per-
centiles which fall an equal distance from the 50 per cent point. Measures
of variation could be asymmetrical as well. For example, a measure of vari-
ation could be constructed to measure the difference between the 80th and
the 5th percentile. This would be a measure which cut off the top 20 per
cent, and the lowest 5 per cent of a distribution.

Each of the positional measures of variation provide a very useful view
of the variability of a distribution. However, these measures are not usually
used except for descriptive purposes. For purposes of statistical inference,
and for more statistical analysis, these measures are difficult to manipulate
mathematically. As a result, the standard deviation and the variance are the
measures of variation more commonly used by statisticians. These measures
are discussed in the following section.
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5.9 Standard Deviation and Variance

The most commonly used measures of variation are the standard deviation
and the variance. Neither is likely to be familiar to those who have not
studied Statistics, and the concepts on which each is based are not as in-
tuitive as are the measures of central tendency and variation discussed so
far. It is important to be able to understand the standard deviation and
variance, since statistical work depends very heavily on these. This section
first shows how to calculate these measures in various circumstances, and
later discusses various ways of interpreting these measures.

The standard deviation and variance each require an interval or ratio
scale of measurement. If a variable has only an ordinal level of measurement,
then sometimes this ordinal scale is treated as if it has an interval level
scale. The cautions that were mentioned in Example ?? in Section ??,
where the mean of an ordinal scale was calculated, also apply here. The
method of determining the standard deviation and the variance in the case of
ungrouped data is discussed first. Then the various formulae for calculating
these measures using grouped data are presented.

5.9.1 Ungrouped Data

If a list of values of a variable X is given, the standard deviation is calcu-
lated by first determining the mean, X̄, and then examining how far each
value of the variable differs from the mean. These differences of the values
from the mean, (X − X̄), are often termed deviations about the mean.
While the manner in which these deviations about the mean are manipu-
lated algebraically depends on the exact formulae for the standard deviation
and variance, it is these deviations which form the basis for the standard
deviation and the variance. Where the values of the variable are closely con-
centrated around the mean, these deviations about the mean will be small
and the standard deviation will be small. Where the values of the variable
are very dispersed, the values of the variable will differ rather considerably
from the mean. The deviations about the mean will be much larger and the
standard deviation will be larger as well. This can be seen in the example
of the grades of Students A and B, first presented in Example 5.7.1.

Example 5.9.1 Deviations About the Mean Grade

As noted earlier, for each of Students A and B, the mean grade is 72.8.
Table 5.8 gives the values of the grades, along with the deviation of each
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grade about the mean grade.

Student A Student B
X X − X̄ X X − X̄

66 -6.8 60 -12.8
69 -3.8 63 -9.8
71 -1.8 71 -1.8
76 3.2 79 6.2
82 9.2 91 18.2

Total 364 0.0 364 0.0

Table 5.8: Deviations about the Mean for Students A and B

Examining the deviations about the mean in Table 5.8, shows that the
deviations about the mean, X−X̄, are somewhat smaller values for Student
A than for Student B. This is because the grades for Student A are less
spread out, and are closer to the mean, than in the case of Student B.
Based on these deviations about the mean, the distribution of the grades
for Student A can be considered to be less varied than the distribution of
grades for Student B.

In Example 5.9.1, examining the list of all deviations about the mean
is an awkward procedure. A measure of variation should combine all these
deviations about the mean into a single number. The difficulty in doing this
can be seen in this same example. Note that the sum of the deviations about
the mean, for each of Students A and B in Table 5.8, is 0. The mean is in
the centre of the distribution, in the sense that these deviations about the
mean total zero. That is, the sum of the distances of the values of X − X̄
that lie below the mean value equals the sum of the distances of the values
of the values of X − X̄ that lie above the mean. The proof for this is given
a little later in this Chapter. Since this characteristic of the mean implies
that the sum of the deviations about the mean is always 0, this sum cannot
be used as a measure of variation.

The technique that statisticians use to deal with this difficulty is to
square the deviations about the mean, so that the values of these squares
of deviations about about the mean are all positive. Squaring any value
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means multiplying the value by itself. Negative deviations about the mean,
when squared, become positive, and the square of positive deviations is
also positive. The measures of variation called the variance and standard
deviation are based on these squares of the deviations about the mean in
the following manner.

Definition 5.9.1 If a variable X has n values

X1, X2, X3, · · · , Xn

and the mean of these n values is X̄, then the variance of this set of values
is

s2 =
(X1 − X̄)2 + (X2 − X̄)2 + · · ·+ (Xn − X̄)2

n− 1
The standard deviation of this set of n values of X is

s =

√
(X1 − X̄)2 + (X2 − X̄)2 + · · ·+ (Xn − X̄)2

n− 1

That is, the deviations about the mean are calculated as in Table 5.8.
For each Xi, where i = 1, 2, · · · , n, these deviations about the mean are the
values (Xi − X̄). Then each of these values is squared, that is, multiplied
by itself, producing the n values (Xi − X̄)2. All n of these squares of the
deviations about the mean are added, and this sum is divided by n−1. This
produces a measure of variation which is termed the variance.

While the variance is used extensively in Statistics, most of the formulae
in the next few chapters rely more heavily on the standard deviation. The
standard deviation is the square root of the variance. That is, once
the variance has been calculated, the standard deviation is the number,
which when multiplied by itself, results in the value of the variance.

While each of the variance and the standard deviation may be a little
difficult to understand at first sight, the standard deviation turns out to
be somewhat easier to interpret than is the variance. For this reason, and
since the formulae in later chapters are based on the standard deviation,
it is this latter measure which will become the main measure of variation
used in this textbook. However, the variance is calculated for each example,
but mainly as a step in obtaining the value of the standard deviation. That
is, the variance is calculated first, and then the square root of the variance
is calculated, in order to determine the standard deviation. The grades of
Students A and B are used as an example of how to calculate these measures.
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Example 5.9.2 Standard Deviation of Grades of Students A and
B

The deviations about the mean, and the square of the deviations about
the mean are given in Table 5.9. The calculations for the variance and the
standard deviation follow this. For Student A,

Student A Student B
X X − X̄ (X − X̄)2 X X − X̄ (X − X̄)2

66 -6.8 46.24 60 -12.8 163.84
69 -3.8 14.44 63 -9.8 96.04
71 -1.8 3.24 71 -1.8 3.24
76 3.2 10.24 79 6.2 38.44
82 9.2 84.64 91 18.2 331.24

Total 364 0.0 158.80 364 0.0 632.80

Table 5.9: Calculations for Standard Deviation for Students A and B

s2 =
(X1 − X̄)2 + (X2 − X̄)2 + · · ·+ (Xn − X̄)2

n− 1

s2 =
158.80
5− 1

= 39.7

The variance of these 5 grades is 39.7, and the standard deviation is the
square root of this. That is,

s =
√

39.7 = 6.301

The standard deviation of grades for Student A is 6.3. For Student B, the
method is the same, giving

s2 =
632.80
5− 1

= 158.2

s =
√

158.2 = 12.578

The standard deviation of grades for Student B is 12.6. Based on the re-
spective sizes of the two standard deviations, the grades for Student B are
approximately twice as spread out as the grades for Student A.
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The standard deviation of grades for B being approximately double the
standard deviation of grades for A should make some sense. The mean
grade for each student is the same, 72.8%. For Student B, each grade is
approximately twice as far away from the mean as is the corresponding
grade for Student A. For example, for the the lowest grade of 66 for A, this
is 6.8 percentage points below the mean for A. For B, the lowest grade is
60, and this is 60 − 72.8 = −12.8 percentage points from the mean. For
the lowest grade, the deviation about the mean is twice as great for B
as for A. A similar statement could be made for all the other grades, so
that each deviation about the mean is twice as great for B as for A. All
these deviations about the mean are put together into a summary measure,
the standard deviation. It thus makes sense that the standard deviation of
grades for B is twice as great as the standard deviation of grades for A. While
the value of each standard deviation by itself may seem a bit mysterious,
the relative sizes of the standard deviations show that the grades for B are
twice as varied for B as for A.

Units for the Standard Deviation. The standard deviation of a vari-
able X has the same units as the units which were used to measure X. In
Example 5.9.2, the standard deviation of grades for each student is in units
of percentage points. That is, the respective standard deviations are 6.3%
and 12.6%. Even though the formula for the standard deviation seems con-
fusing, the standard deviation as a measure of variation is in units which
are familiar. As will be noted later in this chapter, this is useful in helping
to interpret the meaning of the standard deviation.

The reason the units for s are the same as for X can be seen by examining
the formula. The deviations about the mean (X − X̄), are in the units of
X, since both X and X̄ are. These values are squared, producing units
which are the squares of the units of X. Then these squares are summed,
producing a sum which is measured in the squares of the units of X. In
Example 5.9.2, the sum of these squares is in units of ‘per cent squared’.
Dividing this sum by n − 1 does not change these units. This is a difficult
unit to understand, and the variance is measured in the square of units of X.
But when the square root of the variance is taken, this once again produces
a measure in the units in which X was originally measured. Part of the
reason the standard deviation is preferred over the variance when working
with data is that the standard deviation at least has familiar units. The
variance is a useful measure, but being in such strange units, is a little more
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difficult to understand.

