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Given a CW-complex X, we know that its cellular chain complex CCW
∗ (X) and singular chain

complex C∗(X) have isomorphic homology HCW
∗ (X) ∼= H∗(X). We want to generalize this

statement to homology with coefficients. Along the way, we discuss some related material
from homological algebra.

1 Direct approach

Proposition 1.1. Let X be a CW-complex and G an abelian group. Then there is an isomor-
phism of homology with coefficients HCW

∗ (X;G) ∼= H∗(X;G). Moreover, this isomorphism is
natural with respect to cellular maps X → Y and with respect to G (and all group homomor-
phisms).

Proof. Recall that the isomorphism HCW
n (X) ∼= Hn(X) was obtained by showing that the

two surjections illustrated in the diagram

Hn(Xn)

yyyy $$ $$

HCW
n (X) Hn(X)

have the same kernel. This was a consequence of the long exact sequences of the pairs
(Xk, Xk−1), and the fact that the relative homology H∗(Xk, Xk−1) is concentrated in degree
k. Homology with coefficients also has a (natural) long exact sequence associated to any
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pair, and the relative homology groups

Hi(Xk, Xk−1;G) ∼= H̃i(Xk/Xk−1;G)

∼= H̃i(
∨
k-cells

Sk;G)

∼=
⊕
k-cells

H̃i(S
k;G)

∼=

{⊕
k-cells G if i = k

0 if i 6= k

are also concentrated in degree k. Therefore, the proof for the case G = Z works here as
well.

The naturality statements follow from naturality of the diagram

Hn(Xn;G)

xxxx && &&

HCW
n (X;G) Hn(X;G)

with respect to cellular maps X → Y , and with respect to group homomorphisms G →
G′.

2 Approach using chain homotopy

Proposition 2.1. Let C∗ be a (possibly unbounded) chain complex of free abelian groups.
Then C∗ is quasi-isomorphic to its homology, in fact via a quasi-isomorphism C∗

∼−→ H∗(C∗)
(as opposed to a zig-zag).

Proof. Consider1 the short exact sequence

0 // Zn // Cn
d
// Bn−1

// 0

which is split, since Bn−1 is a free abelian group, being a subgroup of the free abelian group
Cn−1. Choosing a splitting Cn ∼= Zn ⊕ Bn−1 for each n ∈ Z, the chain complex C∗ is

1Credit to Tyler Lawson for this explanation:
http://mathoverflow.net/questions/10974/does-homology-detect-chain-homotopy-equivalence
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isomorphic (though not naturally) to the chain complex illustrated here:

...

��

degree

Zn+1 ⊕Bn

��

n+ 1

Zn ⊕Bn−1

��

n

Zn−1 ⊕Bn−2

��

n− 1

...

where the differential dn is given by the inclusion Bn−1 ↪→ Zn−1. Hence, there is an isomor-

phism of chain complexes C∗ ∼=
⊕

n∈ZC
(n)
∗ where C

(n)
∗ denotes the tiny chain complex

0

��

Bn
� _

��

n+ 1

Zn

��

n

0

concentrated in degrees n and n + 1. Consider Hn(C∗) as a chain complex concentrated in

degree n. The map ϕn : C
(n)
∗ → Hn(C∗) given by the quotient map Zn � Hn(C∗) = Zn/Bn

in degree n is a chain map which is moreover a quasi-isomorphism. These maps assemble
into a quasi-isomorphism⊕

n∈Z

ϕn :
⊕
n∈Z

C(n)
∗

∼−→
⊕
n∈Z

Hn(C∗) = H∗(C∗).

as claimed.

Recall the following fact from homological algebra.
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Theorem 2.2 (Comparison theorem for projective resolutions). Let A be an abelian category,
and let M be an object of A, viewed as a chain complex concentrated in degree 0. Let P∗ be
a (non-negatively graded) chain complex of projective objects, with a chain map f : P∗ →M ,
and let D∗ a (non-negatively graded) chain complex with a quasi-isomorphism w : D∗

∼−→ M .
Then f admits a lift as in the diagram

D∗

∼ w

��

P∗
f

//

f̃ >>

M

which is unique up to chain homotopy.

Proof. [1, Theorem 2.2.6].

Example 2.3. In the category A = Ab of abelian groups, an object is projective if and only
if it is a free abelian group.

Proposition 2.4. Let C∗ and D∗ be (possibly unbounded) chain complexes of free abelian
groups.

