Math 535 - General Topology Fall 2012 Homework 10, Lecture 10/31

Problem 3. Let X be a topological space.

a. Let $w, x, y, z \in X$, $\alpha \colon [0, 1] \to X$ a path from w to $x, \beta \colon [0, 1] \to X$ a path from x to y, and $\gamma \colon [0, 1] \to X$ a path from y to z. Show that concatenation of paths is associative up to homotopy, in the following sense:

$$(\alpha * \beta) * \gamma \simeq \alpha * (\beta * \gamma) \text{ rel } \{0, 1\}.$$

b. Let $\alpha \colon [0,1] \to X$ be a path in X from x to y. Denote by $\overline{\alpha} \colon [0,1] \to X$ the **reverse** path of α , defined by

$$\overline{\alpha}(s) = \alpha(1-s).$$

Show that $\overline{\alpha}$ is inverse to α up to homotopy, in the following sense:

$$\alpha * \overline{\alpha} \simeq 1_x \text{ rel } \{0, 1\}$$

where $1_x: [0,1] \to X$ denotes the constant path at x.

Remark. No need to check the condition $\overline{\alpha} * \alpha \simeq 1_y$ rel $\{0, 1\}$, which follows from part (b) applied to the path $\overline{\alpha}$ and observing $\overline{\overline{\alpha}} = \alpha$.

Remark. We have earned the right to adopt the notation $\overline{\alpha} = \alpha^{-1}$.

Definition. Let $A \subseteq X$ be a subspace of X, and denote by $i: A \to X$ the inclusion. Then A is called...

- a **retract** of X if there is a continuous map $r: X \to A$ satisfying $r \circ i = id_A$, in other words r(a) = a for all $a \in A$. Such a map r is called a **retraction** from X to A.
- a deformation retract of X if there is a retraction $r: X \to A$ which is moreover a homotopy equivalence, i.e. satisfying $i \circ r \simeq id_X$.

Explicitly: There is a homotopy $H: X \times [0, 1] \to X$ satisfying H(x, 0) = x for all $x \in X$, $H(x, 1) \in A$ for all $x \in X$, and H(a, 1) = a for all $a \in A$.

• a strong deformation retract of X if there is a retraction $r: X \to A$ which moreover satisfies

$$i \circ r \simeq \mathrm{id}_X \mathrm{rel} A$$

Explicitly: There is a homotopy $H: X \times [0, 1] \to X$ satisfying H(x, 0) = x for all $x \in X$, $H(x, 1) \in A$ for all $x \in X$, and H(a, t) = a for all $a \in A$ and all $t \in [0, 1]$.

Problem 4. Consider the 2-simplex

$$\Delta^2 := \{ (x, y) \in \mathbb{R}^2 \mid x + y \le 1, x \ge 0, y \ge 0 \}$$

and consider the subspace of Δ^2 consisting of points on the coordinate axes

$$A = \{(x, y) \in \Delta^2 \mid x = 0 \text{ or } y = 0\} = (\{0\} \times [0, 1]) \cup ([0, 1] \times \{0\}).$$

Show that A is a strong deformation retract of Δ^2 .