Math 535 - General Topology Fall 2012 Homework 4, Lecture 9/17

Problem 1. Let $\{\Lambda_{\alpha}\}_{\alpha \in A}$ be a family of directed set. Show that the product $\prod_{\alpha \in A} \Lambda_{\alpha}$ becomes a directed set by defining the relation

$$\lambda \leq \lambda'$$
 if $\lambda_{\alpha} \leq \lambda'_{\alpha}$ in Λ_{α} for all $\alpha \in A$

i.e. the componentwise preorder. (First check that this is indeed a preorder.)

Problem 2. Consider the space $\mathbb{R}^{\mathbb{N}}$ with the *box* topology. Consider the subset

 $Z = \{ x \in \mathbb{R}^{\mathbb{N}} \mid x_n > 0 \text{ for all } n \in \mathbb{N} \}$

and the point $\underline{0} = (0, 0, ...)$. We know $\underline{0} \in \overline{Z}$, but now we will find an explicit net in Z that converges to $\underline{0}$.

Consider the directed set $\Lambda := \mathbb{N}^{\mathbb{N}} \cong \prod_{i \in \mathbb{N}} \mathbb{N} = \{(n_1, n_2, \ldots) \mid n_i \in \mathbb{N}\}$ with the componentwise preorder (as in Problem 1).

Consider the net φ in Z indexed by Λ which assigns to the list $\lambda = (n_1, n_2, \ldots)$ the point

$$\varphi(\lambda) = \left(\frac{1}{n_1}, \frac{1}{n_2}, \ldots\right) \in Z.$$

Show that this net φ converges to $\underline{0}$.

Problem 3. Let $\{X_{\alpha}\}_{\alpha \in A}$ be a family of topological spaces. Show that a net $(x_{\lambda})_{\lambda \in \Lambda}$ in the product $\prod_{\alpha \in A} X_{\alpha}$ converges to a point x if and only if for each index $\alpha \in A$, the net $(p_{\alpha}(x_{\lambda}))_{\lambda \in \Lambda}$ in X_{α} converges to $p_{\alpha}(x)$.

Here $p_{\beta} \colon \prod_{\alpha \in A} X_{\alpha} \to X_{\beta}$ denotes the canonical projection.