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Given a CW-complex X, we know that its cellular chain complex CSW (X)) and singular chain
complex C,(X) have isomorphic homology HEW(X) = H,(X). We want to generalize this
statement to homology with coefficients. Along the way, we discuss some related material
from homological algebra.

1 Direct approach

Proposition 1.1. Let X be a CW-complex and G an abelian group. Then there is an isomor-
phism of homology with coefficients HCWY (X ; G) = H,(X;G). Moreover, this isomorphism is
natural with respect to cellular maps X — Y and with respect to G (and all group homomor-
phisms).

I

Proof. Recall that the isomorphism HSW(X)
two surjections illustrated in the diagram

H,(X) was obtained by showing that the

H,(Xn)

N

HY(X) H,(X)

have the same kernel. This was a consequence of the long exact sequences of the pairs
(Xk, Xk—1), and the fact that the relative homology H. (X, Xx_1) is concentrated in degree
k. Homology with coefficients also has a (natural) long exact sequence associated to any



pair, and the relative homology groups
Hi( Xy, Xp—15 G) =2 Hy(Xy/ Xi1; G)

~ i\ %G

k-cells

are also concentrated in degree k. Therefore, the proof for the case G = Z works here as
well.

The naturality statements follow from naturality of the diagram

H,(X,;G)

PN

HW(X; Q) H,(X;QG)
with respect to cellular maps X — Y, and with respect to group homomorphisms G —

G O

2 Approach using chain homotopy

Proposition 2.1. Let C, be a (possibly unbounded) chain complex of free abelian groups.
Then C, is quasi-isomorphic to its homology, in fact via a quasi-isomorphism C, = H,(C.)
(as opposed to a zig-zag).

Proof. Considerf]] the short exact sequence

d
0 L Cp, — B,y —= 0

which is split, since B,,_; is a free abelian group, being a subgroup of the free abelian group
Cn_1. Choosing a splitting C,, = Z, ® B,_; for each n € Z, the chain complex C, is

!Credit to Tyler Lawson for this explanation:
http://mathoverflow.net/questions/10974/does-homology-detect-chain-homotopy-equivalence


http://mathoverflow.net/questions/10974/does-homology-detect-chain-homotopy-equivalence

isomorphic (though not naturally) to the chain complex illustrated here:

degree

Lni1 ® By, n+1
Zn @ By n

Zn1® Bn_o n—1

where the differential d,, is given by the inclusion B,,_; — Z,,_1. Hence, there is an isomor-
phism of chain complexes C, = P, ., C™ where C'™ denotes the tiny chain complex

0

B:Z n+1
Zn n
0

concentrated in degrees n and n + 1. Consider H,(C.) as a chain complex concentrated in
degree n. The map @, : oM H,(C,) given by the quotient map Z, — H,(C,) = Z,/B,
in degree n is a chain map which is moreover a quasi-isomorphism. These maps assemble
into a quasi-isomorphism

P en: P =P Ha(CL) = H(C).

ne”L nez nez

as claimed. n

Recall the following fact from homological algebra.
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Theorem 2.2 (Comparison theorem for projective resolutions). Let A be an abelian category,
and let M be an object of A, viewed as a chain complex concentrated in degree 0. Let P, be
a (non-negatively graded) chain complex of projective objects, with a chain map f: P, — M,
and let D, a (non-negatively graded) chain complex with a quasi-isomorphism w: D, = M.
Then f admits a lift as in the diagram

D,
.)ch 7 L
7~ w
P, — M
!
which 1s unique up to chain homotopy.
Proof. |1, Theorem 2.2.6]. O

Example 2.3. In the category A = Ab of abelian groups, an object is projective if and only
if it is a free abelian group.

Proposition 2.4. Let C, and D, be (possibly unbounded) chain complezes of free abelian
groups.
1. If C, and D, have isomorphic homology H,.(C.) = H,.(D,), then they are chain homo-
topy equivalent: C, ~ D,.
2. If f: C, = D, is a quasi-isomorphism, then f is a chain homotopy equivalence.

