Math 9052B/4152B - Algebraic Topology Winter 2015
 Homework 2

Martin Frankland

Due date: Wednesday February 4

Problem 1. Let X and Y be spaces, and let $p: X \times Y \rightarrow X$ be the projection onto the first factor.
(a) Show that p has the path lifting property.
(b) Show that p has the unique path lifting property if and only if the path components of Y consist of single points. (This holds in particular when Y is discrete.)

Problem 2. (Variant of Hatcher \#1.1.16) In each case below, show that the subspace A is not a retract of the space X.
(a) The solid torus $X=S^{1} \times D^{2}$ and its boundary torus $A=\partial X=S^{1} \times S^{1}$.
(b) The torus $X=S^{1} \times S^{1}$ and the wedge $A=S^{1} \vee S^{1}=\left(S^{1} \times\left\{y_{0}\right\}\right) \cup\left(\left\{x_{0}\right\} \times S^{1}\right)$.

Problem 3. (Variant of Hatcher \#0.12) Let $\operatorname{Conn}(X)$ denote the set of connected components of a space X.
(a) Describe the function $\operatorname{Conn}(f): \operatorname{Conn}(X) \rightarrow \operatorname{Conn}(Y)$ induced by a (continuous) map $f: X \rightarrow Y$ and check that it is well-defined. Show that the resulting construction defines a functor

$$
\text { Conn: Top } \rightarrow \text { Set }
$$

from the category of topological spaces to the category of sets.
(b) Show that Conn is a homotopy functor in the following sense: If f and g are homotopic maps, then they induce the same function $\operatorname{Conn}(f)=\operatorname{Conn}(g)$.
(c) Deduce that a homotopy equivalence between spaces induces a bijection between their sets of connected components. (In particular, being connected is a homotopy invariant.)

Now let $\pi_{0}(X)$ denote the set of path components of a space X. The same arguments as above show that $\pi_{0}: \operatorname{Top} \rightarrow$ Set is a homotopy functor. (Do not show this. It really is the same as above.)
(d) Consider the function $\eta_{X}: \pi_{0}(X) \rightarrow \operatorname{Conn}(X)$ sending a path component C to the connected component containing C. Show that these functions η_{X} define a natural transformation $\eta: \pi_{0} \rightarrow$ Conn.
(e) Deduce that if X and Y are homotopy equivalent spaces, and X is such that its connected components coincide with its path components, then the same holds for Y.

Problem 4. (Hatcher \#1.2.4) Let A be the union of n lines through the origin in \mathbb{R}^{3}. Compute $\pi_{1}\left(\mathbb{R}^{3} \backslash A\right)$.