Summation Notation for Variance and Standard Deviation. Since
Definition 5.9.1 works with the sum of a set of values, the definitions of
variance and standard deviation can be compactly given with the use of the
summation sign. Definition 5.9.1 can be restated as follows:

Definition 5.9.2 If a variable X has n values

X1, X2, X3, · · · , Xn

and the mean of these n values is

X̄ =
∑

Xi

n

then the variance of this set of values is

s2 =
∑

(Xi − X̄)2

n− 1

The standard deviation of this set of n values of X is

s =

√∑
(Xi − X̄)2

n− 1

The sum of the squares of the deviations about the mean

(X1 − X̄)2 + (X2 − X̄)2 + · · ·+ (Xn − X̄)2

can be expressed compactly as

n∑

i=1

(Xi − X̄)2

or dropping the subscripts and superscripts on the summation sign,
∑

(Xi − X̄)2 = (X1 − X̄)2 + (X2 − X̄)2 + · · ·+ (Xn − X̄)2

As with any summation, the first step is to carry out the operations in
brackets, and then the algebraic operations to the right of the summation
sign. Then these values are added. In this case, the first step is to calculate
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the mean X̄ of the variable X, and then calculate all the deviations about
the mean (Xi − X̄). Each of these deviations about the mean are squared,
producing the values (Xi − X̄)2. Then these values are added, producing
the total ∑

(Xi − X̄)2

which is the value of the numerator in Definitions 5.9.1 and 5.9.2. In order to
determine the variance, this sum is divided by n−1, producing the variance

s2 =
∑

(Xi − X̄)2

n− 1

The standard deviation is then determined by taking the square root of this
value, so that

s =

√∑
(Xi − X̄)2

n− 1

An Alternative Formula for the Variance and Standard Deviation.
The formulae of Definition 5.9.2 can be reorganized to produce a computa-
tionally more efficient formula for the variance and the standard deviation.
This is as follows:

Definition 5.9.3 If a variable X has n values

X1, X2, X3, · · · , Xn

and the mean of these n values is

X̄ =
∑

Xi

n

then the variance of this set of values is

s2 =
1

n− 1

[
ΣX2

i −
(ΣXi)2

n

]

The standard deviation of this set of n values of X is

s =

√
1

n− 1

[
ΣX2

i −
(ΣXi)2

n

]
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The formulae of Definition 5.9.3 are more efficient than those of Defini-
tion 5.9.2 because the latter do not require the computation of the deviations
about the mean. Rather, they require only the calculation of the sum of the
n values of X, ΣX, and the sum of the squares of the values of X, ΣX2.
These are then entered into the formulae of Definition 5.9.3. An example
of the use of these formulae follows, and the proof of the equivalence of the
formulae of this definition with those of the earlier definition is given later
in the chapter.

Example 5.9.3 Variation in Support for Liberals and NDP in Canada

Each month Gallup Canada surveys approximately 1000 Canadian adults
to determine their political preference. Some of the results of these surveys
were given in Example ??. In Table 5.10 the percentage of decided Cana-
dian adults who support each of the Liberals and NDP over the years 1990
and 1991 is given. The results are reported for each quarter, rather than for
each month. This example uses this data set to determine various measures
of central tendency and variation, including the variance and standard de-
viation. The latter are determined using the formulae of Definition 5.9.3.

Percentage of Decided
Voters Favouring

Date Liberals NDP

December 1991 38 23
September 1991 38 26

June 1991 35 23
March 1991 39 30

December 1990 32 36
September 1990 39 32

June 1990 50 23
March 1990 50 25

Table 5.10: Percentage of Decided Voters Favouring Liberal and NDP,
Canada, March 1990-December 1991
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In order to used these new formulae, it is necessary to calculate
∑

X,
the sum of the values of the variable, and

∑
X2, the sum of the squares

of the values of the variable. This is done in Table 5.11. In that table,
the percentage support for the Liberals is given the symbol X, and the
percentage support for the NDP is given the algebraic symbol Y , in order
that the two can be distinguished. From Table 5.11,

Liberals NDP
Date X X2 Y Y 2

Dec. 1991 38 1,444 23 529
Sept. 1991 38 1,444 26 676
June 1991 35 1,225 23 529

March 1991 39 1,521 30 900
Dec. 1990 32 1,024 36 1,296
Sept. 1990 39 1,521 32 1,024
June 1990 50 2,500 23 529

March 1990 50 2,500 25 625

Total 321 13,179 218 6,108

Table 5.11: Calculations of Summations for Liberals and NDP, March 1990
- Dec. 1991

ΣX = 321

and n = 8. Although the mean need not be determined in order to calculate
the variance and standard deviation using this formula, the mean value of
Liberal support over these months was

X̄ =
ΣX

n
=

321
8

= 40.125

so that there was a mean level of 40.1 per cent support for the Liberals
over these months. The range of the Liberal support is 50 − 32 = 18 per
cent. For these months, ΣX = 321, ΣX2 = 13, 179 and n = 8, so that the
variance is

s2 =
1

n− 1

[
ΣX2 − (ΣX)2

n

]
=

1
7

[
13, 179− 3212

8

]
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s2 =
1
7

[
13, 179− 103, 041

8

]
=

298.875
7

= 42.6964

The standard deviation is

s =
√

42.6964 = 6.5343

or 6.5 percentage points.
From Table 5.11,

ΣY = 218

and

Ȳ =
ΣY

n
=

218
8

= 27.25

so that there was a mean level of 27.2 per cent support for the NDP over
these months. The range of the NDP support was 36 − 23 = 13 per cent.
For these months, ΣY = 218, ΣY 2 = 6, 108 and n = 8, and the variance is

s2 =
1

n− 1

[
ΣY 2 − (ΣY )2

n

]
=

1
7

[
6, 108− 2182

8

]

s2 =
1
7

[
6, 108− 47, 524

8

]
=

167.500
7

= 23.92857

s =
√

23.92857 = 4.8917

and thus the standard deviation is 4.9 percentage points.

Party n Median Mean Range S.D.

Liberal 8 38.5 40.1 18 6.5
NDP 8 25.5 27.2 13 4.9

Table 5.12: Summary Measures for Liberals and NDP

These measures are summarized in Table 5.12. and this table provides a
summary of the differences in the distribution of Liberal and NDP support.
Over these months the average level of support for the Liberals was greater
than the average level of support for the NDP, regardless of whether the
median or mean is used. The variation in support for the Liberals was also
somewhat greater than the variation in support for the NDP. Over these
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months, Liberal support varied from a low of 32% of decided respondents,
to a high of 50% of the decided respondents in the Gallup poll. The standard
deviation was 6.5 percentage points, somewhat greater than the standard
deviation of 4.9 percentage points for the NDP. It can also be seen that the
range in support for the NDP was from a low of 23% to a high of 36%. In
terms of reporting the results, rather than give the detailed list of values of
Table 5.10, for most purposes the summary measures of support given in
Table 5.12 would be sufficient.

Proofs of Formulae. Earlier in this section, some claims were made con-
cerning the sum of the deviations about the mean, and the equivalence of
two different formulae for the variance. This section provides proofs for
these claims. If you are not adept at algebra, this section can be skipped,
and you can accept the claims as presented. However, in order to develop
a better understanding of the formulae, and obtain some practice in the
manipulation of summation signs, it is worthwhile to follow these proofs.
In some of the summation signs that follow, the subscripts and superscripts
are dropped. However, all of the summations are across all n values of the
variable X.

In Table 5.8 of Example 5.9.1, the sum of the deviations about the mean
was zero. In the case of ungrouped data, it can easily be proved that this
must always be the case. The deviations about the mean are (Xi − X̄) and
there are n of these, from i = 1 to i = n. This sum can be written,

n∑

i=1

(Xi − X̄) = (X1 − X̄) + (X2 − X̄) + · · ·+ (Xn − X̄)

Grouping together the Xi, and then grouping together the X̄ values, this
can be written

n∑

i=1

(Xi − X̄) =
n∑

i=1

Xi −
n∑

i=1

X̄ =
n∑

i=1

Xi − nX̄

Note that the latter entry nX̄ occurs because it is a summation of X̄, and
X̄ is the same for each of the n times it is added, so this sum is nX̄. But
by definition,

X̄ =
∑

Xi

n
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and substituting this for X̄ in the last expression gives

n∑

i=1

(Xi − X̄) =
n∑

i=1

Xi − n

[∑
Xi

n

]
=

n∑

i=1

Xi −
n∑

i=1

Xi = 0

That is, for ungrouped data, the sum of the deviations about the mean must
always equal zero.

When calculating these deviations about the mean with actual data, the
sum of the deviations may not add up to exactly zero, becuase of rounding
errors. So long as it adds to 0.2 or -0.1, or a number very close to zero, then
this very likely means no errors beyond rounding errors. Where the sum of
the deviations about the mean differs by much more than this from zero,
then it is likely that some calculating errors have been made.

The equivalence of Definitions 5.9.2 and 5.9.3 is shown as follows. The
claim is that

s2 =
1

n− 1

∑
(Xi − X̄)2 =

1
n− 1

[∑
X2

i −
(
∑

Xi)2

n

]

Since each of the summation part of these expressions are multiplied by the
same value 1/(n− 1), all that has to be shown is that

∑
(Xi − X̄)2 =

[
ΣX2

i −
(ΣXi)2

n

]

Expanding the square of a difference between two values gives
∑

(Xi − X̄)2 =
∑

(X2
i − 2XiX̄ + X̄2)

Since each part of the expression on the right is either added to or subtracted
from the other values, each of the parts of the expression in brackets can be
considered to be summed across all n values so that

∑
(Xi − X̄)2 =

∑
X2

i − 2X̄
∑

Xi +
∑

X̄2

For the last entry on the right, note that

∑
X̄2 = n(X̄2) = n

[∑
Xi

n

]2
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Thus

∑
(Xi − X̄)2 =

∑
X2

i − 2
[∑

Xi

n

] [∑
Xi

]
+ n

[∑
Xi

n

]2

=
∑

X2
i − 2

(
∑

Xi)
2

n
+

(
∑

Xi)
2

n

=
∑

X2
i −

(
∑

Xi)
2

n

and this shows the equivalence of the two expressions. While the expres-
sions in the two formulae look quite different, using the formulae in either
Definitions 5.9.2 and 5.9.3 will produce the same value of the variance and
the standard deviation.

5.9.2 Grouped Data

When a variable has already been grouped into categories, or into intervals,
the basic principle for determining the variance and the standard deviation
is the same as in the case of ungrouped data. That is, the squares of the
deviations about the mean are obtained, and these are used to determine
the measures of variation. Much as in the case of the mean for grouped
data, values must be weighted by their respective frequencies of occurrence.
For the variance and the standard deviation, the squares of the deviations
about the mean are multiplied by the respective frequencies of occurrence.
Then all of these values are summed. The definitions are as follows.