1. If C∗ and D∗ have isomorphic homology H∗(C∗) ∼= H∗(D∗), then they are chain homo-
topy equivalent: C∗ ' D∗.

2. If f : C∗
∼−→ D∗ is a quasi-isomorphism, then f is a chain homotopy equivalence.

Proof. 1. Consider decompositions C∗ ∼=
⊕

n∈ZC
(n)
∗ and D∗ ∼=

⊕
n∈ZD

(n)
∗ as in the proof of

Proposition 2.1. For each n ∈ Z, consider the diagram of chain complexes

D
(n)
∗

∼ ψn

��

C
(n)
∗

ϕn

∼
//

ϕ̃n

88

Hn(C∗) ∼= Hn(D∗)

where a lift ϕ̃n : C
(n)
∗ → D

(n)
∗ exists, by Theorem 2.2. Reversing the roles of C∗ and D∗, there

also exists a lift ψ̃n : D
(n)
∗ → C

(n)
∗ . Uniqueness of lifts up to chain homotopy shows that ψ̃n

is chain homotopy inverse to ϕ̃n. Therefore, the chain map⊕
n∈Z

ϕ̃n :
⊕
n∈Z

C(n)
∗

'−→
⊕
n∈Z

D(n)
∗

is a chain homotopy equivalence, with chain homotopy inverse
⊕

n∈Z ψ̃n.
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2. For each n ∈ Z, consider the diagram of chain complexes

D
(n)
∗

∼
��

ψn

// C
(n)
∗

∼
��

Hn(D∗)
Hn(f)−1

∼=
// Hn(C∗)

where there exists a lift ψn : D
(n)
∗ → C

(n)
∗ (unique up to chain homotopy), by Theorem 2.2.

These chain maps define a chain map ψ : D∗ → C∗ via the diagram

⊕
n∈ZD

(n)
∗

∼=

⊕
n∈Z ψn

//
⊕

n∈ZC
(n)
∗

∼=

D∗ //
ψ

// C∗.

One readily checks that the restriction f |
C

(n)
∗

: C
(n)
∗ → D∗ is chain homotopic to the composite

C
(n)
∗

f |
C
(n)
∗
// D∗

proj
// // D

(n)
∗
� �

inc
// D∗

and that ψ : D∗ → C∗ is chain homotopy inverse to f : C∗ → D∗.

Proposition 2.5. The relation of chain homotopy is compatible with the tensor product of
chain complexes. In other words, if the chain maps ϕ, ψ : C∗ → D∗ are chain homotopic and
ϕ′, ψ′ : C ′∗ → D′∗ are chain homotopic, then the chain maps

ϕ⊗ ϕ′, ψ ⊗ ψ′ : C∗ ⊗ C ′∗ → D∗ ⊗D′∗

are chain homotopic.

Proof. Using the factorizations illustrated in the diagram

D∗ ⊗ C ′∗
idD∗⊗ϕ′

%%

C∗ ⊗ C ′∗

ϕ⊗idC′∗ 99

idC∗⊗ϕ′ %%

ϕ⊗ϕ′
// D∗ ⊗D′∗

C∗ ⊗D′∗
ϕ⊗idD′∗

99
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it suffices to show that ϕ ⊗ idC′∗ is chain homotopic to ψ ⊗ idC′∗ . Let h : Cn → Dn+1 be a
chain homotopy from ϕ to ψ, i.e., such that the equation ψ − ϕ = dh+ hd holds.

Let us check that h⊗ idC′∗ : (C∗ ⊗ C ′∗)n → (D∗ ⊗ C ′∗)n+1 is a chain homotopy from ϕ⊗ idC′∗
to ψ ⊗ idC′∗ . For any xi ∈ Ci and x′j ∈ C ′j, with i+ j = n, we have

d(h⊗ idC′∗)(xi ⊗ x
′
j) + (h⊗ idC′∗)d(xi ⊗ x′j)

= d
(
hxi ⊗ x′j

)
+ (h⊗ idC′∗)

(
dxi ⊗ x′j + (−1)|xi|xi ⊗ dx′j

)
= dhxi ⊗ x′j + (−1)|hxi|hxi ⊗ dx′j + hdxi ⊗ x′j + (−1)|xi|hxi ⊗ dx′j

= dhxi ⊗ x′j + (−1)i+1hxi ⊗ dx′j + hdxi ⊗ x′j + (−1)ihxi ⊗ dx′j

= dhxi ⊗ x′j + hdxi ⊗ x′j

= (dh+ hd)xi ⊗ x′j

= (ψ − ϕ)xi ⊗ x′j

= ψxi ⊗ x′j − ϕxi ⊗ x′j.

Therefore the equation

d(h⊗ idC′∗) + (h⊗ idC′∗)d = ψ ⊗ idC′∗ − ϕ⊗ idC′∗

holds.

Corollary 2.6. If ϕ : C∗
'−→ D∗ and ϕ′ : C ′∗

'−→ D′∗ are chain homotopy equivalences, then
their tensor product

ϕ⊗ ϕ′ : C∗ ⊗ C ′∗
'−→ D∗ ⊗D′∗

is a chain homotopy equivalence.

Proof. Let α : D∗ → C∗ and α′ : D′∗ → C ′∗ be chain homotopy inverses of ϕ and ϕ′ respectively.
Then

α⊗ α′ : D∗ ⊗D′∗ → C∗ ⊗ C ′∗
is a chain homotopy inverse of ϕ⊗ ϕ′.

The following proposition says that “any chain complex of free abelian groups will do”, as
long as it has the correct homology (with coefficients in Z).

Proposition 2.7. Let X be a space and C∗ a chain complex of free abelian groups whose
homology is isomorphic to the singular homology of X, i.e., Hn(C∗) ∼= Hn(X) holds for all n.
Then for any abelian group G and any n, there are isomorphisms Hn(C∗ ⊗G) ∼= Hn(X;G).

