Math 535 - General Topology
 Fall 2012
 Homework 6, Lecture 10/5

Problem 4. In this problem, we will show that a countable product of metrizable spaces is metrizable.
a. Let (X, d) be a metric space. Consider the function $\rho: X \times X \rightarrow \mathbb{R}$ defined by

$$
\rho(x, y)=\frac{d(x, y)}{1+d(x, y)}
$$

Show that ρ is a metric on X.
b. Show that the metric ρ from part (a) induces the same topology on X as the original metric d.

Remark. We could also have used the formula $\rho(x, y)=\min \{d(x, y), 1\}$. The goal was just to find a metric ρ which is topologically equivalent to d and is bounded.
c. Let $\left\{\left(X_{i}, d_{i}\right)\right\}_{i \in \mathbb{N}}$ be a countable family of metric spaces, where each metric d_{i} is bounded by 1 , i.e.

$$
d_{i}\left(x_{i}, y_{i}\right) \leq 1 \text { for all } x_{i}, y_{i} \in X_{i} .
$$

Write $X:=\prod_{i \in \mathbb{N}} X_{i}$ and consider the function $d: X \times X \rightarrow \mathbb{R}$ defined by

$$
d(x, y)=\sum_{i=1}^{\infty} \frac{1}{2^{i}} d_{i}\left(x_{i}, y_{i}\right)
$$

Show that d is a metric on X. (First check that d is a well-defined function.)
d. Show that the metric d from part (c) induces the product topology on $X=\prod_{i \in \mathbb{N}} X_{i}$.