Definition 5.9.4 If a variable X has k values

X1, X2, X3, · · · , Xk

occurring with respective frequencies

f1, f2, f3, · · · , fk

and the mean of these k values is

X̄ =
f1X1 + f2X2 + f3X3 + · · ·+ fkXk

n

where
n = f1 + f2 + f3 + · · ·+ fk
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Then the variance of this set of values is

s2 =
f1(X1 − X̄)2 + f2(X2 − X̄)2 + · · ·+ fk(Xk − X̄)2

n− 1

The standard deviation of this set of n values of Xi is

s =

√
f1(X1 − X̄)2 + f2(X2 − X̄)2 + · · ·+ fk(Xk − X̄)2

n− 1

All of this can be expressed more compactly with summation notation
as follows.

Definition 5.9.5 If a variable X has k values

X1, X2, X3, · · · , Xk

occurring with respective frequencies

f1, f2, f3, · · · , fk

and the mean of these k values is

X̄ =
∑

fiXi

n

where
n =

∑
fi

and the summation is across all k values of Xi. Summing across the same k
values, the variance is

s2 =
∑

fi(Xi − X̄)2

n− 1

The standard deviation of this set of k values of Xi is

s =

√∑
fi(Xi − X̄)2

n− 1

The various steps involved in these formulae are as follows:
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1. First calculate the mean of the variable X, using the formula for the
mean of grouped data in Definition ??.

2. Subtract each of the k values of X from this mean in order to determine
the deviations about the mean.

3. Square each of the deviations about the mean.

4. Multiply each square of the deviation about the mean by its respective
frequency of occurrence, fi.

5. Sum all of the products in (4).

6. The variance is the sum of (5) divided by the sample size minus 1.

7. The standard deviation is the square root of the variance of (6).

These various steps are illustrated in the following example.

Example 5.9.4 Variation in the Number of Children per Family

Statistics Canada’s Survey of Consumer Finances for 1987 gives the two
distributions in Table 5.13. The data are for families surveyed in the province
of Saskatchewan, and the table gives the number of children per family for
families which are not in poverty and for families in poverty. Use these
distributions to determine the mean, variance and standard deviation of the
number of children per family. (Note that there are no families having 6 or
7 children, but one family with 8 children).

The calculations for the mean for the families not in poverty are given
in the first three columns of Table 5.14. From this table, the sample size of
families not in poverty is n =

∑
f = 3171 and

∑
fX = 1645 so that the

mean is

X̄ =
∑

fX

n
=

1645
3171

= 0.52

The mean number of children for families not in poverty is 0.52, and in
column four of Table 5.14, the deviations of the mean values of X about
this mean are given. These values are squared in column five and then these
squares of the deviations about the mean are multiplied by the respective
frequencies of occurrence in column six. From this table,

∑
f(X − X̄)2 =
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Number of Children Number of Families
Per Family Not in Poverty In Poverty

0 2291 628
1 326 90
2 380 68
3 146 42
4 22 13
5 5 1
8 1 0

Total 3171 842

Table 5.13: Number of Children per Family, Poor and Non-Poor

2847.6384 so that

s2 =
∑

f(X − X̄)2

n− 1

=
2847.6384

3170
= 0.8983

and
s =

√
s2 =

√
0.8983 = 0.9478

The standard deviation for families not in poverty is 0.95 children per house-
hold, and the variance is 0.90. For families in poverty, the same set of cal-
culations is given in Table 5.15. For those families in poverty, the mean
is

X̄ =
∑

fX

n
=

409
842

= 0.49

This mean is subtracted from each value of X, and the squares of these
deviations are multipled by the respective frequencies. From this table,
n− 1 = 842− 1 = 841 and

∑
f(X − X̄)2 = 774.3442 so that

s2 =
∑

f(X − X̄)2

n− 1

=
774.3442

841
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X f fX (X − X̄) (X − X̄)2 f(X − X̄)2

0 2291 0 -0.52 0.2704 619.4864
1 326 326 0.48 0.2304 75.1104
2 380 760 1.48 2.1904 832.3520
3 146 438 2.48 6.1504 897.9584
4 22 88 3.48 12.1104 266.4288
5 5 25 4.48 20.0704 100.3520
8 1 8 7.48 55.9504 55.9504

Total 3171 1645 2847.6384

Table 5.14: Children per Family, Not in Poverty

X f fX (X − X̄) (X − X̄)2 f(X − X̄)2

0 628 0 -0.49 0.2401 150.7828
1 90 90 0.51 0.2601 23.4090
2 68 136 1.51 2.2801 155.0468
3 42 126 2.51 6.3001 264.6042
4 13 52 3.51 12.3201 160.1613
5 1 5 4.51 20.3401 20.3401
8 0 0 7.51 56.4001 0.0000

Total 842 409 774.3442

Table 5.15: Children per Family, Not in Poverty



STANDARD DEVIATION AND VARIANCE 242

Measure Not in Poverty In Poverty

X̄ 0.52 0.49
Median 0 0

s2 0.90 0.92
s 0.95 0.96
n 3171 842

Table 5.16: Summary Measures, Number of Children per Family

= 0.9207

and
s =

√
s2 =

√
0.9207 = 0.9596

The standard deviation for families in poverty is 0.95 children per household,
and the variance is 0.92.

Based on these two sets of calculations, Table 5.16 gives summary mea-
sures of central tendency and variation for these two distributions. The
median is at 0 in each case because over one half of the families have 0 chil-
dren. What is notable about these two distributions is the similarity in all
the measures of central tendency and variation. The median is identical for
the two distributions, and to one decimal place, the mean number of children
per family is 0.5 in each distribution. The variance and standard deviation
for each distribution are also so close to being the same that the two dis-
tributions can be considered to have the same variation. Based on these
summary measures, the distributions for the number of children per family
for families in poverty and for families not in poverty can be considered to
be practically identical.



STANDARD DEVIATION AND VARIANCE 243

Sum of Deviations about the Mean. With grouped data, note that
the sum of the deviations about the mean is not zero. In both Tables 5.14
and 5.15, the sum of the entries in the fourth column is not zero. This is
because each of these deviations about the mean occurs a different number
of times. If the deviations about the mean are multiplied by their respective
frequencies of occurrence, then this sum will be zero. That is, for grouped
data, ∑

fi(Xi − X̄) = 0

While the calculations for this are not given in Tables 5.14 or 5.15, it is a
relatively straightforward procedure to verify this result for either table.

An Alternative Formula for the Variance and Standard Deviation.
As in the case of ungrouped data, there are computationally more efficient
formulae for the variance and standard deviation. These are presented in
the following definition.

Definition 5.9.6 If a variable X has k values

X1, X2, X3, · · · , Xk

occurring with respective frequencies

f1, f2, f3, · · · , fk

and the mean of these k values is

X̄ =
∑

fiXi

n

where
n =

∑
fi

and both of these summations are across all k values of Xi. Summing across
the same k values, the variance is

s2 =
1

n− 1

[∑
fi(X2

i )− (
∑

fiXi)2

n

]

The standard deviation is the square root of s2, that is,

s =

√
1

n− 1

[∑
fi(X2

i )− (
∑

fiXi)2

n

]



STANDARD DEVIATION AND VARIANCE 244

While these formulae may look more complex than the earlier formulae,
the latter formulae can save considerable time when calculating the variance
or the standard deviation. The steps that must be taken in calculating these
are as follows:

1. First compute the sample size n by summing the frequencies of occur-
rence fi.

2. Multiply each frequency, fi times its corresponding X value, Xi. This
produces the values (fiXi).

3. Add the products in (2) to obtain the total
∑

fiXi.

4. Multiply the individual values (fiXi) by Xi again to produce the prod-
ucts fiX

2
i .

5. Sum the products in (4) to produce the total
∑

fiX
2
i .

6. Square the summation in (3) to obtain (
∑

fiXi)2.

7. Divide the square of the summation in (6) by n to obtain the value

(
∑

fiXi)2

n

8. Subtract the result in (7) from the result in (5). This gives the value
of the expression in the large square brackets in Definition 5.9.6.

9. For the variance, s2, divide the result of (8) by n− 1.

10. For the standard deviation, s, compute the square root of the variance
in (9).

While there are more steps to this calculation at the final stages, the
tables that are needed to obtain these totals are simpler than Tables 5.14
and 5.15. Those tables required 6 columns, with both the deviations about
the mean and the squares of these deviations about the mean being required.
As can be noted in the following example, the formulae of Definition 5.9.6
require only 4 columns.
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Additional Notes Concerning the Formulae in Definition 5.9.6.

1. Note that while the two expressions
∑

fiX
2
i and (

∑
fiXi)2

may look quite similar, they are different. Make sure you are clear con-
cerning how each is calculated. The former,

∑
fiX

2
i , is the frequency

of occurrence multiplied by the square of the X value. The latter,
(
∑

fiXi)2 , is obtained by multiplying each f by each X, adding all
these products, and then squaring this total. This is quite a different
value than the former.

2. With respect to point (4) above, note that

fi(X2
i ) = fiX

2
i = fi(XiXi) = (fiXi)Xi

so that the values fiX
2
i can be obtained by multiplying the values

fiXi, used in calculating the mean, by another Xi.

3. Finally, it must be the case that

∑
fiX

2
i ≥

(
∑

fiXi)2

n

so that [∑
fiX

2
i −

(
∑

fiXi)2

n

]
≥ 0

That is, this expression is always positive, and the variance is always a
positive number. This is true because the bracketed expression is just
another way in which the sum of the squares of the deviations about
the mean can be expressed. Since a square of a value is always a pos-
itive number, the sum of squares is always positive. The equivalence
of the bracketed expression of Definition 5.9.6 with the sum of squares
of the deviations about the mean will be shown later in this Chapter.

Example 5.9.5 Age and Sex Distributions of Saskatchewan Sui-
cides, 1985-86

The age distribution of suicides of males and of females in Saskatchewan
for the years 1985-86 is given in Table 5.17. This table is drawn from the
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Age in Number of Suicides
Years Male Female

14 1 1
15-19 20 4
20-29 63 9
30-64 101 37

65 and over 25 11

Total 210 62

Table 5.17: Number of Suicides by Age and Sex, Saskatchewan 1985-86

publication Suicide in Saskatchewan: The Alcohol and Drug Con-
nection 1988, Table 3, page 4, produced by the Saskatchewan Alcohol and
Drug Abuse Commission (SADAC). For each sex, the variance and standard
deviation of the age of suicides are determined as follows.

