Math 535-General Topology
 Fall 2012
 Homework 1, Lecture 8/27

Definition. Let V be a (real or complex) vector space. A norm on V is a function $\|\cdot\|: V \rightarrow \mathbb{R}$ satisfying:

1. Positivity: $\|x\| \geq 0$ for all $x \in V$ and moreover $\|x\|=0$ holds if and only if $x=0$.
2. Homogeneity: $\|\alpha x\|=|\alpha|\|x\|$ for any scalar α and $x \in V$.
3. Triangle inequality: $\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in V$.

A normed vector space is the data $(V,\|\cdot\|)$ of a vector space V equipped with a norm $\|\cdot\|$.

Problem 1. Let $(V,\|\cdot\|)$ be a normed vector space. Define a function $d: V \times V \rightarrow \mathbb{R}$ by

$$
d(x, y):=\|x-y\| .
$$

Show that d is a metric on V, called the metric induced by the norm $\|\cdot\|$.

Problem 2. Denote by $\|\cdot\|_{2}$ the standard (Euclidean) norm on \mathbb{R}^{n}, defined by

$$
\|x\|_{2}:=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}
$$

Now consider the function $\|\cdot\|_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by

$$
\|x\|_{1}:=\sum_{i=1}^{n}\left|x_{i}\right|
$$

a. Show that $\|\cdot\|_{1}$ is a norm on \mathbb{R}^{n}.

Remark. The norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are special cases of the so-called p-norm, for any real number $p \geq 1$ or $p=\infty$. See:
http://en.wikipedia.org/wiki/Lp_spaces\#The_p-norm_in_finite_dimensions.
b. Find constants $C, D>0$ satisfying

$$
\begin{aligned}
\|x\|_{2} & \leq C\|x\|_{1} \\
\|x\|_{1} & \leq D\|x\|_{2}
\end{aligned}
$$

for all $x \in \mathbb{R}^{n}$.
Definition. Two norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ on a vector space V are equivalent if they can be compared as in Problem 2b.
Definition. Two metrics d_{1} and d_{2} on a set X are topologically equivalent if for every $x \in X$ and $\epsilon>0$, there is a $\delta>0$ satisfying

$$
\begin{aligned}
d_{1}(x, y)<\delta & \Rightarrow d_{2}(x, y)<\epsilon \\
d_{2}(x, y)<\delta & \Rightarrow d_{1}(x, y)<\epsilon .
\end{aligned}
$$

In other words, the identity function $\left(X, d_{1}\right) \rightarrow\left(X, d_{2}\right)$ is a homeomorphism.

Problem 3. Show that equivalent norms on a vector space V induce topologically equivalent metrics.

Problem 4. (Bredon Prop. I.1.3) Show that topologically equivalent metrics induce the same topology (which explains the terminology). In other words, if d_{1} and d_{2} are topologically equivalent metrics on X, then a subset $U \subseteq X$ is open with respect to d_{1} if and only if it is open with respect to d_{2}.

