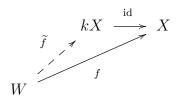
Math 535 - General Topology Fall 2012 Homework 14, Lecture 12/5

Problem 3. Let X be a topological space and kX its k-ification.

a. Show that the identity function id: $kX \to X$ is a homeomorphism if and only if X is compactly generated.

b. Show that kX is always compactly generated.

c. Let W be a compactly generated space and $f: W \to X$ a continuous map. Show that there exists a unique continuous map $\widetilde{f}: W \to kX$ satisfying $f = \operatorname{id} \circ \widetilde{f}$, i.e. making the diagram



commute.

Problem 4. Show that any compactly generated space X is a quotient of a coproduct of compact spaces. In other words, there exists a collection $\{K_i\}_{i \in I}$ of compact spaces, indexed by some set I, and a quotient map $q: \coprod_{i \in I} K_i \to X$.