In order to determine the standard deviation for each of these distribu-
tions, it is necessary to obtain X values for each of the intervals into which
the suicides have been grouped. For each of the intervals, 15-19, 20-29 and
30-64, the X values used here are the midpoints of the respective intervals.
For the open ended interval, 65 and over, X = 70 has been picked as the
mean age of the suicides for those aged 65 and over. Based on this, the
calculations required for determining the variances and standard deviations
are given in Table 5.18. For males, Table 5.18 gives the values n = 210 and

∑
fX2 = 389, 400.75

∑
fX = 8, 394.5

Entering these into the formula for the variance in Definition 5.9.6 gives the
following

s2 =
1

n− 1

[∑
fX2 − (

∑
fX)2

n

]

=
1

209

[
389, 400.75− (8, 394.5)2

210

]
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Males Females
X f fX fX2 f fX fX2

14 1 14.0 196.00 1 14.0 196.00
17.5 20 340.0 5,780.00 4 68.0 1,156.00
24.5 63 1,543.5 37,815.75 9 220.5 5,402.25
47 101 4,747.0 223,109.00 37 1,739.0 81,733.00
70 25 1,750.0 122,500.00 11 770.0 53,900.00

Total 210 8,394.5 389,400.75 62 2,811.5 142,387.25

Table 5.18: Calculations for Variation in Age of Suicides in Saskatchewan,
by Sex, 1985-86

=
389, 400.75− 335, 560.14

209

=
53, 840.606

209
= 257.61055

The standard deviation is

s =
√

257.61055 = 16.050

Thus the standard deviation in the age of suicides for Saskatchewan males
was s = 16.0 years in 1985-86.

For Saskatchewan females, the sample size is n = 62 and from Table 5.18

∑
fX2 = 142, 387.25

∑
fX = 2, 811.5

so that the variance is

s2 =
1

n− 1

[∑
fX2 − (

∑
fX)2

n

]

=
1
61

[
142, 387.25− (2, 811.5)2

62

]
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=
142, 387.25− 127, 492.46

61

=
14, 894.794

61
= 244.17696

The standard deviation is

s =
√

244.17696 = 15.626

or s = 15.6 years.
Table 5.19 summarizes the results, adding some of the measures of central

tendency as well. An examination of the two distributions shows that the
average age of suicides for males is lower than the average age of female
suicides. This is the case whether the median or mean age of suicides is
examined. The average is lower for males than for females because there are
many more suicides of males at ages 15-19 for males than for females. Even

Measure Males Females

Median 36.8 45.6
Mean 40.0 45.3
IQR 30.5 29.3
s2 257.6 244.2
s 16.0 15.6

Table 5.19: Summary Measures, Age of Suicides, Males and Females

though the distribution of suicides for females has a considerably greater
average age, the variation in age of suicides is much the same for males and
females. The standard deviations for males and females are almost exactly
the same at about 16 years and the variances are almost the same as well.
The interquartile range of the age of suicides is also very similar for both
sexes.

In summary, the centre of the distribution for males is lower than for
females, but the variation for the two distributions is fairly similar, as mea-
sured by the variance, standard deviation or IQR.

Proofs of Formulae. When examining the formale for ungrouped data,
some proofs of the equivalence of different formulae was given. In the fol-
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lowing paragraphs, the same proofs for grouped data are given. Again, this
section can be skipped if you do not feel adept at algebra.

In the case of grouped data, the sum of the deviations about the mean,
if weighted by the frequencies of occurrence, add to zero. This is shown in
the following expressions. Note that all of the summations proceed across
all k values into which the data has been grouped.

n∑

i=1

fi(Xi − X̄) = f1(X1 − X̄) + f2(X2 − X̄) + · · ·+ fk(Xk − X̄)

= [f1X1 + f2X2 + · · ·+ fkXk]−
[
f1X̄ + f2X̄ + · · ·+ fkX̄

]

=
∑

fiXi − X̄
∑

fi

For grouped data,

X̄ =
∑

fiXi

n

where
n =

∑
fi

so that
n∑

i=1

fi(Xi − X̄) =
∑

fiXi −
[∑

fiXi

n

] ∑
fi

=
∑

fiXi −
[∑

fiXi

n

]
n

=
∑

fiXi −
∑

fiXi = 0

The equivalence of the formulae of Definitions 5.9.5 and 5.9.6 is shown as
follows. The claim is that

s2 =
1

n− 1

∑
fi(Xi − X̄)2 =

1
n− 1

[∑
fiX

2 − (
∑

fiXi)2

n

]

Since each of the summation parts of these expressions is multiplied by the
same value 1/(n− 1), all that has to be shown is that

∑
fi(Xi − X̄)2 =

[
ΣfiX

2 − (
∑

fiXi)2

n

]
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Expanding the left side gives
∑

fi(Xi − X̄)2 =
∑

fi(X2
i − 2XiX̄ + X̄2)

=
∑

fiX
2
i − 2X̄

∑
fiXi +

∑
fi(X̄2)

The middle term can be written as

−2X̄
∑

fiXi = −2X̄n

[∑
fiXi

n

]
= −2n(X̄)2

The term on the right becomes
∑

fi(X̄2) = (X̄)2
∑

fi = n(X̄)2

As a result, the original expression becomes
∑

fi(Xi − X̄)2 =
∑

fiX
2
i − 2X̄

∑
fiXi +

∑
fi(X̄2)

=
∑

fiX
2
i − 2n(X̄)2 + n(X̄)2

=
∑

fiX
2
i − n(X̄)2

=
∑

fiX
2
i − n

[∑
fiXi

n

]2

=
∑

fiX
2
i −

(
∑

fiXi)
2

n

This shows the equivalence of the two expressions.

5.9.3 Interpretation of the Standard Deviation

As noted earlier in this section, there is no easy, intuitive explanation for
the standard deviation. The particular formula used to obtain the standard
deviations involves sums of squares of the deviations about the mean, an
averaging of this sum (i.e. dividing by n − 1), and then taking a square
root. Once all this has been done, it is difficult to obtain an intuitive idea
of this measure of variation. In this section, some comments concerning
interpretation of the standard deviation are made. Hopefully these will
assist in understanding how this measure can be used.

Units for the Standard Deviation. As noted earlier, the units for the
standard deviation are the same units as the units used to measure the vari-
able. This occurs because the deviations about the mean are in the original
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units, and these deviations are first squared, and after some manipulation
of these squares, a square root is taken. This means that the standard
deviation ends up being measured in the units in which the variable X is
measured, while the variance is measured in the square of these units.

While this may not be of too much assistance, this means for exam-
ple, that if distributions of income are measured in dollars, the standard
deviation will also be in dollars. Table 5.20 contains summary measures
for a number of variables describing Saskatchewan families in 1988. These
summary measures are obtained from data in Statistics Canada’s Survey
of Consumer Finances. This Survey provides data on a variety of income
and labour force characteristics of Saskatchewan families. In this table, only
those families containing both a husband and a wife are included. All single
parent families, and households containing only single people, were excluded
when preparing this table.

Table 5.20 gives some idea of the units in which some standard deviations
are measured, and also gives an idea of the size of the standard deviation
of a number of relatively familiar variables. Family income is measured

Variable Units X̄ s

Family Income Dollars $40,900 $25,500
No. of Earners No. of people 1.70 0.99
No. of Persons No. of people 3.25 1.29

Husband’s Work Yearly Weeks 38.0 21.5
Age of Husband Years 47.7 16.2

Table 5.20: Summary Measures of Variables, Saskatchewan, 1988

in dollars, and had a standard deviation of $25,500 in 1988. The number
of earners per family and the number of persons in each family are both
measured in numbers of people. Since there are not too many earners, or
people, in each family, it can be seen that these standard deviations are
relatively small. The standard deviation in the number of weeks worked per
year for husbands 21.5 weeks, and the standard deviation of age for these
same husbands is 16.2 years.

Size of the Standard Deviation. The size of the standard deviation
is apparent once it is calculated or given, as in Table 5.20. But if you
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are not familiar with the concept of standard deviation, it is difficult to
guess the approximate size of a standard deviation without carrying out the
calculations. On rule of thumb which assists is:

As a rule of thumb, the standard deviation is approximately equal
to the range divided by 4. That is,

s ≈ Range
4

This is a very rough rule of thumb but provides some idea of the order
of magnitude for a standard deviation. Table 5.21 gives the range, the
range divided by 4, and the standard deviation for the variables describing
Saskatchewan husband-wife families. It can be seen that in some cases, such
as age or number of people, this rule provides a fairly good idea of the
approximate size of a standard deviation. In cases such as family income,
this rule is not very accurate. However, in the case of family income, if the
top 1% of family incomes are eliminated, this produces a range of $132,000
for the bottom 99% of family incomes. Dividing this by 4 gives $33,000,
closer to the actual value of $25,500.

Variable Range Range
4 s

Family Income $256,800 $64,200 $25,500
No. of Earners 6 1.5 0.99
No. of Persons 8 2 1.29

Husband’s Work Yearly 52 13 21.5
Age of Husband 63 15.75 16.2

Table 5.21: Range and Standard Deviation

While this rule of thumb is useful, it is no more than a very rough rule,
and one which can provide some very general idea of the standard deviation.
It can provide a very rough check on calculations though. For example, if you
had calculated the standard deviation of the number of people per household
to be 129, rather than 1.29, a quick check of the range divided by 4 would
tell you that 129, or even 12.9, is much too large a number for the standard
deviation. In fact, the standard deviation cannot be larger than the range,
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so any calculation showing a standard deviation larger than the range must
be incorrect.

Relative Size of Standard Deviations. In all of the examples of the
standard deviation, two distributions were given, and the sizes of the stan-
dard deviations compared. This is where the standard deviations are most
useful. Suppose there are several different samples, where the same variable
is being measured in each sample. Then the sample whose distribution has
larger values for the standard deviation can be considered to be more varied,
and the samples with smaller standard deviations can be considered to be
less varied. Using some common socioeconomic variables, this is illustrated
in the following example.

