Math 535 - General Topology Fall 2012 Homework 14, Lecture 12/7

Problem 5. Let X and Y be topological spaces, where Y is Hausdorff.

a. Consider the set Y^X of all functions from X to Y, endowed with the topology of pointwise convergence. Recall that via the correspondence $Y^X \cong \prod_{x \in X} Y$, this corresponds to the product topology.

Show that a collection of functions $\mathcal{F} \subseteq Y^X$ is compact if and only if the following two conditions hold:

- 1. \mathcal{F} is closed in Y^X ;
- 2. For all $x \in X$, the projection $p_x(\mathcal{F}) = \{f(x) \mid f \in \mathcal{F}\} \subseteq Y$ has compact closure in Y.

b. Let C(X,Y) be endowed with the compact-open topology, and let $\mathcal{F} \subseteq C(X,Y)$ be a compact subspace. Show that \mathcal{F} satisfies the conditions 1. and 2. listed in part (a), i.e.

- 1. \mathcal{F} viewed as a subset of Y^X is closed with respect to the topology of pointwise convergence;
- 2. For all $x \in X$, the projection $p_x(\mathcal{F}) = \{f(x) \mid f \in \mathcal{F}\} \subseteq Y$ has compact closure in Y.

Problem 6. (Munkres Exercise 47.1) For each of the following subsets $\mathcal{F} \subset C(\mathbb{R}, \mathbb{R})$, say if \mathcal{F} is equicontinuous of not, and prove your answer.

- **a.** $\mathcal{F} = \{f_n \mid n \in \mathbb{N}\}$ where $f_n(x) = x + \sin nx$.
- **b.** $\mathcal{F} = \{g_n \mid n \in \mathbb{N}\}$ where $g_n(x) = n + \sin x$.
- c. $\mathcal{F} = \{h_n \mid n \in \mathbb{N}\}$ where $h_n(x) = |x|^{\frac{1}{n}}$.
- **d.** $\mathcal{F} = \{k_n \mid n \in \mathbb{N}\}$ where $k_n(x) = n \sin\left(\frac{x}{n}\right)$.