Math 535 - General Topology
 Fall 2012
 Homework 10, Lecture 10/31

Problem 3. Let X be a topological space.
a. Let $w, x, y, z \in X, \alpha:[0,1] \rightarrow X$ a path from w to $x, \beta:[0,1] \rightarrow X$ a path from x to y, and $\gamma:[0,1] \rightarrow X$ a path from y to z. Show that concatenation of paths is associative up to homotopy, in the following sense:

$$
(\alpha * \beta) * \gamma \simeq \alpha *(\beta * \gamma) \text { rel }\{0,1\}
$$

b. Let $\alpha:[0,1] \rightarrow X$ be a path in X from x to y. Denote by $\bar{\alpha}:[0,1] \rightarrow X$ the reverse path of α, defined by

$$
\bar{\alpha}(s)=\alpha(1-s) .
$$

Show that $\bar{\alpha}$ is inverse to α up to homotopy, in the following sense:

$$
\alpha * \bar{\alpha} \simeq 1_{x} \operatorname{rel}\{0,1\}
$$

where $1_{x}:[0,1] \rightarrow X$ denotes the constant path at x.
Remark. No need to check the condition $\bar{\alpha} * \alpha \simeq 1_{y}$ rel $\{0,1\}$, which follows from part (b) applied to the path $\bar{\alpha}$ and observing $\overline{\bar{\alpha}}=\alpha$.
Remark. We have earned the right to adopt the notation $\bar{\alpha}=\alpha^{-1}$.
Definition. Let $A \subseteq X$ be a subspace of X, and denote by $i: A \rightarrow X$ the inclusion. Then A is called...

- a retract of X if there is a continuous map $r: X \rightarrow A$ satisfying $r \circ i=\operatorname{id}_{A}$, in other words $r(a)=a$ for all $a \in A$. Such a map r is called a retraction from X to A.
- a deformation retract of X if there is a retraction $r: X \rightarrow A$ which is moreover a homotopy equivalence, i.e. satisfying $i \circ r \simeq \mathrm{id}_{X}$.
Explicitly: There is a homotopy $H: X \times[0,1] \rightarrow X$ satisfying $H(x, 0)=x$ for all $x \in X$, $H(x, 1) \in A$ for all $x \in X$, and $H(a, 1)=a$ for all $a \in A$.
- a strong deformation retract of X if there is a retraction $r: X \rightarrow A$ which moreover satisfies

$$
i \circ r \simeq \operatorname{id}_{X} \text { rel } A
$$

Explicitly: There is a homotopy $H: X \times[0,1] \rightarrow X$ satisfying $H(x, 0)=x$ for all $x \in X$, $H(x, 1) \in A$ for all $x \in X$, and $H(a, t)=a$ for all $a \in A$ and all $t \in[0,1]$.

Problem 4. Consider the 2-simplex

$$
\Delta^{2}:=\left\{(x, y) \in \mathbb{R}^{2} \mid x+y \leq 1, x \geq 0, y \geq 0\right\}
$$

and consider the subspace of Δ^{2} consisting of points on the coordinate axes

$$
A=\left\{(x, y) \in \Delta^{2} \mid x=0 \text { or } y=0\right\}=(\{0\} \times[0,1]) \cup([0,1] \times\{0\}) .
$$

Show that A is a strong deformation retract of Δ^{2}.