Example 5.9.6 Variation in Canadian Urban Homicide Rates

Table 5.9.6 contains a variety of socioeconomic variables for the 24 Cen-
sus Metropolitan Areas in Canada. The observations for these 24 cities
were taken at various points in time, as shown in the table. This data is
taken from Leslie W. Kennedy, Robert A. Silverman and David R. Forde,
“Homicide in Urban Canada: Testing the Impact of Economic Inequality
and Social Disorganization,” Canadian Journal of Sociology 16 (4), Fall
1991, pages 397-410. In the abstract the authors state that

Homicide in Canada is regionally distributed, rising from east to
west. This study demonstrates a reduction in the regional effect
through a convergence in homicide rates between eastern, cen-
tral, and western Canada in Census Metropolitan Areas (CMAs)
with higher levels of inequality and social disorganization.

While Table 5.22 does not show this directly, this table does allow the reader
to examine the shifts in the average and variation for some commonly used
socioeconomic variables. Using this summary data, it can be seen that there
was little change in the variability in homicide rates between 1972-76 when
the standard deviation was 0.89, to 1977-81, when the standard deviation
was 0.86. However, these values are both about double the standard devia-
tion of 0.43 of 1967-71. This shows that across the 24 CMAs, homicide rates
were about twice as varied in the 1970s, as compared with the late 1960s.

With respect to some of the other variable, the authors make the follow-
ing comments (pages 402-3):
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Variable Year X̄ s Minimum Maximum

Homicides per 100,000 1967-71 0.94 0.43 0.09 1.71
1972-76 1.73 0.89 0.41 4.26
1977-82 1.77 0.86 0.52 3.77

Unemployment Rate (%) 1971 8.15 2.00 6.03 15.00
1976 6.82 1.70 3.38 10.48
1981 7.40 3.14 3.27 15.78

% Males 20-34 1971 17.75 2.16 14.89 24.10
1976 26.46 1.77 23.00 29.63
1981 15.42 1.38 12.50 18.55

% Divorced 1971 1.31 0.65 0.09 2.70
1976 1.99 0.69 0.82 3.53
1981 2.92 0.70 1.49 4.31

Table 5.22: Summary Statistics, Canadian Census Metropolitan Areas

... unemployment, while generally at the same mean rate, in-
creases in variability. This is evident in the increased standard
deviation and the greater range in unemployment rates across
CMAs. ... the proportion of young males in CMAs increases
substantially in 1976, but the variability across cities drops over
the ten-year period. Finally, divorce increases in terms of the
percentage divorced within CMAs but remains stable in terms
of variability across CMAs. These changes may in part be at-
tributed to lack of opportunities for young persons in CMAs,
and changes in legal access to divorce.

Each of these statements can be verified by examining the table. Note
that the unemployment rate is the percentage of the labour force which is
unemployed, the % Divorced is the percentage of the population divorced
in the CMAs, and the % Males 20-34 is the “percentage of young males of
age 20 through 34 in CMAs.” (page 402).
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Percentage of Cases Around the Mean. Another useful way to think
of the standard deviation and the mean is to ask the question

What percentage of cases lie within a distance of one standard
deviation on each side of the mean?

Since the standard deviation and mean are both measured in the units of the
variable X, they can be considered as distances along the horizontal axis.
Then the number, or percentage, of the cases in the data set, which lie within
a certain distance of the mean can be determined. The following guidelines,
while again very rough rules of thumb, generally can be considered to hold
for any distribution.

Supppose a variable X is measured for all the cases in a data set, and
that the mean value of X for the cases in this data set is X̄ and the standard
deviation is s. Then

1. The interval from X − s to X + s usually contains about two thirds of
all the cases in the data set. Alternatively stated, the interval

(X̄ − s, X̄ + s)

contains approximately 67% of all the cases in a distribution.

2. The interval from X − 2s to X + 2s usually contains around 95% of
all the cases in the data set. That is, the interval

(X̄ − 2s, X̄ + 2s)

contains approximately 95% of all the cases in a distribution.

3. The interval from X − 3s to X + 3s usually contains 99% or more of
all the cases in the data set. That is, the interval

(X̄ − 3s, X̄ + 3s)

contains approximately 99% of all the cases in a distribution.

Note that the latter point means that very few cases in a distribution are
more than 3 standard deviations away from the mean. Point (2) means that
the large bulk of cases are within 2 standard deviations of the mean. Point
(1) means that well over one half of all the cases are within one standard
deviation of the mean. As a result, if the mean and the standard deviation
are known, a considerable amount is known about a distribution. This is
illustrated in the following example.



STANDARD DEVIATION AND VARIANCE 256

Example 5.9.7 Hours Worked per Week

In Chapter 4, the hours of work of 50 Regina labour force members was
given in Table ??. For this list of 50 values of hours worked per week, the
mean hours is X̄ = 37.0 and the standard deviation is s = 10.5. The interval
of one standard deviation on each side of the means is

X̄ ± s = 37.0± 10.5 or (26.5, 47.5)

This means that two thirds or more of the hours worked in the data set
might be expected to be between 26.5 hours and 47.5 hours worked per
week. The ordered stem and leaf display of Figure ?? provides a quick way
of checking to see how many hours per week actually do fall in this range.
Counting the number of values between the limits of 26.5 and 47.5 hours
per week gives a total of 38 of the 50 respondents having hours worked per
week that fall within this range. This is

38
50
× 100% = 76%

of the cases, more than the 67% expected.
Within two standard deviations of the mean is an interval

X̄ ± 2s = 37.0± 21.0 or (16.0, 58.0)

This contains all the cases except those three workers who work 3, 4, and
10 hours per week. That is, the interval contains 47 out of 50, or 94% of the
cases.

The interval that is three standard deviations on either side of the mean
is

X̄ ± 3s = 37.0± 31.5 or (5.5, 68.5)

This interval contains all but the two workers who work only 3 and 4 hours
per week. This is 48 out of 50 or 96% of all the cases, a little less than the
99% expected.

Example 5.9.8 Incomes of 50 Regina Families

A similar example is the stem and leaf display presented in Figure ??
of Chapter 4. The stem and leaf display there organizes the incomes of
50 Saskatchewan families. The mean and standard deviation for these 50
families are X̄ = 36.3 thousand dollars, and s = 32.7 thousand dollars. You
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can check the stem and leaf displays to verify that 43 out of the 50 families
have incomes within one standard deviation of the mean income, 47 out of
50 are within 2 standard devations, and 49 out of 50 are within 3 standard
deviations of the mean.

Example 5.9.9 Distribution of Gross Monthly Pay of 601 Regina
Adults

The distribution of gross monthly pay of 601 Regina respondents, given
in Table 5.23, is drawn from the Social Studies 203 Regina Labour Force
Survey. A histogram for the frequency distribution in Table 5.23 is given
in Figure 5.3. A quick examination of Table 5.23 and Figure 5.3 shows
that the distribution of gross monthly pay peaks at a fairly low pay level,
around $1,500-2,000 per month, and then tails off as one moves to higher
income levels. However, there are some individuals with quite high pay
levels, so that the distribution goes much further on the right than on the
left of the peak income level. Such a distribution is considered to be skewed
to the right. Distributions of income and wealth are ordinarily skewed in
this manner. However, the rules concerning the percentage of cases within
various distances from the mean should still hold in this distribution. In
Figure 5.3, a histogram of the frequency distribution is presented. Note that
most of the intervals are $500 wide, so that the frequencies of occurrence
for these intervals are presented as in Table 5.23. For the $4,000 to $4,999
interval, which represents an interval width of $1,000, the density has been
calculated as the frequency of occurrence per $500 of interval width. The
interval of $1,000 width is equivalent to two intervals of $500 width, so that
the density in this interval is 46/2 = 23 cases per $500. The open ended
interval is drawn to indicate a considerable number of cases of $5,000 or
more, and the proper height of this bar is a guess. Figure 5.3 shows the mean
at $2,352, and the intervals around the mean are as follows. The standard
deviation is $1,485, so that the interval from one standard deviation less than
the mean to one standard deviation greater than the mean is the interval

(X̄ − s , X̄ + s)

($2, 352− $1, 485 , $2, 352 + $1, 485)

($867 , $3, 837)

While the detailed frequency distribution giving the number of adults with
each value of gross monthly pay, is not given here, it turns out that there
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Gross Monthly Pay
($ per month) Frequency

Less than 500 45
500-999 51

1,000-1,499 69
1,500-1,999 110
2,000-2,499 77
2,500-2,999 60
3,000-3,499 59
3,500-4,000 52
4,000-4,999 46

5,000 and over 32

Total 601

Mean $2,352
Standard Deviation $1,485

Minimum $50
Maximum $9,000
Median $2,000

Table 5.23: Distribution of Gross Monthly Pay, 601 Regina Respondents

are 433 out of the 601 adults who have pay between $867 and $3,837. This
is

433
601

× 100% = 0.720× 100% = 72.0%

of all the cases. This is over the two thirds of 67% of the cases that might
generally be expected to be within one standard deviation of the mean.

Two standard deviations is 2 × $1, 485 = $2, 970 so that the mean plus
or minus $2,970 is the interval

($2, 352− $2, 970 , $2, 352 + $2, 970)

($0 , $5, 322)

Here the lower end of this interval is really less than 0, but since there
are no pay levels below 0, the interval is stopped at 0. Going back to the
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Figure 5.3: Histogram of Distribution of Gross Monthly Pay

original detailed frequency distribution from which this data is drawn, it is
found that all but 20 of the Regina adults have pay levels of below $5,322
per month. This means that there are (581/601) × 100% = 96.7% of cases
within two standard deviations of the mean. This is more than the 95%
that can generally be expected.

Within three standard deviations, there are all but 8 cases. That is,
between a gross monthly pay of 0 and 2, 352 + 3(1, 485) = 6, 807 dollars
there are 593 of the 601 cases. This amounts to 98.7% of all cases.

