## Math 535 - General Topology Additional notes

Martin Frankland

December 5, 2012

## 1 Compactly generated spaces

**Definition 1.1.** A topological space X is **compactly generated** if the following holds: a subset  $A \subseteq X$  is open in X if and only if  $A \cap K$  is open in K for every compact subset  $K \subseteq X$ .

Equivalently,  $A \subseteq X$  is closed in X if and only if  $A \cap K$  is closed in K for every compact subset  $K \subseteq X$ .

*Example* 1.2. Any compact space is compactly generated.

**Proposition 1.3.** A topological space X is compactly generated if and only if the following holds: a subset  $A \subseteq X$  is open in X if and only if for every compact space K and continuous map  $f: K \to X$ , the preimage  $f^{-1}(A)$  is open in K.

Remark 1.4. Some authors have a slightly different definition of compactly generated, possibly imposing the Hausdorff condition (or a weaker separation axiom) to X or to K.

Some authors call definition 1.1 **k-space**, while some reserve the term k-space for a slightly different notion.

In the definition 1.1 above, a subset  $A \subseteq X$  such that  $A \cap K$  is open in K for every compact subset  $K \subseteq X$  deserves to be called **k-open** in X. Every open in X is k-open, and X being compactly generated means that every k-open in X is open in X.

**Proposition 1.5.** Let X be a compactly generated space, Y a topological space, and  $g: X \to Y$  a map (not necessarily continuous). The following are equivalent.

- 1.  $g: X \to Y$  is continuous.
- 2. For all compact subset  $K \subseteq X$ , the restriction  $g|_K \colon K \to Y$  is continuous.
- 3. For all compact space K and continuous map  $f: K \to X$ , the composite  $g \circ f: K \to Y$  is continuous.



Many spaces are compactly generated.

**Proposition 1.6.** Any first-countable space is compactly generated.

**Proposition 1.7.** Any locally compact space is compactly generated. [Locally compact in the weak sense, i.e. every point has a compact neighborhood.]

However, not all spaces are compactly generated.

**Proposition 1.8.** An uncountable product of copies of  $\mathbb{R}$  is not compactly generated.

## 2 k-ification

A space X may not be compactly generated, but we now describe the "best approximation" of X by a compactly generated space.

**Definition 2.1.** Let  $(X, \mathcal{T})$  be a topological space. The collection  $\mathcal{T}_{cg}$  of k-open subsets of X (i.e. subsets  $A \subseteq X$  such that  $A \cap K$  is open in K for any compact subset  $K \subseteq X$ ) is a topology on X. The **k-ification** of X is the topological space  $kX := (X, \mathcal{T}_{cg})$ .

Since open subsets of X are always k-open in X, the inclusion of topologies  $\mathcal{T} \subseteq \mathcal{T}_{cg}$  always holds, i.e. the identity function id:  $kX \to X$  is continuous. [Here id is an abuse of notation, since kX and X are usually different topological spaces.]

The continuous map id:  $kX \to X$  satisfies the universal property described in the following proposition.

**Proposition 2.2.** Let X be a topological space.

- 1. The k-ification kX is compactly generated.
- 2. For any compactly generated space W and continuous map  $f: W \to X$ , there exists a unique continuous map  $\tilde{f}: W \to kX$  satisfying  $f = id \circ \tilde{f}$ , i.e. making the diagram



commute.

Note that  $\tilde{f}$  has the same underlying function as  $f: W \to X$ , i.e.  $\tilde{f}(w) = f(w)$  for all  $w \in W$ . The claim is that this function is continuous when viewed as a map  $W \to kX$ .

Proof. Homework 14 Problem 3.

This means that  $kX \to X$  is the "closest" compactly generated space that maps into X.

We can now prove a converse to proposition 1.5.

**Proposition 2.3.** Let X be a topological space such that "compact subsets detect continuity" in the following sense: For any topological Y and map  $g: X \to Y$ , g is continuous whenever its restriction  $g|_K: K \to Y$  to any compact subset  $K \subseteq X$  is continuous. Then X is compactly generated.

*Proof.* Let  $K \subseteq X$  be a compact subset. Since K is in particular compactly generated, the inclusion  $K \hookrightarrow X$  induces a continuous map  $K \hookrightarrow kX$ .

Now consider the identity function id:  $X \to kX$ . For any compact subset  $K \subseteq X$ , the restriction of id to K is the inclusion map  $\mathrm{id}|_K \colon K \hookrightarrow kX$ , which is continuous, as noted above. Therefore the assumption on X implies that id:  $X \to kX$  is continuous, so that  $kX \cong X$  is a homeomorphism and X is compactly generated.

**Proposition 2.4.** Any quotient of a compactly generated space is compactly generated.

*Proof.* Let X be a compactly generated space, and  $q: X \to Y$  a quotient map, which is in particular continuous. Since X is compactly generated, q induces a continuous map  $\tilde{q}: X \to kY$ , as illustrated here:

$$X \xrightarrow{\widetilde{q}} kY \xrightarrow{\operatorname{id}} Y.$$

Let  $A \subseteq Y$  be a k-open subset of Y, which means  $\mathrm{id}^{-1}(A) \subseteq kY$  is open in kY. Then the preimage

$$q^{-1}(A) = (\mathrm{id} \circ \widetilde{q})^{-1}(A)$$
$$= \widetilde{q}^{-1} (\mathrm{id}^{-1}(A)) \subseteq X$$

is open in X since  $\tilde{q}: X \to kY$  is continuous. Therefore  $A \subseteq Y$  is open in Y since q is a quotient map.

We can now prove a structure theorem for compactly generated spaces.

**Proposition 2.5.** A topological space is compactly generated if and only if it is a quotient of a locally compact space.

*Proof.* ( $\Leftarrow$ ) A locally compact space is always compactly generated (by 1.7). Therefore a quotient of a locally compact space is also compactly generated (by 2.4).

 $(\Rightarrow)$  A compactly generated space is a quotient of a coproduct  $\coprod_{i \in I} K_i$  of compact spaces  $K_i$ , by Homework 14 Problem 4.

Moreover, a coproduct of compact spaces is locally compact. Indeed, every point  $w \in \prod_{i \in I} K_i$ lives in a summand  $K_j$ , and  $K_j$  is a compact neighborhood of  $w \in K_j$ , since  $K_j$  is open in the coproduct  $\prod_{i \in I} K_i$ .