Math 535 - General Topology Glossary

Martin Frankland

December 17, 2012

1 Separation axioms

Definition 1.1. A topological space X is called:

- **T**₀ or **Kolmogorov** if any distinct points are topologically distinguishable: For $x, y \in X$ with $x \neq y$, there is an open subset $U \subset X$ containing one of the two points but not the other.
- \mathbf{T}_1 if any distinct points are separated (i.e. not in the closure of the other): For $x, y \in X$ with $x \neq y$, there are open subsets $U_x, U_y \subset X$ satisfying $x \in U_x$ but $y \notin U_x$, whereas $y \in U_y$ but $x \notin U_y$.
- **T**₂ or **Hausdorff** if any distinct points can be separated by neighborhoods: For $x, y \in X$ with $x \neq y$, there are open subsets $U_x, U_y \subset X$ satisfying $x \in U_x, y \in U_y$, and $U_x \cap U_y = \emptyset$.
- regular if points and closed sets can be separated by neighborhoods: For $x \in X$ and $C \subset X$ closed with $x \notin C$, there are open subsets $U_x, U_C \subset X$ satisfying $x \in U_x, C \subset U_C$, and $U_x \cap U_C = \emptyset$.
- \mathbf{T}_{3} if it is T_{1} and regular.
- completely regular if points and closed sets can be separated by functions: For $x \in X$ and $C \subset X$ closed with $x \notin C$, there is a continuous function $f: X \to [0, 1]$ satisfying f(x) = 0 and $f|_C \equiv 1$.
- $\mathbf{T}_{3\frac{1}{2}}$ or **Tychonoff** if it is T_1 and completely regular.
- normal if closed sets can be separated by neighborhoods: For $A, B \subset X$ closed and disjoint, there are open subsets $U, V \subset X$ satisfying $A \subseteq U, B \subseteq V$, and $U \cap V = \emptyset$.
- $\mathbf{T_4}$ if it is T_1 and normal.
- perfectly normal if closed sets can be precisely separated by functions: For $A, B \subset X$ closed and disjoint, there is a continuous function $f: X \to [0, 1]$ satisfying $f^{-1}(0) = A$ and $f^{-1}(1) = B$.
- T_6 if it is T_1 and perfectly normal.

2 Compactness

Definition 2.1. A topological space X is called:

- **compact** if every open cover of X admits a finite subcover.
- countably compact if every countable open cover of X admits a finite subcover.
- sequentially compact if every sequence in X has a convergent subsequence.
- Lindelöf if every open cover of X admits a countable subcover.
- locally compact if every point $x \in X$ has a compact neighborhood.
- σ -compact if X is a countable union of compact subspaces.
- paracompact if every open cover of X admits a locally finite refinement.
- hemicompact if there is a countable collection of compact subspaces $K_n \subseteq X$ such that for any compact subspace $K \subseteq X$, there is an $n \in \mathbb{N}$ satisfying $K \subseteq K_n$.

3 Countability axioms

Definition 3.1. A topological space X is called:

- first-countable if every point $x \in X$ has a countable neighborhood basis.
- second-countable if the topology on X has a countable basis.
- separable if X has a countable dense subset.

4 Connectedness

Definition 4.1. A topological space X is called:

- **connected** if X is not a disjoint union of non-empty open subsets.
- locally connected if for all $x \in X$ and neighborhood U of x, there is a connected neighborhood V of x satisfying $V \subseteq U$.
- **path-connected** if any two points of X can be joined by a path.
- locally path-connected if for all $x \in X$ and neighborhood U of x, there is a pathconnected neighborhood V of x satisfying $V \subseteq U$.

5 Properties of maps

Definition 5.1. A function $f: X \to Y$ between topological spaces is called:

- continuous if for any open $U \subseteq Y$, the preimage $f^{-1}(U) \subseteq X$ is open in X.
- open if for any open $U \subseteq X$, the image $f(U) \subseteq Y$ is open in Y.
- closed if for any closed $C \subseteq X$, the image $f(C) \subseteq Y$ is closed in Y.
- a homeomorphism if it is bijective and its inverse $f^{-1}: Y \to X$ is continuous.
- an embedding if it is injective and a homeomorphism onto its image f(X).
- a quotient map or identification map if it is surjective and Y has the quotient topology induced by f.
- **proper** if for any compact subspace $K \subseteq Y$, the preimage $f^{-1}(K) \subseteq X$ is compact.

Definition 5.2. A function $f: X \to Y$ between *metric* spaces is called:

- uniformly continuous if for any $\epsilon > 0$, there is a $\delta > 0$ satisfying $f(B_{\delta}(x)) \subseteq B_{\epsilon}(f(x))$ for all $x \in X$.
- Lipschitz continuous with Lipschitz constant $K \ge 0$ it satisfies the inequality

$$d(f(x), f(x')) \le Kd(x, x')$$

for all $x, x' \in X$.