The mean, and the intervals around the mean are illustrated in Fig-
ure 5.3. Remeber that 100% of the cases are in the distribution. It was
found that 72% of the cases were in the interval from $867 to $3,837. This
means that the area from $867 to $3,837 contains 72% of the area in the
bars of the histogram of Figure 5.3. Similarly, the area in the bars of the
histogram between 0 and $5,322 contains approximately 97% of the total
area in the histogram.

The mean and the standard deviation together provide a great deal of
information concerning the distribution. The mean provides an idea of the
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centre of a distribution, and the intervals of one, two and three standard
deviations around the mean provide a good idea of where the bulk of the
cases are. When summarizing a distribution, if the mean, standard deviation
and sample size of the sample are reported, this gives those examining the
data a considerable amount of information concerning the nature of the
distribution.

5.10 Percentage and Proportional Distributions

If the distribution for a variable is given as a percentage distribution then
the determination of the mean is straightforward (see Definition ??) earlier
in this Chapter. In the original formula for the mean,

X̄ =
∑

fX

n

the sample size in the denominator is replaced with the value of 100, the
sum of the percentages, producing the formula

X̄ =
∑

PX

100

for the mean of a percentage distribution.
When working with the formulae for the variance and the standard de-

viation, the sample size is reduced by 1, so that n−1 is in the denominator,
rather than n. This would appear to imply that 100 − 1 = 99, rather
than 100, should be used in the denominator for the variance when working
with a percentage distribution. The problem with this approach is that this
amounts to always subtracting 1% of cases, rather than 1 case. Rather than
do this, if n is not known, or if n is reasonably large, then it is best to
use 100 in the denominator. This produces the following definitions for a
percentage distribution.

Definition 5.10.1 If a variable X has k values

X1, X2, X3, · · · , Xk

occurring with respective percentages

P1, P2, P3, · · · , Pk
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and the mean of these k values is

X̄ =
∑

PiXi

100

where the summation is across all k values of Xi and
∑

Pi = 100

Summing across the same k values, the variance is

s2 =
∑

Pi(Xi − X̄)2

100

The standard deviation of this set of k values of X is

s =

√∑
Pi(Xi − X̄)2

100

Using the alternative, more computationally efficient formulae,

s2 =
1

100

[
ΣPiX

2
i −

(ΣPiXi)
2

100

]

and

s =

√√√√ 1
100

[
ΣPiX2

i −
(ΣPiXi)

2

100

]

For a proportional distribution, the percentages, P , are replaced with
the proportions, p, and these sum to 1, rather than 100. In the case of a
proportional distribution, the standard deviation is

s =
√[

ΣpiX2
i − (ΣPiXi)

2
]

If the sample size on which the distribution is based is known and is quite
small, it may be best to convert the data back into the actual number of cases
in each category and use the original formula. However, if the sample size is
very large or the frequency distribution refers to the whole population, then
the formulae given in Definition 5.10.1 should be used. The sample size on
which the data is based should always be given. Unfortunately, in published
data, the sample size is often not given.
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Example 5.10.1 Distribution of Family Income in Canada, 1984

The following data in Table 5.24 comes from Statistics Canada’s Survey of
Consumer Finances for 1984. This table gives the percentage distribution of
the income of families in Canada for 1984. The calculations for the standard
deviation of family income are given in the table, and in the formulae which
follow. Note that the table has been set up so that the incomes are in
thousands of dollars. The midpoint of each interval has been selected as the
appropriate X value in each case, with $65,000 selected as the appropriate
mean value of the $45,000 and over income interval.

Per Cent
Income in of Families

$’000s Pi Xi PiXi PiX
2
i

0-10 7.1 5.0 35.50 177.500
10-15 9.7 12.5 121.25 1,515.625
15-20 9.7 17.5 169.75 2,970.625
20-25 9.0 22.5 202.50 4,556.250
25-30 10.1 27.5 277.75 7,638.125
30-35 10.1 32.5 328.25 10,668.125
35-45 17.6 40.0 704.00 28,160.000

45 plus 26.7 65.0 1,735.50 112,807.500

Total 100.0 3,574.50 168,493.750

Table 5.24: Distribution of Family Income, Canada, 1984

From Table 5.24,

ΣPiXi = 3, 574.50

ΣPiX
2
i = 168, 493.750

Thus the standard deviation is

s =

√√√√ 1
100

[
ΣPiX2

i −
(ΣPiXi)

2

100

]
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=

√√√√ 1
100

[
168, 493.750− (3, 574.50)2

100

]

=
√

168, 493.750− 127, 770.500
100

=
√

40, 723.248
100

=
√

407.232 = 20.180

The standard deviation of family income for 1984 in Canada is estimated
to be $20,180 based on the above table and formula.

5.11 Measures of Relative Variation

All of the measures of variation discussed so far are measures based on
the units in which the variable is itself measured. For example, the range,
interquartile range or standard deviation of the heights of a group of people
would be expressed as so many inches, or in centimetres if the metric system
were used. This has the advantage of giving these measures in familiar
units. In the case of the standard deviation, intervals around the mean can
be constructed, and the percentage of cases in each of these intervals can
be determined. All of the measures of variation discussed so far can be
considered to be measures of absolute variation.

A different approach can be taken by considering how varied the distri-
bution is, where the measure of variation is considered as being relative to
another measure. These measures of variation are considered to be mea-
sures of relative variation. The idea of such measure can be obtained by
considering as an example, the problem of how to compare the variation in
heights of children with the variation in heights of adults.

Suppose, for example, that we were to compare the variation in heights
of children of age 3 with the variation in heights of adults. It is likely
that the standard deviation of heights of children be a fairly small number.
This is because the heights of children are relatively small numbers and the
deviations in heights of individual children about the mean height for all
children of age 3 are not large numbers. For adults, the standard deviation
of height is likely to be a larger number because the numbers expressing
heights of adults are larger in absolute value. Because of this, the numbers
expressing deviation of adult heights about the mean height for all adults
are also likely to be larger. The result is that the standard deviation of adult
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heights is likely to be larger than the standard deviation of the heights of
children. That is, in absolute terms, the variation in heights of adults is
likely to be greater than the variation in heights of children. The main
reason that the standard deviation of adult heights exceeds the standard
deviation of heights of children is that adults are taller on average than are
children. The above reasoning suggests that it might be useful to examine
the variation in height, relative to the average height.

One measure which results from the above reasoning is based on the
standard deviation divided by the mean. This is defined as follows.

Definition 5.11.1 The coefficient of relative variation (CRV) or sim-
ply the coefficient of variation is defined as

CRV =
s

X̄
× 100

Sometimes the CRV is defined as simply the ratio of the standard devia-
tion to the mean, that is, as s/X̄. In this text, the first of the two definitions
will be used.

In the case of the heights of children and adults, the CRV, determined as
the ratio standard deviation to the mean, multiplied by 100, may be much
the same size for both children and adults. This is because for both children
and adults, there is likely to be a similar degree of variation of height relative
to their mean height.

The CRV is useful for two major reasons. First, sometimes there will
be two distributions which describe the distribution of similar variables but
these variables are measured in different units. If this is the case, then the
standard deviations are not directly comparable, whereas the coefficients of
relative variation are comparable. That is, each standard deviation is mea-
sured in the units in which the variable has been measured. Two standard
deviations in two different units cannot be directly compared, in order to
determine which standard deviation represents greater variation. But the
two CRVs can be directly compared.

Second, when a variable X has larger numbers than another variable Y,
it may be the case that X also has a larger standard deviation than does Y.
This does not mean that the distribution of X is inherently more dispersed
than that of Y. The larger standard deviation may just reflect the fact that
with larger numbers, the data is more spread out in an absolute sense. But
in relative terms, there is little difference in variation relative to the mean.
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The coefficient of relative variation is a number, with no units. This
occurs because the CRV is the ratio of two other numbers, both of which
are measured in the same units. The CRV is thus dimensionless and can be
meaningfully compared for any two different distributions.

Example 5.11.1 Attitudes Measured on Two Different Scales

Two sample surveys of adults, one taken in Regina and the other in Ed-
monton, asked similar questions concerning whether or not it is too easy to
get welfare assistance. The Regina survey asked the question, “Is it too easy
to get welfare assistance?” Respondents were asked to give their responses
as one of “Strongly agree, somewhat agree, somewhat disagree, or strongly
disagree.” The Edmonton survey made the statement, “Unemployment is
high because unemployment insurance and welfare are too easy to get,” and
asked respondents to give their response to this statement on a 7 point scale,
where 1 is strongly disagree and 7 is strongly agree.

While the two questions are not really the same, they are both likely to
reflect some of the underlying views of respondents with respect to unem-
ployment insurance and welfare. The percentage distributions of responses
are given in the first parts of Tables 5.25 and 5.26 and the calulations re-
quired for the standard deviation in the last two columns of each table.
For these distributions, determine the standard deviation and coefficient of
relative variation.

Response X f fX fX2

Strongly Agree 1 257 257 257
Somewhat Agree 2 239 478 956

Somewhat Disagree 3 177 531 1,593
Strongly Disagree 4 88 352 1,408

Total 760 1,618 4,214

Table 5.25: Responses to Regina Question

For each table, it is necessary to compute the mean and standard devi-
ation. For the Regina survey, the results are as follows.

