Math 535 - General Topology Fall 2012 Homework 13, Lecture 11/30

Problem 5. Let X and Y be topological spaces, where X is *Hausdorff*. Let S be a subbasis for the topology of Y. Show that the collection

 $\{V(K,S) \mid K \subseteq X \text{ compact}, S \in \mathcal{S}\}\$

is a subbasis for the compact-open topology on C(X, Y).

The notation above is $V(K, S) = \{ f \in C(X, Y) \mid f(K) \subseteq S \}.$

Problem 6. Consider the real line \mathbb{R} and the rationals \mathbb{Q} with their standard (metric) topology. Consider the evaluation map

$$e: \mathbb{Q} \times C(\mathbb{Q}, \mathbb{R}) \to \mathbb{R}.$$

Let $f: \mathbb{Q} \to \mathbb{R}$ be a constant function (say, $f \equiv 0$), and let $q \in \mathbb{Q}$. Show that the evaluation map e is *not* continuous at $(q, f) \in \mathbb{Q} \times C(\mathbb{Q}, \mathbb{R})$.

Hint: You may want to use the fact that all compact subsets of \mathbb{Q} have empty interior (c.f. Homework 7 Problem 5), and the fact that \mathbb{Q} is completely regular (since it is normal).