Math 535-General Topology
 Fall 2012
 Homework 2, Lecture 9/7

Problem 4. (Munkres Exercise 2.19.7) Consider the set of sequences of real numbers

$$
\mathbb{R}^{\mathbb{N}}=\left\{\left(x_{1}, x_{2}, \ldots\right) \mid x_{n} \in \mathbb{R} \text { for all } n \in \mathbb{N}\right\} \cong \prod_{n \in \mathbb{N}} \mathbb{R}
$$

and consider the subset of sequences that are "eventually zero"

$$
\mathbb{R}^{\infty}:=\left\{x \in \mathbb{R}^{\mathbb{N}} \mid x_{n} \neq 0 \text { for at most finitely many } n\right\}
$$

a. In the box topology on $\mathbb{R}^{\mathbb{N}}$, is \mathbb{R}^{∞} a closed subset?
b. In the product topology on $\mathbb{R}^{\mathbb{N}}$, is \mathbb{R}^{∞} a closed subset?

Problem 5. Let X be a topological space, S a set, and $f: X \rightarrow S$ a function. Consider the collection of subsets of S

$$
\mathcal{T}:=\left\{U \subseteq S \mid f^{-1}(U) \text { is open in } X\right\}
$$

a. Show that \mathcal{T} is a topology on S.
b. Show that \mathcal{T} is the largest topology on S making f continuous.
c. Let Y be a topological space. Show that a map $g: S \rightarrow Y$ is continuous if and only if the composite $g \circ f: X \rightarrow Y$ is continuous.
d. Show that \mathcal{T} is the smallest topology on S with the property that a map $g: S \rightarrow Y$ is continuous whenever $g \circ f$ is continuous.

Problem 6. Consider the subset $X=\{0\} \cup\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\} \subset \mathbb{R}$ viewed as a subspace of the real line \mathbb{R}. As a set, X is the disjoint union of the singletons $\{0\}$ and $\left\{\frac{1}{n}\right\}$ for all $n \in \mathbb{N}$. However, show that X does not have the coproduct topology on $\{0\} \amalg \coprod_{n \in \mathbb{N}}\left\{\frac{1}{n}\right\}$.