∑
fX2 = 4, 214
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Response X f fX fX2

Strongly Disagree 1 50 50 50
2 42 84 168
3 42 126 378

Neutral 4 41 164 656
5 65 325 1,625
6 71 426 2,556

Strongly Agree 7 74 518 3,626

Total 385 1,693 9,059

Table 5.26: Responses from Edmonton Survey

∑
fX = 1, 618

and n = 761. Entering these values into the formula for the variance in
Definition 5.9.6 gives the following

X̄ =
∑

fX

n
=

1, 618
761

= 2.126

s2 =
1

n− 1

[∑
fX2 − (

∑
fX)2

n

]

=
1

760

[
4, 214− (1, 618)2

761

]

=
4, 214− 3, 440.1104

760

=
773.88962

760
= 257.61055

The standard deviation is

s =
√

257.61055 = 1.0183

and the coefficient of relative variation is

CRV =
s

X̄
× 100 =

1.0183
2.126

× 100 = 0.47893× 100 = 47.893
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For the Edmonton survey the results are

∑
fX2 = 9, 059

∑
fX = 1, 618

and n = 385. Entering these values into the formula for the variance in
Definition 5.9.6 gives the following

X̄ =
∑

fX

n
=

1, 693
385

= 4.397

s2 =
1

n− 1

[∑
fX2 − (

∑
fX)2

n

]

=
1

384

[
9, 059− (1, 693)2

385

]

=
9, 059− 7, 444.8026

384

=
1, 614.1974

384
= 4.20364

The standard deviation is

s =
√

4.20364 = 2.0503

and the coefficient of relative variation is

CRV =
s

X̄
× 100 =

2.0503
4.397

× 100 = 0.46625× 100 = 46.625

All of these results are summarized in Table 5.27. In each case, the values
have been rounded to 2 significant figures. While the computations here are
accurate, the scale for each variable is an ordinal scale, and yet it is being
treated as an interval scale. As a result, the values of the various summary
measures appear more accurate than they really are.

If the range, interquartile range, standard deviation or variance is ex-
amined in these two distributions, it appears as if the variation in responses
in Edmonton is considerably greater than the variation in responses in
Regina. The absolute variation for Edmonton is approximately double that
for Regina. But the main reason the variation for Edmonton appears greater
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Measure Regina Edmonton

Mean 2.1 4.4
s2 1.0 4.2
s 1.0 2.1

CRV 48 47

Range 4 7
IQR 2 3

IQR/Median 1 0.6

Table 5.27: Summary Measures, Attitude Questions, Regina and Edmonton

than for Regina, is that attitudes are measured on two different scales. The
7 point attitude scale for Edmonton has built into it a much greater range
of attitudes than does the 4 point scale of the Regina survey. If only the
measures of absolute variation are examined, the impression that would be
taken from these two distributions is that Edmonton adults were much more
varied in their responses than were Regina adults.

Measures of relative variation give quite a different picture. The CRV
for Regina ends up being slightly greater than the CRV for Edmonton, al-
though the two are practically identical. Another possible measure of rela-
tive variation, the IQR divided by the median, actually shows a lower value
for Edmonton than it does for Regina. What produces this approximately
equal relative variation for the two cities is the considerably larger average
for Edmonton than for Regina. This larger mean occurs because the scale of
attitudes is allowed to take on considerably more values in Edmonton than
it does in Regina.

For comparing attitudes in these two cities, all the measures are useful.
But since the scales are so different in these two surveys, the measures of
relative variation are superior to the measures of absolute variation here.
That is, the measures of relative variation correct for the differences in the
scale, and show that once the scale differences are takin into account, the
variability of attitudes in the two cities is very similar.
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Example 5.11.2 Relative Variation in Canadian Urban Homicide
Rates

In Example 5.9.6, the standard deviation of homicide rates was used as
a measure of absolute variation. In Table 5.22 the distribution of homicide
rates across 24 Canadian cities was shown to have a larger standard deviation
and range in the 1970s than in the late 1960s. However, if measures of
relative variation are constructed, as in Table 5.28, it appears as if there
was very little shift in the relative variability in urban homicide rates over
the periods shown. The CRV changes very little, although it is slightly
larger in the years 1972-1976 than in other periods. The Range has been
divided by the mean, in order to construct a measure of the relative range,
that is, the range relative to the average homicide rate. Again, this shows
less change than the Range, and this measure of relative variation is very
similar for 1977-82 and 1967-71. The reason for the small shift in the relative

Variable Year X̄ s CRV Range/X̄

Homicides per 100,000 1967-71 0.94 0.43 46 1.72
1972-76 1.73 0.89 51 2.23
1977-82 1.77 0.86 49 1.84

Table 5.28: Summary Measures of Relative Variation in Canadian Urban
Homicide Rates

variation is that homicide rates across the country increased considerably in
the 1970s. The larger values of homicide rates produced larger differences
among cities in their homicide rates. But relative to the typical, or average,
homicide rate, the variation in homicide rates across the 24 cities changed
little. You can compute the CRV and the Range divided by the mean for
the other socioeconomic variables in Table 5.22 to see whether the same
conclusion holds for these other variables. If it does, then this casts some
doubt on the authors’ conclusions in Example 5.9.6. However, in some cases
it appears that both relative and absolute measures of variation give similar
conclusions.
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Example 5.11.3 Income Inequality

One situation where the CRV may be used is when data in dollars is
to be compared over different years. As we all know, inflation erodes the
value of the dollar each year, so it does not make a great deal of sense to
compare figures in dollars in two different years unless one first corrects for
changes in the value of the dollar over those years. One way of doing this is
to construct income in constant or real dollars (see Example 5.11.4). When
looking at variation, another method is to examine the changes in the CRV.

Value in
Current Dollars

Year Mean s CRV

1954 2374 2400 101.1
1961 3110 2727 87.7
1969 4713 4860 103.1
1971 5389 6479 120.2
1973 6383 6352 99.5

Table 5.29: Measures of Income Inequality, Canada, Selected Years

In Table 5.29, drawn from Statistics Canada, Income Inequality: Sta-
tistical Methodology and Canadian Illustrations, 13-559, page 78, it
can be seen that the degree of variation in incomes, as measured by the
standard deviation, increased dramatically from one year to the next for
the years shown. Based on this, one would be tempted to conclude that
there had been close to a tripling in the inequality of incomes, over the
period shown. Such a conclusion is incorrect because the value of the dol-
lar also changed dramatically over this period, although one cannot tell by
how much, based on these figures. In this latter connection, it might be
noted that mean income rose partly because of inflation and partly because
incomes rose in real terms.

In order to get a more accurate idea of whether the distribution of in-
comes is more or less equal, examine the CRV column. There, it can be seen
that, relative to the mean, the standard deviation sometimes declined and
sometimes rose. For the years from 1954 to 1961, there was a decline in CRV,
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indicating a decline in the inequality of incomes. From 1961 through 1971,
it appears that there was a gradual increase in the inequality of incomes and
after 1971, incomes again became slightly more equally distributed.

Example 5.11.4 Income Distributions

The question of whether relative or absolute differences in income present
the best picture of income distribution has always been a matter of some
debate. One of the arguments presented by those who favour programs of
government assistance to help the poor, has been been that poverty should
be measured on a relative scale. In absolute terms, many of the poor in
North America may have considerable income when compared with the poor
in third world countries. But there are many poor people in Canada and
the United States, when one compares these lowest income people in our
society with the typical or socially determined standards that exist in North
America.

Depending on which view one takes, different pictures of the variation
of incomes among families in Canada can be presented. Table 5.30 presents
measures of variation of family income in Canada for the years 1973, 1984,
1986 and 1987. The data have been corrected for price changes over these
years by converting the data for each year into constant 1986 dollars.

An examination of Table 5.30 shows that, in absolute terms, the gap
between better off and less well off families has become somewhat greater.
The standard deviation of family income and the interquartile range for
family income have each increased considerably over these years. There
may be some increase in relative inequality because the CRV does increase
by about 12% between 1973 and 1986, although it declines again slightly in
1987. However, the relative disparity between rich and poor does not appear
to have increased as dramatically as the absolute gap over the years shown
here.

The middle 50 per cent of families, as measured by the interquartile
range, are spread over a greater distance in the 1980s than they were in 1973.
However, if one looks at the ratio of the third quartile (or 75th percentile)
to the first quartile (25th percentile), then it appears that the relative gap
is little different. In fact, this ratio declines between 1984 and 1987, so that
it is not much above the level of 1973.

Which of the two approaches to take is a matter of judgment. The
absolute gap between rich and poor is likely greater in 1984, 1986 and 1987
than in 1973. But in relative terms, it appears as if the poor were not much,



MEASURES OF RELATIVE VARIATION 272

Measure 1973 1984 1986 1987

s 21,592 26,299 28,085 28,170
X 34,980 38,722 40,371 41,788

CRV 61.9 67.9 69.6 67.4

P75 45,082 50,003 52,039 53,544
P25 20,490 20,759 22,167 23,107
IQR 24,592 29,244 29,872 30,437

P75/P25 2.20 2.41 2.35 2.32

Table 5.30: Measures of Family Income Variation, Canada

if any, poorer, relative to the better off, than they were in 1973. On the
other hand, it is fairly clear that the poorer families, while not relatively
all that much worse off, certainly were not able to close the gap between
rich and poor in the country. It should also be remembered that this is
only one set of data and one specific set of measures and more detailed
study is certainly warranted on the basis that these measures give conflicting
evidence concerning what happened over this period of time.

Notes on Data in this Example. All of the percentiles, IQR, s and X̄ are
measured in 1986 dollars. The data for this example comes from Statistics
Canada’s Survey of Consumer Finances. The data is obtained from the
economic families data tapes for 1973, 1984, 1986 and 1987. All data refers
to what Statistics Canada defines as economic families.

Example 5.11.5 Number of Children per Family

In the 1950s the birth rate in Canada rose considerably, producing more
children per family. From the early 1960s through to the 1980s, the birth rate
has fallen, producing fewer children per family. The summary data showing
the mean number of children per family is contained in Table 5.31. This data
is based on tables from the Census of Canada for the years shown. It might
be noted that the birth rate is not the only factor that has produced these
changes in the number of children per family. Changes in the mortality rate
of children and, more importantly, changes in the age at which children leave
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the family residence and become independent of the family, both influence
the number of children per family.

Table 5.31 shows that in years when the average number of children
per family was larger, the standard deviation of the number of children per
family was usually greater. In years when the mean is lower, the standard
deviation is usually lower. This may reflect the fact that when there are few
children per family, say 0, 1 or 2, there is little room for absolute variation in
the number of children per family. In contrast, when there are more children
per family, say 2 through 5 or so, there is greater room for absolute variation
in the number of children per family.

Looking at the absolute variation in number of children per family, as
measured by the standard deviation, it appears as if the variation of the
number of children per family fluctuates considerably. In particular, the
increase in the birth rate and the increased number of children per family
in the 1950s is accompanied by an increase in variation from 1951 to 1961.