Proof. 1. Consider decompositions C, = &, ., C™ and D. =8, D™ as in the proof of
Proposition [2.1l For each n € Z, consider the diagram of chain complexes

- ~

$n

where a lift Q:k(f ) — p™ exists, by Theorem . Reversing the roles of C, and D, there
also exists a lift ¢, : D™ — €™ Uniqueness of lifts up to chain homotopy shows that t,
is chain homotopy inverse to p,. Therefore, the chain map

D D =@

ne” ne” neL

is a chain homotopy equivalence, with chain homotopy inverse @, ., %
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2. For each n € 7Z, consider the diagram of chain complexes

pw _ T o

l Hy(f)™1 j

H,(D,) — H,(C,)

1%

where there exists a lift 1, : D" — ¢ (unique up to chain homotopy), by Theorem
These chain maps define a chain map ¢: D, — C, via the diagram

(n) @nEZ 1/’n (n)
@nEZ D, — @nEZ Cx

o oY

D, C..

One readily checks that the restriction f| o o D, is chain homotopic to the composite

flego oo

c™ . p, —» p™ L D,

and that ¢: D, — C is chain homotopy inverse to f: C, — D,. ]

Proposition 2.5. The relation of chain homotopy is compatible with the tensor product of
chain complexes. In other words, if the chain maps ¢, : C, — D, are chain homotopic and
o' ' CL— D are chain homotopic, then the chain maps

pR¢ WYY C,®C, — D, ®D,

are chain homotopic.

Proof. Using the factorizations illustrated in the diagram

D,®C,
PR’
C.®C, D, ® D,
idc*@?%\'* %D;
C,® D,



it suffices to show that ¢ ® id¢s is chain homotopic to ¢ ® idey. Let h: C,, — D, be a
chain homotopy from ¢ to 9, i.e., such that the equation v — ¢ = dh + hd holds.

Let us check that h ® ides : (Ch ® CY),, = (D ® C))py1 is a chain homotopy from ¢ ® ider
to ¢ ®ide;. For any z; € C; and oy € Cj, with i + j = n, we have

d(h ®ide)(z; @ 25) 4 (h @ idey )d(2; @ )

=d (hz; ® 7)) + (h®ide;) (do; ® o + (-1)"z; @ dah)
= dha; ® 2 + (—1)"ha; ® do; + hdz; ® o + (= 1) ha; @ do
= dha; @ o + (—1)" ha; @ da; + hda; @ 5 + (—1)'ha; @ da)
= dhz; ® 17; + hdx; ® J};
= (dh + hd)z; ® 2
= (Y — @)z ®
= Yr; @ T — o1; @ T

Therefore the equation

d(h®ider) + (h®ider)d =9 ®ide; — ¢ ®idey
holds. O

Corollary 2.6. If p: C, = D, and ¢': C' = D
their tensor product

are chain homotopy equivalences, then

/
wR¢:C,®C S D, oD

18 a chain homotopy equivalence.

Proof. Let a: D, — C, and o : D), — C’ be chain homotopy inverses of ¢ and ¢’ respectively.
Then
a®d: D, @D, —C,oC.

is a chain homotopy inverse of ¢ ® ¢'. O

The following proposition says that “any chain complex of free abelian groups will do”, as
long as it has the correct homology (with coefficients in Z).

Proposition 2.7. Let X be a space and C, a chain complex of free abelian groups whose
homology is isomorphic to the singular homology of X, i.e., H,(C,) = H,(X) holds for all n.
Then for any abelian group G and any n, there are isomorphisms H,(C, ® G) = H,(X; G).

