Math 535 - General Topology Fall 2012 Homework 2, Lecture 9/5

Problem 1. (Brown Exercise 2.4.5) Consider $X = [0, 2] \setminus \{1\}$ as a subspace of the real line \mathbb{R} . Show that the subset $[0, 1) \subset X$ is both open and closed in X.

Problem 2. (Bredon Exercise I.3.8) Let X be a topological space that can be written as a union $X = A \cup B$ where A and B are *closed* subsets of X. Let $f: X \to Y$ be a function, where Y is any topological space. Assume that the restrictions of f to A and to B are both continuous. Show that f is continuous.

Problem 3. A map between topological spaces $f: X \to Y$ is called an **open** map if for every open subset $U \subseteq X$, its image $f(U) \subseteq Y$ is open in Y.

a. (Munkres Exercise 2.16.4) Let X and Y be topological spaces. Show that the projection maps $p_X: X \times Y \to X$ and $p_Y: X \times Y \to Y$ are open maps.

b. Find an example of *metric* spaces X and Y, and a closed subset $C \subseteq X \times Y$ such that the projection $p_X(C) \subseteq X$ is *not* closed in X.

In other words, the projection maps are (usually) not closed maps.