Math 535 - General Topology
 Fall 2012

Homework 9, Lecture 10/24

Problem 3. Consider the "infinite ladder" $X \subset \mathbb{R}^{2}$ consisting of two vertical "sides" $\{0\} \times \mathbb{R}$ and $\{1\} \times \mathbb{R}$ along with horizontal "rungs" $[0,1] \times\left\{\frac{1}{n}\right\}$ for all $n \in \mathbb{N}$ as well as $[0,1] \times\{0\}$. In other words, X is the union

$$
X=(\{0,1\} \times \mathbb{R}) \cup\left([0,1] \times\left(\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\} \cup\{0\}\right)\right) \subset \mathbb{R}^{2}
$$

Show that X is path-connected, but not locally path-connected.

Problem 4. Let (X, d) be a metric space. Given points $x, y \in X$ and $\epsilon>0$, an ϵ-chain from x to y in X is a finite sequence of points

$$
x=z_{0}, z_{1}, \ldots, z_{n-1}, z_{n}=y
$$

in X such that the distance from one to the next is less than ϵ, i.e. $d\left(z_{i-1}, z_{i}\right)<\epsilon$ for $1 \leq i \leq n$. Show that if X is connected, then for all $\epsilon>0$, any two points $x, y \in X$ can be connected by an ϵ-chain.