Proof. The assumption is that the homology C\ is isomorphic to the homology of the singular
chain complex C,(X). By Proposition there is a chain homotopy equivalence ¢: C, —
C.(X). By Corollary , the chain map

p®idg: C, @G = C.(X)® G
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is a chain homotopy equivalence, in particular a quasi-isomorphism. O]

Example 2.8. Let X be a A-complex, and C2(X) the associated simplicial chain complex.
Then there are isomorphisms H2(X;G) = H,(X;G). Naturality with respect to A-maps
X — Y does not follow directly from the first part of Proposition [2.7]

However, recall that the isomorphism H2(X) = H,(X) is induced at the chain level by a
quasi-isomorphism 6: C2(X) = C,(X), which is natural with respect to A-maps X — Y.
By the second part of Proposition [2.4] € is in fact a chain homotopy equivalence. By Corol-
lary , the chain map # ®idg: C2(X)® G = C,(X) ® G is also a chain homotopy equiva-
lence, and in particular induces isomorphisms H2(X;G) = H,(X;G). These isomorphisms
are natural with respect to A-maps X — Y, since the chain map @ is.

Example 2.9. Let X be a CW-complex, and C°WV (X)) the associated cellular chain complex.
Then there are isomorphisms HSW(X;G) & H,(X;G). Naturality with respect to cellular
maps X — Y does not follow from Proposition [2.7]

3 Approach using the universal coefficient theorem

Recall the following fact.

Theorem 3.1 (Universal coefficient theorem). Let C, be a chain complex of free abelian
groups, and G an abelian group. Then for each n € 7Z, there is a short exact sequence

X

0 — H(C)®C —— Hy(C.®G) —— Tor(H,_1(C,),G) —— 0

which is natural i C, and G. Moreover, the sequence is split, though the splitting is not
natural.

Here, the map x: H,(C,) ® G — H,(C, ® G) sends [a] ® g to the homology class [a ® g].
The functor Tor denotes Tor”, just like our tensor product ® denotes the tensor product ®z
over the integers.

Corollary 3.2. If f: C, = D, is a quasi-isomorphism between chain complexes of free
abelian groups, then the map f ®idg: C, ® G — D, ® G is a quasi-isomorphism.

Proof. By the universal coefficient theorem, for each n € Z, f induces a commutative diagram

X

0 — Hy(C)®G —— Hy(C,®G) —— Tor(Hn1(C.),G) —— 0
Hyn(f)®G j = H,(f®idg) l = Tor(Hyp—1(f),idg) l o

0 — H.(D.)®G —— Hy(D.®G) —— Tor(H,1(D,),G) — 0



where the rows are exact. By assumption, H,(f) and H,_1(f) are isomorphisms, thus so are
the downward maps H,(f) ® G and Tor (H,,—1(f),idg). By the 5-lemma, the downward map
in the middle H,(f ® idg) is also an isomorphism. O

Example 3.3. Corollary provides an alternate proof that the chain map
0 @idg: C2(X)®G S C(X)®G

is a quasi-isomorphism, as discussed in Example [2.8]

What if an isomorphism in homology does not come from a chain map, as in the cellular
homology theorem? Then we can still argue as follows.

Proposition 3.4. If two (possibly unbounded) chain complezes of free abelian groups C.
and D, have isomorphic homology H,.(C,) = H,.(D,), then the chain complezes C, ® G and
D, ® G have isomorphic homology.

Proof. Using the splitting in the universal coefficient theorem, we have (non-natural) isomor-
phisms:

H,(C.®G)= H,(C,)® G& Tor (H,_1(C,),G)
H,(D,)® G @ Tor (H,_1(D,),G)
H,

(D, ®G). O

2

>~

Alternate proof. By Proposition , there exists a quasi-isomorphism ¢: C, = D, (which is
in fact a chain homotopy equivalence). By Corollary , the chain map ¢ ®idg: C, ® G =
D, ® G is also a quasi-isomorphism. O

Remark 3.5. Section [3] is essentially doing the same thing as Section [2 from a more com-
putational perspective. A key step for proving the universal coefficient theorem is to choose
splittings of the short exact sequences

d
0 Ly C, — B,y —= 0

like we did in the proof of Proposition [2.1
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