The coefficient of relative variation presents a somewhat different pic-
ture, with a continued decline in the CRV over the whole period, with the
exception of 1966. It would appear, based on the CRV, that the general
trend toward reduced variation in fertility continued even during the baby
boom period of the 1950s and early 1960s. This lends support to the follow-
ing analysis by A. Romaniuc in Fertility in Canada: From Baby Boom
to Baby Bust, Statistics Canada, Catalogue 91-524E, 1984, page 14:

In the 1930s there was a polarization of couples into two groups,
those with relatively large numbers of children, and those with
only one or no children. . . . Today there has been an overall
adjustment toward significantly lower childbearing targets. . . .
The regional variations in the birth rate have narrowed signifi-
cantly in comparison to the situation before World War II. . . . a
greater homogeneity [in fertility] is expected throughout Canada
in the years to come . . .

Either the standard deviation or the coefficient of relative variation to
get an idea of the amount of variation in the data. In some cases, the two
measures present the same picture, in other cases, a somewhat different
view emerges. If the latter is true, it is necessary to decide which of the two
measures gives the best idea of the degree of variation in the data. If only
the absolute difference among values matter, then the standard deviation is
most appropriate. If the view is taken that different values are best measured
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Year Mean s CRV

1941 1.86 2.09 112.4
1951 1.69 1.87 110.7
1961 1.89 1.94 102.6
1966 1.91 1.88 98.4
1971 1.75 1.75 100.0
1981 1.37 1.28 93.4
1986 1.27 1.17 92.1

Table 5.31: Number of Children per Family, Canada, Selected Years

in relative terms, say relative to a typical value such as the mean, then the
CRV is most appropriate.

5.12 Statistics and Parameters

In this chapter, various measures of the central tendency and variation of
a distribution have been presented. These have usually been referred to as
summary measures of the distributions being examined. When discussing
these summary measures, no distinction was made between samples and
populations. The summary measures can be used as a means of describing
whole populations, or they can be used to provide summary descriptions of
samples. For the most part, the definition and use of these measures is the
same, regardless of whether the measures summarize a population or sample
distribution. However, there are a few definitional differences in the case of
the mean and the standard deviation.

The manner in which these summary measures are used also depends
to some extent on whether they describe samples or whole populations. In
Chapters 7 and following, summary measures based on samples are used to
derive inferences concerning the comparable summary measures for whole
populations. For example, the mean of a sample will be used to make some
statements concerning the likely values of the mean of the whole population.

In order to deal with these differences, statisticians make a distinction
between statistics and parameters. Statistics refer to characteristics of sam-
ples, and parameters refer to characteristics of whole populations.
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Definition 5.12.1 A statistic is a summary measure of a sample distribu-
tion, that is, a summary measure which is used to describe the distribution
of data from a sample.

If data has been obtained from a sample, measures such as the mean,
the range, the median or the coefficient of relative variation are all statistics
which can be used to describe the distribution of the sample. The formulae
for the standard deviation and the variance in Section 5.7 are the proper
formulae for these measures for sample data.

Definition 5.12.2 A parameter is a summary measure of a population
distribution.

The true mean income for all Canadian families, the range or interquar-
tile range of grades for all students at a University, or the variance of heights
of all Manitoba children of age 3, are all examples of parameters. These are
the same summary measures as have been described in this Chapter, except
that the data on which they are based is the set of all data from the whole
population.

Note that when statistics were defined, nothing was said concerning how
good or how bad the sample is. While researchers always hope to have a
representative sample, sometimes the sample is not so representative. One
of the questions which emerges is how representative the statistics from
samples are of the population as a whole. One way in which a sample could
be defined as being representative is if statistics from the sample are very
close in value to the corresponding parameters from the population.

Sometimes parameters are defined as summary measures which describe
theoretical or mathematical distributions, such as the binomial or normal
distribution. These will be considered in Chapter 6. For this reason, sum-
mary measures which describe the characteristics of whole populations are
sometimes referred to as population values or true values, or even true
population values.

Since most of Statistics uses the summary measures of central tendency
and variation, the distinction between statistics and parameters is an im-
portant one. Inferential Statistics is concerned with estimating or making
hypotheses about parameters or population values. Statistics obtained from
samples of the population are used to make these estimates or test these
hypotheses. In order to keep these two types of summary measures distinct,
the following notation is used.
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Summary
Measure Statistic Parameter

Mean X̄ µ
Standard Deviation s σ

Variance s2 σ2

Proportion p̂ p
Number of Cases n N

Table 5.32: Notation for Statistics and Parameters

Notation for Statistics and Parameters. In order to distinguish statis-
tics and parameters, different symbols are used for the two. In general in
statistical work, statistics are given our ordinary Roman letters, such a X̄ or
s, while letters in the Greek alphabet are often used to refer to parameters.
The symbols generally used for the common summary measures are given
in Table 5.32. The symbols such as X̄, s and s2 are used to denote the
mean, standard deviaton and variance, respectively, of sample data. These
were defined earlier in the chapter. The sample size for a sample is usually
referred to as n, and the population size is N . The symbols p and p̂ are
discussed later.

The mean of a whole population is usually given the symbol µ. This is
the Greek letter mu, pronounced “mew.” When referring to the mean of a
theoretical distribution, in Chapter 6, this same symbol µ will be used to
denote the mean of this distribution. For example, the mean of the normal
curve will be given the symbol µ.

As a parameter, the standard deviation is given the symbol σ, the lower-
case Greek sigma. Remember that the summation sign

∑
can also be named

sigma;
∑

is the uppercase Greek sigma. Since the variance is the square
of the standard deviation, the variance for a whole population is given the
symbol sigma squared, σ2. These may be used to refer to the standard devi-
ation and variance of mathematical distributions. In Chapter 6, the normal
curve has standard deviation σ.

Proportions have not been discussed so far in this text, except as pro-
portional distributions. However, proportions as summary measures are
very useful in statistical work. A proportion is the fraction of cases with a
particular characteristic. For example, in studies of aging, researchers are
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likely to be interested in the fraction of people who are over age 65, or the
proportion of these who are over age 80. Observers of the political scene
will be interested in the proportion of voters who support each Canadian
political party. The symbol most commonly used to describe the proportion
of a population is p. That is, p is generally considered as the parameter.
Since this is already a Roman letter, the manner in which the corresponding
characteristic of the sample is described is to place the symbol ˆ on top of
the p, to produce the symbol p̂. Statisticians usually refer to the symbol p̂
as p hat.

The convention of placing a hat, ,̂ over another symbol is a common way
of distinguishing statistics and parameters in statistics. For example, the
mean of a sample could be referred to as µ̂, or the standard deviation of a
sample could be σ̂. While this is not commonly done with µ and σ, it is a
common practice with other measures. In statistical work generally, if any
algebraic symbol hasˆon it, this undoubtedly means that the symbol refers
to the characteristic of a sample, and is a statistic.

Computation of µ, σ and σ2. µ is computed in exactly the same manner
as is X̄. That is µ is the sum of all the values of the variable, where these
values are summed across all members of the population, and then this total
is divided by the number of members of the population. If X is the variable,
and there are N members of a population, then

µ =
∑

X

N
or µ =

∑
fX

N

depending on whether the data is ungrouped or has been grouped into cat-
egories where the values of X occur with frequencies f .

The standard deviation and variance are defined a little differently in the
case of sample and the population. When the variance was first introduced,
it was presented as the sum of the squares of the deviations about the
mean, divided by the sample size minus one. That is, if the sample size is
n, the denominator of the expression for the variance is the value n− 1. In
contrast, the variance for a whole population has the population size in the
denominator. If the data is ungrouped, and there are N members of the
population, then the variance of the population is defined as

σ2 =
∑

(X − µ)2

N
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and in the case of grouped data, where each value of Xi occurs with fre-
quency fi, and

∑
fi = N ,

σ2 =
∑

fi(Xi − µ)2

N

The standard deviation of a population is the square root of the population
variance, so that there would be an N , rather than n−1 in the denominator
under the square root sign.

The standard deviation and variance have different formulae in the case
of a sample for mathematical reasons. By using n − 1 in the denominator,
s2 as an estimate of the true variance, σ2, is better than if n is used in the
denominator. This will be discussed briefly near the end of Chapter 6.

Using a Calculator. Some calculators contain built in formula for the
standard deviation or variance. The values of the variable are entered into
the calculator, and then a simple pressing of the buttion gives the value of
the standard deviation or variance. If you use a calculator in this manner,
make sure you know whether the calculator has n or n − 1 built into its
formula. Most calculators use n − 1, but some use n. Some calculators
have a button for each. If the latter is the case, then you will generally use
the button indicating n − 1, since most data you will be working with are
based on samples. Also note that these calculator methods usually work
only for ungrouped data, where you can enter a list of the actual values of
the variable. Few calculators have built in formulae for calculating the mean
and standard deviation for grouped data.

5.13 Conclusion

This chapter presented various measures of central tendency and variation.
While all of these measures are useful, the mean as a measure of the centre
of a distribution, and the standard deviation as a measure of variation, are
most important in the remainder of the text. The mean and standard devi-
ation are by far the most commonly used measures, most of the inferential
statistics in Chapters 7 and following is concerned with estimating or making
hypotheses about the true mean of a population µ. In doing this, the sample
mean X̄ and the standard deviations of both sample and population, s and
σ respectively, are also essential. Thus it is important to become familiar
with these measures, both in terms of how to calculate them, and also how
to interpret them.
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This chapter completes the first section of the textbook, descriptive
statistics. The following chapter is concerned with probability, some mathe-
matical probability distributions, and with the behaviour of random samples
from a population. All of these involve principles of probability. Chapter 6
may seem to be quite different from the discussion of distributions and the
characteristics of these distributions, subjects which have occupied most of
the text to this point. Near the end of Chapter 6, the principles of proba-
bility are used to consider the mean and standard deviation of probability
distributions. In Chapter 7, these probability distributions, along with the
descriptive statistics of these first few chapters, are both used to discuss
inferential statistics, that is, estimation and hypothesis testing.