Proof. The assumption is that the homology C∗ is isomorphic to the homology of the singular
chain complex C∗(X). By Proposition 2.4, there is a chain homotopy equivalence ϕ : C∗

'−→
C∗(X). By Corollary 2.6, the chain map

ϕ⊗ idG : C∗ ⊗G
'−→ C∗(X)⊗G
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is a chain homotopy equivalence, in particular a quasi-isomorphism.

Example 2.8. Let X be a ∆-complex, and C∆
∗ (X) the associated simplicial chain complex.

Then there are isomorphisms H∆
n (X;G) ∼= Hn(X;G). Naturality with respect to ∆-maps

X → Y does not follow directly from the first part of Proposition 2.7.

However, recall that the isomorphism H∆
n (X) ∼= Hn(X) is induced at the chain level by a

quasi-isomorphism θ : C∆
∗ (X)

∼−→ C∗(X), which is natural with respect to ∆-maps X → Y .
By the second part of Proposition 2.4, θ is in fact a chain homotopy equivalence. By Corol-
lary 2.6, the chain map θ⊗ idG : C∆

∗ (X)⊗G '−→ C∗(X)⊗G is also a chain homotopy equiva-
lence, and in particular induces isomorphisms H∆

n (X;G) ∼= Hn(X;G). These isomorphisms
are natural with respect to ∆-maps X → Y , since the chain map θ is.

Example 2.9. Let X be a CW-complex, and CCW
∗ (X) the associated cellular chain complex.

Then there are isomorphisms HCW
n (X;G) ∼= Hn(X;G). Naturality with respect to cellular

maps X → Y does not follow from Proposition 2.7.

3 Approach using the universal coefficient theorem

Recall the following fact.

Theorem 3.1 (Universal coefficient theorem). Let C∗ be a chain complex of free abelian
groups, and G an abelian group. Then for each n ∈ Z, there is a short exact sequence

0 // Hn(C∗)⊗G
×
// Hn(C∗ ⊗G) // Tor (Hn−1(C∗), G) // 0

which is natural in C∗ and G. Moreover, the sequence is split, though the splitting is not
natural.

Here, the map × : Hn(C∗) ⊗ G → Hn(C∗ ⊗ G) sends [α] ⊗ g to the homology class [α ⊗ g].
The functor Tor denotes TorZ1 , just like our tensor product ⊗ denotes the tensor product ⊗Z
over the integers.

Corollary 3.2. If f : C∗
∼−→ D∗ is a quasi-isomorphism between chain complexes of free

abelian groups, then the map f ⊗ idG : C∗ ⊗G→ D∗ ⊗G is a quasi-isomorphism.

Proof. By the universal coefficient theorem, for each n ∈ Z, f induces a commutative diagram

0 // Hn(C∗)⊗G

Hn(f)⊗G ∼=
��

×
// Hn(C∗ ⊗G)

Hn(f⊗idG) ∴∼=
��

// Tor (Hn−1(C∗), G)

Tor(Hn−1(f),idG) ∼=
��

// 0

0 // Hn(D∗)⊗G
×
// Hn(D∗ ⊗G) // Tor (Hn−1(D∗), G) // 0
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where the rows are exact. By assumption, Hn(f) and Hn−1(f) are isomorphisms, thus so are
the downward maps Hn(f)⊗G and Tor (Hn−1(f), idG). By the 5-lemma, the downward map
in the middle Hn(f ⊗ idG) is also an isomorphism.

Example 3.3. Corollary 3.2 provides an alternate proof that the chain map

θ ⊗ idG : C∆
∗ (X)⊗G ∼−→ C∗(X)⊗G

is a quasi-isomorphism, as discussed in Example 2.8.

What if an isomorphism in homology does not come from a chain map, as in the cellular
homology theorem? Then we can still argue as follows.

Proposition 3.4. If two (possibly unbounded) chain complexes of free abelian groups C∗
and D∗ have isomorphic homology H∗(C∗) ∼= H∗(D∗), then the chain complexes C∗ ⊗G and
D∗ ⊗G have isomorphic homology.

Proof. Using the splitting in the universal coefficient theorem, we have (non-natural) isomor-
phisms:

Hn(C∗ ⊗G) ∼= Hn(C∗)⊗G⊕ Tor (Hn−1(C∗), G)

∼= Hn(D∗)⊗G⊕ Tor (Hn−1(D∗), G)

∼= Hn(D∗ ⊗G).

Alternate proof. By Proposition 2.4, there exists a quasi-isomorphism ϕ : C∗
∼−→ D∗ (which is

in fact a chain homotopy equivalence). By Corollary 3.2, the chain map ϕ⊗ idG : C∗ ⊗G
∼−→

D∗ ⊗G is also a quasi-isomorphism.

Remark 3.5. Section 3 is essentially doing the same thing as Section 2, from a more com-
putational perspective. A key step for proving the universal coefficient theorem is to choose
splittings of the short exact sequences

0 // Zn // Cn
d
// Bn−1

// 0

like we did in the proof of Proposition 2.1.
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